EGRank: An exponentiated gradient algorithm for sparse learning-to-rank

This paper focuses on the problem of sparse learning-to-rank, where the learned ranking models usually have very few non-zero coefficients. An exponential gradient algorithm is proposed to learn sparse models for learning-to-rank, which can be formulated as a convex optimization problem with the ℓ1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 467; S. 342 - 356
Hauptverfasser: Du, Lei, Pan, Yan, Ding, Jintang, Lai, Hanjiang, Huang, Changqin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.10.2018
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper focuses on the problem of sparse learning-to-rank, where the learned ranking models usually have very few non-zero coefficients. An exponential gradient algorithm is proposed to learn sparse models for learning-to-rank, which can be formulated as a convex optimization problem with the ℓ1 constraint. Our proposed algorithm has a competitive theoretical worst-case performance guarantee, that is, we can obtain an ϵ-accurate solution after O(1ϵ) iterations. An early stopping criterion based on Fenchel duality is proposed to make the algorithm be more efficient in practice. Extensive experiments are conducted on some benchmark datasets. The results demonstrate that a sparse ranking model can significantly improve the accuracy of ranking prediction compared to dense models, and the proposed algorithm shows stable and competitive performance compared to several state-of-the-art baseline algorithms.
AbstractList This paper focuses on the problem of sparse learning-to-rank, where the learned ranking models usually have very few non-zero coefficients. An exponential gradient algorithm is proposed to learn sparse models for learning-to-rank, which can be formulated as a convex optimization problem with the ℓ1 constraint. Our proposed algorithm has a competitive theoretical worst-case performance guarantee, that is, we can obtain an ϵ-accurate solution after O(1ϵ) iterations. An early stopping criterion based on Fenchel duality is proposed to make the algorithm be more efficient in practice. Extensive experiments are conducted on some benchmark datasets. The results demonstrate that a sparse ranking model can significantly improve the accuracy of ranking prediction compared to dense models, and the proposed algorithm shows stable and competitive performance compared to several state-of-the-art baseline algorithms.
Author Huang, Changqin
Du, Lei
Ding, Jintang
Lai, Hanjiang
Pan, Yan
Author_xml – sequence: 1
  givenname: Lei
  surname: Du
  fullname: Du, Lei
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Yan
  orcidid: 0000-0002-0466-3763
  surname: Pan
  fullname: Pan, Yan
  email: panyan5@mail.sysu.edu.cn
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Jintang
  surname: Ding
  fullname: Ding, Jintang
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 4
  givenname: Hanjiang
  surname: Lai
  fullname: Lai, Hanjiang
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 5
  givenname: Changqin
  orcidid: 0000-0003-1371-2608
  surname: Huang
  fullname: Huang, Changqin
  organization: School of Information Technology in Education, South China Normal University, Guangzhou, China
BookMark eNp9kNFKwzAUhoNMcJs-gHd9gdaTrG1SvRpjVmEgiF6HNDmdmV06kiD69mbMKy92dTgX3wf_NyMTNzok5JZCQYHWd7vCulAwoKIAXkC5uCBTKjjLa9bQCZkCMMiBVdUVmYWwA4CS1_WUtOv2VbnP-2zpMvw-JKmLVkU02dYrY9OXqWE7ehs_9lk_-iwclA-YDai8s26bxzH3SXBNLns1BLz5u3Py_rh-Wz3lm5f2ebXc5Jo1POad6HjX16gbUwNtNLKuVFiCrjQVCyYqTtFUqsKmUkID9J021Jg0RBgwplvMCT15tR9D8NjLg7d75X8kBXksIXcylZDHEhK4TCUSw_8x2kYV7eiiV3Y4Sz6cSEyTvix6GXRqotFYjzpKM9oz9C9VoHwx
CitedBy_id crossref_primary_10_1016_j_knosys_2021_107577
crossref_primary_10_1016_j_ins_2020_02_065
crossref_primary_10_1155_2018_7837696
Cites_doi 10.1016/j.knosys.2013.06.001
10.1109/TIT.2008.929958
10.1007/s10994-010-5173-z
10.1109/TIP.2016.2545300
10.1109/TC.2012.62
10.1006/inco.1996.2612
10.1145/582415.582418
10.1109/TNNLS.2013.2247628
10.1016/j.ins.2015.05.034
10.1016/j.ins.2017.05.027
10.1007/s10791-009-9109-9
10.1016/j.ins.2014.10.037
10.1561/1500000016
10.1109/TIP.2018.2835143
10.1016/j.isprsjprs.2018.01.003
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2018.07.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 356
ExternalDocumentID 10_1016_j_ins_2018_07_043
S0020025518305632
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-b8b7bf6ec9d6019ce2b4ae40c5c18328571ed5a5e95a8c00fbcd1dd8728d0ddb3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446291700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:27:56 EST 2025
Tue Nov 18 22:26:12 EST 2025
Fri Feb 23 02:45:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Exponentiated gradient
Sparse model
Learning to rank
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-b8b7bf6ec9d6019ce2b4ae40c5c18328571ed5a5e95a8c00fbcd1dd8728d0ddb3
ORCID 0000-0003-1371-2608
0000-0002-0466-3763
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_ins_2018_07_043
crossref_citationtrail_10_1016_j_ins_2018_07_043
elsevier_sciencedirect_doi_10_1016_j_ins_2018_07_043
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Järvelin, Kekäläinen (bib0011) 2002; 20
Herbrich, Graepel, Obermayer (bib0010) 1999; vol. 1
Sun, Qin, Tao, Wang (bib0027) 2009
Kivinen, Warmuth (bib0015) 1997; 132
Zhang, Gu, Chen, Han, Su, Cao, Liu (bib0031) 2018
Aggarwal (bib0001) 2015; 321
Xu, Li (bib0029) 2007
Baeza-Yates, Ribeiro-Neto (bib0002) 1999; vol. 463
B. Lewis, Convex analysis and nonlinear optimization, 2000.
Ji, Pang, He, Zhang (bib0012) 2015; 302
Li, Wu, Zhang, Song, Wang (bib0021) 2017; 411
Shalev-Shwartz, Singer (bib0026) 2010; 80
Cao, Qin, Liu, Tsai, Li (bib0004) 2007
Lai, Pan, Tang, Yu (bib0019) 2013; 24
Lai, Pan, Shu, Wei, Yan (bib0017) 2016; 25
Rifkin, Lippert (bib0025) 2007; 8
Chapelle, Keerthi (bib0005) 2010; 13
Li, Wu, Burges (bib0022) 2007
Lai, Pan, Tang, Liu (bib0018) 2013; 49
Liu (bib0023) 2009; 3
Freund, Iyer, Schapire, Singer (bib0009) 2003; 4
Luan, Chen, Zhang, Han, Liu (bib0024) 2018; 27
Burges, Shaked, Renshaw, Lazier, Deeds, Hamilton, Hullender (bib0003) 2005
Lai, Pan, Liu, Lin, Wu (bib0016) 2013; 62
Joachims (bib0013) 2002
Joachims (bib0014) 2006
Yue, Finley, Radlinski, Joachims (bib0030) 2007
Collins, McAllester (bib0007) 2005; 17
Donoho, Tsaig (bib0008) 2008; 54
Xia, Liu, Wang, Zhang, Li (bib0028) 2008
Collins, Globerson, Koo, Carreras, Bartlett (bib0006) 2008; 9
Lai (10.1016/j.ins.2018.07.043_bib0016) 2013; 62
Lai (10.1016/j.ins.2018.07.043_bib0017) 2016; 25
Kivinen (10.1016/j.ins.2018.07.043_bib0015) 1997; 132
Cao (10.1016/j.ins.2018.07.043_bib0004) 2007
Ji (10.1016/j.ins.2018.07.043_bib0012) 2015; 302
Luan (10.1016/j.ins.2018.07.043_bib0024) 2018; 27
10.1016/j.ins.2018.07.043_bib0020
Lai (10.1016/j.ins.2018.07.043_bib0018) 2013; 49
Li (10.1016/j.ins.2018.07.043_bib0022) 2007
Joachims (10.1016/j.ins.2018.07.043_bib0013) 2002
Collins (10.1016/j.ins.2018.07.043_bib0007) 2005; 17
Collins (10.1016/j.ins.2018.07.043_bib0006) 2008; 9
Aggarwal (10.1016/j.ins.2018.07.043_bib0001) 2015; 321
Rifkin (10.1016/j.ins.2018.07.043_bib0025) 2007; 8
Yue (10.1016/j.ins.2018.07.043_bib0030) 2007
Chapelle (10.1016/j.ins.2018.07.043_bib0005) 2010; 13
Li (10.1016/j.ins.2018.07.043_bib0021) 2017; 411
Zhang (10.1016/j.ins.2018.07.043_bib0031) 2018
Järvelin (10.1016/j.ins.2018.07.043_bib0011) 2002; 20
Donoho (10.1016/j.ins.2018.07.043_bib0008) 2008; 54
Freund (10.1016/j.ins.2018.07.043_bib0009) 2003; 4
Xia (10.1016/j.ins.2018.07.043_bib0028) 2008
Lai (10.1016/j.ins.2018.07.043_bib0019) 2013; 24
Xu (10.1016/j.ins.2018.07.043_bib0029) 2007
Burges (10.1016/j.ins.2018.07.043_bib0003) 2005
Shalev-Shwartz (10.1016/j.ins.2018.07.043_bib0026) 2010; 80
Joachims (10.1016/j.ins.2018.07.043_bib0014) 2006
Liu (10.1016/j.ins.2018.07.043_bib0023) 2009; 3
Baeza-Yates (10.1016/j.ins.2018.07.043_bib0002) 1999; vol. 463
Sun (10.1016/j.ins.2018.07.043_bib0027) 2009
Herbrich (10.1016/j.ins.2018.07.043_bib0010) 1999; vol. 1
References_xml – start-page: 217
  year: 2006
  end-page: 226
  ident: bib0014
  article-title: Training linear svms in linear time
  publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 9
  start-page: 1775
  year: 2008
  end-page: 1822
  ident: bib0006
  article-title: Exponentiated gradient algorithms for conditional random fields and max-margin markov networks
  publication-title: J. Mach. Learn. Res.
– start-page: 129
  year: 2007
  end-page: 136
  ident: bib0004
  article-title: Learning to rank: from pairwise approach to listwise approach
  publication-title: Proceedings of the 24th International Conference on Machine Learning
– volume: 4
  start-page: 933
  year: 2003
  end-page: 969
  ident: bib0009
  article-title: An efficient boosting algorithm for combining preferences
  publication-title: J. Mach. Learn. Res.
– start-page: 89
  year: 2005
  end-page: 96
  ident: bib0003
  article-title: Learning to rank using gradient descent
  publication-title: Proceedings of the 22nd International Conference on Machine Learning
– volume: 13
  start-page: 201
  year: 2010
  end-page: 215
  ident: bib0005
  article-title: Efficient algorithms for ranking with svms
  publication-title: Inf. Retrieval
– volume: 54
  start-page: 4789
  year: 2008
  end-page: 4812
  ident: bib0008
  article-title: Fast solution of-norm minimization problems when the solution may be sparse
  publication-title: IEEE Trans. Inf. Theory
– volume: 80
  start-page: 141
  year: 2010
  end-page: 163
  ident: bib0026
  article-title: On the equivalence of weak learnability and linear separability: new relaxations and efficient boosting algorithms
  publication-title: Mach. Learn.
– volume: 20
  start-page: 422
  year: 2002
  end-page: 446
  ident: bib0011
  article-title: Cumulated gain-based evaluation of ir techniques
  publication-title: ACM Trans. Inf. Syst.
– start-page: 897
  year: 2007
  end-page: 904
  ident: bib0022
  article-title: Mcrank: Learning to rank using multiple classification and gradient boosting
  publication-title: Advances in Neural Information Processing Systems
– year: 2018
  ident: bib0031
  article-title: One-two-one networks for compression artifacts reduction in remote sensing
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 62
  start-page: 1221
  year: 2013
  end-page: 1233
  ident: bib0016
  article-title: Sparse learning-to-rank via an efficient primal-dual algorithm
  publication-title: IEEE Trans. Comput.
– volume: 49
  start-page: 190
  year: 2013
  end-page: 198
  ident: bib0018
  article-title: Efficient gradient descent algorithm for sparse models with application in learning-to-rank
  publication-title: Knowl.-Based Syst.
– volume: 17
  start-page: 113
  year: 2005
  ident: bib0007
  article-title: Exponentiated gradient algorithms for large-margin structured classification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 24
  start-page: 940
  year: 2013
  end-page: 950
  ident: bib0019
  article-title: Fsmrank: feature selection method for learning to rank
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 259
  year: 2009
  end-page: 266
  ident: bib0027
  article-title: Robust sparse rank learning for non-smooth ranking measures
  publication-title: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval
– volume: vol. 463
  year: 1999
  ident: bib0002
  article-title: Modern Information Retrieval
– start-page: 271
  year: 2007
  end-page: 278
  ident: bib0030
  article-title: A support vector method for optimizing average precision
  publication-title: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
– start-page: 391
  year: 2007
  end-page: 398
  ident: bib0029
  article-title: Adarank: a boosting algorithm for information retrieval
  publication-title: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
– start-page: 1192
  year: 2008
  end-page: 1199
  ident: bib0028
  article-title: Listwise approach to learning to rank: theory and algorithm
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 302
  start-page: 83
  year: 2015
  end-page: 93
  ident: bib0012
  article-title: Semi-supervised lpp algorithms for learning-to-rank-based visual search reranking
  publication-title: Inf. Sci.
– volume: 321
  start-page: 90
  year: 2015
  end-page: 102
  ident: bib0001
  article-title: On learning of weights through preferences
  publication-title: Inf. Sci.
– volume: 132
  start-page: 1
  year: 1997
  end-page: 63
  ident: bib0015
  article-title: Exponentiated gradient versus gradient descent for linear predictors
  publication-title: Inf. Comput.
– volume: 25
  start-page: 2469
  year: 2016
  end-page: 2479
  ident: bib0017
  article-title: Instance-aware hashing for multi-label image retrieval
  publication-title: IEEE Trans. Image Process.
– volume: 3
  start-page: 225
  year: 2009
  end-page: 331
  ident: bib0023
  article-title: Learning to rank for information retrieval
  publication-title: Found. Trends Inf. Retrieval
– volume: 27
  start-page: 4357
  year: 2018
  end-page: 4366
  ident: bib0024
  article-title: Gabor convolutional networks
  publication-title: IEEE Trans. Image Process.
– volume: vol. 1
  start-page: 97
  year: 1999
  end-page: 102
  ident: bib0010
  article-title: Support vector learning for ordinal regression
  publication-title: Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470)
– start-page: 133
  year: 2002
  end-page: 142
  ident: bib0013
  article-title: Optimizing search engines using clickthrough data
  publication-title: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– reference: B. Lewis, Convex analysis and nonlinear optimization, 2000.
– volume: 411
  start-page: 136
  year: 2017
  end-page: 150
  ident: bib0021
  article-title: Learning to diversify web search results with a document repulsion model
  publication-title: Inf. Sci.
– volume: 8
  start-page: 441
  year: 2007
  end-page: 479
  ident: bib0025
  article-title: Value regularization and fenchel duality
  publication-title: Journal of Machine Learning Research
– start-page: 89
  year: 2005
  ident: 10.1016/j.ins.2018.07.043_bib0003
  article-title: Learning to rank using gradient descent
– volume: 49
  start-page: 190
  year: 2013
  ident: 10.1016/j.ins.2018.07.043_bib0018
  article-title: Efficient gradient descent algorithm for sparse models with application in learning-to-rank
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.06.001
– volume: 9
  start-page: 1775
  issue: August
  year: 2008
  ident: 10.1016/j.ins.2018.07.043_bib0006
  article-title: Exponentiated gradient algorithms for conditional random fields and max-margin markov networks
  publication-title: J. Mach. Learn. Res.
– start-page: 129
  year: 2007
  ident: 10.1016/j.ins.2018.07.043_bib0004
  article-title: Learning to rank: from pairwise approach to listwise approach
– volume: 54
  start-page: 4789
  issue: 11
  year: 2008
  ident: 10.1016/j.ins.2018.07.043_bib0008
  article-title: Fast solution of-norm minimization problems when the solution may be sparse
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2008.929958
– volume: 80
  start-page: 141
  issue: 2-3
  year: 2010
  ident: 10.1016/j.ins.2018.07.043_bib0026
  article-title: On the equivalence of weak learnability and linear separability: new relaxations and efficient boosting algorithms
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-010-5173-z
– volume: 25
  start-page: 2469
  issue: 6
  year: 2016
  ident: 10.1016/j.ins.2018.07.043_bib0017
  article-title: Instance-aware hashing for multi-label image retrieval
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2545300
– ident: 10.1016/j.ins.2018.07.043_bib0020
– volume: 62
  start-page: 1221
  issue: 6
  year: 2013
  ident: 10.1016/j.ins.2018.07.043_bib0016
  article-title: Sparse learning-to-rank via an efficient primal-dual algorithm
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2012.62
– volume: 132
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.ins.2018.07.043_bib0015
  article-title: Exponentiated gradient versus gradient descent for linear predictors
  publication-title: Inf. Comput.
  doi: 10.1006/inco.1996.2612
– volume: 8
  start-page: 441
  issue: Mar
  year: 2007
  ident: 10.1016/j.ins.2018.07.043_bib0025
  article-title: Value regularization and fenchel duality
  publication-title: Journal of Machine Learning Research
– volume: 17
  start-page: 113
  year: 2005
  ident: 10.1016/j.ins.2018.07.043_bib0007
  article-title: Exponentiated gradient algorithms for large-margin structured classification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: vol. 1
  start-page: 97
  year: 1999
  ident: 10.1016/j.ins.2018.07.043_bib0010
  article-title: Support vector learning for ordinal regression
– volume: 20
  start-page: 422
  issue: 4
  year: 2002
  ident: 10.1016/j.ins.2018.07.043_bib0011
  article-title: Cumulated gain-based evaluation of ir techniques
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/582415.582418
– volume: 24
  start-page: 940
  issue: 6
  year: 2013
  ident: 10.1016/j.ins.2018.07.043_bib0019
  article-title: Fsmrank: feature selection method for learning to rank
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2247628
– volume: vol. 463
  year: 1999
  ident: 10.1016/j.ins.2018.07.043_bib0002
– start-page: 897
  year: 2007
  ident: 10.1016/j.ins.2018.07.043_bib0022
  article-title: Mcrank: Learning to rank using multiple classification and gradient boosting
– start-page: 1192
  year: 2008
  ident: 10.1016/j.ins.2018.07.043_bib0028
  article-title: Listwise approach to learning to rank: theory and algorithm
– volume: 321
  start-page: 90
  year: 2015
  ident: 10.1016/j.ins.2018.07.043_bib0001
  article-title: On learning of weights through preferences
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.05.034
– volume: 411
  start-page: 136
  year: 2017
  ident: 10.1016/j.ins.2018.07.043_bib0021
  article-title: Learning to diversify web search results with a document repulsion model
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.05.027
– volume: 13
  start-page: 201
  issue: 3
  year: 2010
  ident: 10.1016/j.ins.2018.07.043_bib0005
  article-title: Efficient algorithms for ranking with svms
  publication-title: Inf. Retrieval
  doi: 10.1007/s10791-009-9109-9
– volume: 302
  start-page: 83
  year: 2015
  ident: 10.1016/j.ins.2018.07.043_bib0012
  article-title: Semi-supervised lpp algorithms for learning-to-rank-based visual search reranking
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.10.037
– volume: 3
  start-page: 225
  issue: 3
  year: 2009
  ident: 10.1016/j.ins.2018.07.043_bib0023
  article-title: Learning to rank for information retrieval
  publication-title: Found. Trends Inf. Retrieval
  doi: 10.1561/1500000016
– start-page: 391
  year: 2007
  ident: 10.1016/j.ins.2018.07.043_bib0029
  article-title: Adarank: a boosting algorithm for information retrieval
– start-page: 133
  year: 2002
  ident: 10.1016/j.ins.2018.07.043_bib0013
  article-title: Optimizing search engines using clickthrough data
– volume: 27
  start-page: 4357
  issue: 9
  year: 2018
  ident: 10.1016/j.ins.2018.07.043_bib0024
  article-title: Gabor convolutional networks
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2835143
– start-page: 217
  year: 2006
  ident: 10.1016/j.ins.2018.07.043_bib0014
  article-title: Training linear svms in linear time
– volume: 4
  start-page: 933
  issue: November
  year: 2003
  ident: 10.1016/j.ins.2018.07.043_bib0009
  article-title: An efficient boosting algorithm for combining preferences
  publication-title: J. Mach. Learn. Res.
– start-page: 259
  year: 2009
  ident: 10.1016/j.ins.2018.07.043_bib0027
  article-title: Robust sparse rank learning for non-smooth ranking measures
– start-page: 271
  year: 2007
  ident: 10.1016/j.ins.2018.07.043_bib0030
  article-title: A support vector method for optimizing average precision
– year: 2018
  ident: 10.1016/j.ins.2018.07.043_bib0031
  article-title: One-two-one networks for compression artifacts reduction in remote sensing
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.01.003
SSID ssj0004766
Score 2.2807915
Snippet This paper focuses on the problem of sparse learning-to-rank, where the learned ranking models usually have very few non-zero coefficients. An exponential...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 342
SubjectTerms Exponentiated gradient
Learning to rank
Sparse model
Title EGRank: An exponentiated gradient algorithm for sparse learning-to-rank
URI https://dx.doi.org/10.1016/j.ins.2018.07.043
Volume 467
WOSCitedRecordID wos000446291700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLag4wCHCQaIMYZ8QByQLDm_aodbNcrGNE0IDamcIv9qlwJplWaof_6eYzvpCkPswCWKrNpN8319frbf-x5Cb8DgCSMlI1b5maRcpiQfmpyk0sZUGaWHtE0UPmPn53wyyT_77JJVW06AVRVfr_Plf4Ua2gBsmzp7B7i7QaEB7gF0uALscP0n4MfHX0T13W_4mfVyUdmAIGE9y1ndBnjZXd7Zoi6by59tlCEYlXplQgGJGWkWxJZy3_RbfdZSSxY_afYV6a_axb0p--Oo1pR964n3wVdOOS0rcEZnofnM1cI-EdW8DM1-ByLiXSxbnxEADbGT2w1WNXVVNrxdTJyElp9iE6cl_pv1dhsJc1hyWCH1iLeyqk7F6aZS9tYM1sUVhpC1eQFDFHaIgrIChriPdmKW5XyAdkafxpPTPnWWuePs8BPCwXcbArj1HH92XTbckYvHaNevI_DI4f8E3TPVHnq0oS65hw59Tgp-izfgw96aP0XHjinv8ajCN3iCA09wxxMM_bHjCd7myTP09eP44uiE-LoaRMU5a4jkksnp0Kgc_olRrkwsU2FSqjJlDTzPWGR0JjKTZ4IrSqdS6UhrzmKuqdYyeY4GFTzUC4QpZ4JmIpIiESmnSihtpkPJFKyCo4SrfUTDKyuUF523tU9-FLdCtY_edV2WTnHlbx9OAw6FZ79zBQvg1O3dXt7lOw7Qw571r9Cgqa_MIXqgfjXlqn7tCXUNJGaMew
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EGRank%3A+An+exponentiated+gradient+algorithm+for+sparse+learning-to-rank&rft.jtitle=Information+sciences&rft.au=Du%2C+Lei&rft.au=Pan%2C+Yan&rft.au=Ding%2C+Jintang&rft.au=Lai%2C+Hanjiang&rft.date=2018-10-01&rft.issn=0020-0255&rft.volume=467&rft.spage=342&rft.epage=356&rft_id=info:doi/10.1016%2Fj.ins.2018.07.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2018_07_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon