EGRank: An exponentiated gradient algorithm for sparse learning-to-rank
This paper focuses on the problem of sparse learning-to-rank, where the learned ranking models usually have very few non-zero coefficients. An exponential gradient algorithm is proposed to learn sparse models for learning-to-rank, which can be formulated as a convex optimization problem with the ℓ1...
Uložené v:
| Vydané v: | Information sciences Ročník 467; s. 342 - 356 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.10.2018
|
| Predmet: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!