Spectral properties of token graphs

Let G be a graph on n vertices. For a given integer k such that 1≤k≤n, the k-token graph Fk(G) of G is defined as the graph whose vertices are the k-subsets of the vertex set of G, and two of them are adjacent whenever their symmetric difference is a pair of adjacent vertices in G. In this article,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 687; s. 181 - 206
Hlavní autoři: Barik, Sasmita, Verma, Piyush
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.04.2024
Témata:
ISSN:0024-3795, 1873-1856
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Let G be a graph on n vertices. For a given integer k such that 1≤k≤n, the k-token graph Fk(G) of G is defined as the graph whose vertices are the k-subsets of the vertex set of G, and two of them are adjacent whenever their symmetric difference is a pair of adjacent vertices in G. In this article, we study the structural and spectral properties of token graphs. We describe the adjacency matrix and the Laplacian matrix of Fk(G) and obtain bounds on the adjacency and Laplacian spectral radii of Fk(G). Interestingly, it is found that Sn, the star graph on n vertices, has the same Laplacian spectral radius as that of Fk(Sn). It was conjectured that for any graph G, the algebraic connectivity of Fk(G) is equal to the algebraic connectivity of G. This result turned out to be a theorem, as it was proved by using the theory of the continuous Markov chain of random walks and the interchange process. However, proving this theorem using algebraic and combinatorial methods is still an open and interesting problem. Using combinatorial techniques, we prove that the theorem holds for a class of graphs that have a cut-vertex of degree n−1. We also prove it by restricting the smallest degree of the k-token graph of G.
AbstractList Let G be a graph on n vertices. For a given integer k such that 1≤k≤n, the k-token graph Fk(G) of G is defined as the graph whose vertices are the k-subsets of the vertex set of G, and two of them are adjacent whenever their symmetric difference is a pair of adjacent vertices in G. In this article, we study the structural and spectral properties of token graphs. We describe the adjacency matrix and the Laplacian matrix of Fk(G) and obtain bounds on the adjacency and Laplacian spectral radii of Fk(G). Interestingly, it is found that Sn, the star graph on n vertices, has the same Laplacian spectral radius as that of Fk(Sn). It was conjectured that for any graph G, the algebraic connectivity of Fk(G) is equal to the algebraic connectivity of G. This result turned out to be a theorem, as it was proved by using the theory of the continuous Markov chain of random walks and the interchange process. However, proving this theorem using algebraic and combinatorial methods is still an open and interesting problem. Using combinatorial techniques, we prove that the theorem holds for a class of graphs that have a cut-vertex of degree n−1. We also prove it by restricting the smallest degree of the k-token graph of G.
Author Verma, Piyush
Barik, Sasmita
Author_xml – sequence: 1
  givenname: Sasmita
  orcidid: 0000-0002-3927-5218
  surname: Barik
  fullname: Barik, Sasmita
  email: sasmita@iitbbs.ac.in
– sequence: 2
  givenname: Piyush
  surname: Verma
  fullname: Verma, Piyush
  email: s21ma09010@iitbbs.ac.in
BookMark eNp9kE1LxDAQhoOsYHf1B3greG6dpB9p8SSLX7DgQT2HaTLV1NqUpAj-e7OsJw97msM7zzDPu2aryU3E2CWHnAOvr4d8RMwFiDIHkQOUJyzhjSwy3lT1iiUQk6yQbXXG1iEMEDckiIRdvcykF49jOns3k18shdT16eI-aUrfPc4f4Zyd9jgGuvibG_Z2f_e6fcx2zw9P29tdpkUrl6yTDSB2umzqxhRdi7rjLUJlTIM9CBIxLSpT91rUFUpjipqXhroOI6ABig2Th7vauxA89UrbBRfrpvigHRUHtXdVg4quau-qQKhoEkn-j5y9_UL_c5S5OTAUlb4teRW0pUmTsT5WooyzR-hfRFpubQ
CitedBy_id crossref_primary_10_1016_j_dam_2025_06_057
crossref_primary_10_1016_j_disc_2024_114382
Cites_doi 10.1103/PhysRevLett.85.5468
10.1007/s003730200055
10.1016/j.laa.2004.01.020
10.1080/03081080600679029
10.1090/S0894-0347-10-00659-4
10.1016/j.dam.2018.03.085
10.1038/35065725
10.1016/0024-3795(95)00199-2
10.1063/1.5084136
10.7151/dmgt.1959
10.1016/j.laa.2021.05.005
10.1016/j.jctb.2010.07.001
10.1016/j.physa.2014.02.043
10.1137/S0895480191222653
10.26493/2590-9770.1244.720
10.21136/CMJ.1973.101168
10.1016/j.jctb.2006.04.002
10.1016/j.laa.2006.08.017
10.1007/s00373-011-1055-9
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.laa.2024.02.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 206
ExternalDocumentID 10_1016_j_laa_2024_02_004
S0024379524000429
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
29L
5VS
9DU
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AETEA
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FA8
FGOYB
G-2
HZ~
M26
M41
MVM
OHT
R2-
SSZ
T9H
WUQ
~HD
ID FETCH-LOGICAL-c297t-b780aabc4868d3b9acb19a05dd8af02e20aa35d6fc265a7dd3614debba868c003
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001184555300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-3795
IngestDate Tue Nov 18 20:50:45 EST 2025
Sat Nov 29 07:31:22 EST 2025
Sat Feb 24 15:49:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 05C10
05C75
05C50
Laplacian spectrum
Spectral radius
Algebraic connectivity
Token graph
Adjacency spectrum
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-b780aabc4868d3b9acb19a05dd8af02e20aa35d6fc265a7dd3614debba868c003
ORCID 0000-0002-3927-5218
PageCount 26
ParticipantIDs crossref_citationtrail_10_1016_j_laa_2024_02_004
crossref_primary_10_1016_j_laa_2024_02_004
elsevier_sciencedirect_doi_10_1016_j_laa_2024_02_004
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Linear algebra and its applications
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Alavi, Lick, Liu (br0010) 2002; 18
Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, Zaragoza Martinez (br0110) 2021; 625
Reyes, Dalfó, Fiol, Messegué (br0290) 2023
Haemers (br0220) 1995; 226–228
Audenaert, Godsil, Royle, Rudolph (br0030) 2007; 97
Lew (br0240) 2023
Strogatz (br0320) 2001; 410
Yu, Lu, Tian (br0330) 2004; 387
Callaway, Newman, Strogatz, Watts (br0080) 2000; 85
Barik, Lal, Pati (br0060) 2008; 56
Reyes, Dalfó, Fiol (br0280) 2023
Grone, Merris (br0210) 1994; 7
de Abreu (br0140) 2007; 423
Godsil, Royle (br0190) 2001
Fiedler (br0180) 1973; 23
Fabila-Monroy, Leaños, Trujillo-Negrete (br0170) 2022
Bapat (br0040) 2014
Horn, Johnson (br0230) 2012
Gómez Soto, Leaños, Ríos-Castro, Rivera (br0200) 2018; 247
Brouwer, Haemers (br0070) 2011
Alzaga, Iglesias, Pignol (br0020) 2010; 100
Barghi, Ponomarenko (br0050) 2009; 16
Rudolph (br0310) 2002
Ouyang (br0270) 2019; 60
Dalfó, Fiol (br0120) 2022
Mohar (br0260) 1997; vol. 497
Fabila-Monroy, Flores-Peñaloza, Huemer, Hurtado, Urrutia, Wood, Graphs (br0160) 2012; 28
Caputo, Liggett, Richthammer (br0090) 2010; 23
Dalfó, Fiol, Messegué (br0130) 2023
Carballosa, Fabila-Monroy, Leaños, Rivera (br0100) 2017; 37
Martín-Hernández, Wang, Van Mieghem, D'Agostino (br0250) 2014; 404
de Alba, Carballosa, Leaños, Rivera (br0150) 2020; 76
Rivera, Trujillo-Negrete (br0300) 2018; 1
de Abreu (10.1016/j.laa.2024.02.004_br0140) 2007; 423
Audenaert (10.1016/j.laa.2024.02.004_br0030) 2007; 97
Martín-Hernández (10.1016/j.laa.2024.02.004_br0250) 2014; 404
Carballosa (10.1016/j.laa.2024.02.004_br0100) 2017; 37
Lew (10.1016/j.laa.2024.02.004_br0240)
Gómez Soto (10.1016/j.laa.2024.02.004_br0200) 2018; 247
Godsil (10.1016/j.laa.2024.02.004_br0190) 2001
Reyes (10.1016/j.laa.2024.02.004_br0280)
Reyes (10.1016/j.laa.2024.02.004_br0290)
Barghi (10.1016/j.laa.2024.02.004_br0050) 2009; 16
Caputo (10.1016/j.laa.2024.02.004_br0090) 2010; 23
Dalfó (10.1016/j.laa.2024.02.004_br0110) 2021; 625
Alzaga (10.1016/j.laa.2024.02.004_br0020) 2010; 100
Dalfó (10.1016/j.laa.2024.02.004_br0120)
Fabila-Monroy (10.1016/j.laa.2024.02.004_br0170)
Mohar (10.1016/j.laa.2024.02.004_br0260) 1997; vol. 497
Dalfó (10.1016/j.laa.2024.02.004_br0130)
Fiedler (10.1016/j.laa.2024.02.004_br0180) 1973; 23
Yu (10.1016/j.laa.2024.02.004_br0330) 2004; 387
Callaway (10.1016/j.laa.2024.02.004_br0080) 2000; 85
de Alba (10.1016/j.laa.2024.02.004_br0150) 2020; 76
Fabila-Monroy (10.1016/j.laa.2024.02.004_br0160) 2012; 28
Strogatz (10.1016/j.laa.2024.02.004_br0320) 2001; 410
Bapat (10.1016/j.laa.2024.02.004_br0040) 2014
Horn (10.1016/j.laa.2024.02.004_br0230) 2012
Alavi (10.1016/j.laa.2024.02.004_br0010) 2002; 18
Brouwer (10.1016/j.laa.2024.02.004_br0070) 2011
Grone (10.1016/j.laa.2024.02.004_br0210) 1994; 7
Rivera (10.1016/j.laa.2024.02.004_br0300) 2018; 1
Rudolph (10.1016/j.laa.2024.02.004_br0310)
Haemers (10.1016/j.laa.2024.02.004_br0220) 1995; 226–228
Barik (10.1016/j.laa.2024.02.004_br0060) 2008; 56
Ouyang (10.1016/j.laa.2024.02.004_br0270) 2019; 60
References_xml – year: 2001
  ident: br0190
  article-title: Algebraic Graph Theory
– volume: 7
  start-page: 221
  year: 1994
  end-page: 229
  ident: br0210
  article-title: The Laplacian spectrum of graph II
  publication-title: SIAM J. Discrete Math.
– year: 2023
  ident: br0290
  article-title: On the spectra of token graphs of cycles and other graphs
– volume: 387
  start-page: 41
  year: 2004
  end-page: 49
  ident: br0330
  article-title: On the spectral radius of graphs
  publication-title: Linear Algebra Appl.
– volume: 18
  start-page: 709
  year: 2002
  end-page: 715
  ident: br0010
  article-title: Survey of double vertex graphs
  publication-title: Graphs Comb.
– year: 2022
  ident: br0120
  article-title: On the algebraic connectivity of token graphs
– volume: vol. 497
  start-page: 225
  year: 1997
  end-page: 275
  ident: br0260
  article-title: Some applications of Laplace eigenvalues of graphs
  publication-title: Graph Symmetry
– volume: 56
  start-page: 597
  year: 2008
  end-page: 610
  ident: br0060
  article-title: On trees with Laplacian eigenvalue one
  publication-title: Linear Multilinear Algebra
– volume: 410
  start-page: 268
  year: 2001
  end-page: 276
  ident: br0320
  article-title: Exploring complex networks
  publication-title: Nature
– volume: 16
  year: 2009
  ident: br0050
  article-title: Non-isomorphic graphs with cospectral symmetric powers
  publication-title: Electron. J. Comb.
– volume: 100
  start-page: 671
  year: 2010
  end-page: 682
  ident: br0020
  article-title: Spectra of symmetric powers of graphs and the Weisfeiler-Lehman refinements
  publication-title: J. Comb. Theory, Ser. B
– volume: 226–228
  start-page: 593
  year: 1995
  end-page: 616
  ident: br0220
  article-title: Interlacing eigenvalues and graphs
  publication-title: Linear Algebra Appl.
– year: 2023
  ident: br0130
  article-title: Some bounds on the Laplacian eigenvalues of token graphs
– volume: 76
  start-page: 387
  year: 2020
  end-page: 403
  ident: br0150
  article-title: Independence and matching numbers of some token graphs
  publication-title: Australas. J. Comb.
– volume: 404
  start-page: 92
  year: 2014
  end-page: 105
  ident: br0250
  article-title: Algebraic connectivity of interdependent networks
  publication-title: Phys. A, Stat. Mech. Appl.
– volume: 1
  year: 2018
  ident: br0300
  article-title: Hamiltonicity of token graphs of fan graphs
  publication-title: Art Discrete Appl. Math.
– year: 2023
  ident: br0280
  article-title: On the spectra and spectral radius of token graphs
– volume: 85
  start-page: 5468
  year: 2000
  end-page: 5471
  ident: br0080
  article-title: Network robustness and fragility: percolation on random graphs
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 831
  year: 2010
  end-page: 851
  ident: br0090
  article-title: Proof of Aldous' spectral gap conjecture
  publication-title: J. Am. Math. Soc.
– volume: 23
  start-page: 298
  year: 1973
  end-page: 305
  ident: br0180
  article-title: Algebraic connectivity of graphs
  publication-title: Czechoslov. Math. J.
– year: 2014
  ident: br0040
  article-title: Graphs and Matrices
– year: 2011
  ident: br0070
  article-title: Spectra of Graphs
– year: 2023
  ident: br0240
  article-title: Garland's method for token graphs
– volume: 625
  start-page: 322
  year: 2021
  end-page: 348
  ident: br0110
  article-title: On the Laplacian spectra of token graphs
  publication-title: Linear Algebra Appl.
– volume: 97
  start-page: 74
  year: 2007
  end-page: 90
  ident: br0030
  article-title: Symmetric squares of graphs
  publication-title: J. Comb. Theory, Ser. B
– volume: 60
  year: 2019
  ident: br0270
  article-title: Computing spectral bounds of the Heisenberg ferromagnet from geometric consideration
  publication-title: J. Math. Phys.
– volume: 247
  start-page: 327
  year: 2018
  end-page: 340
  ident: br0200
  article-title: The packing number of the double vertex graph of the path graph
  publication-title: Discrete Appl. Math.
– year: 2002
  ident: br0310
  article-title: Constructing physically intuitive graph invariants
– volume: 423
  start-page: 53
  year: 2007
  end-page: 73
  ident: br0140
  article-title: Old and new results on algebraic connectivity of graphs
  publication-title: Linear Algebra Appl.
– year: 2022
  ident: br0170
  article-title: On the connectivity of token graphs of trees
– year: 2012
  ident: br0230
  article-title: Matrix Analysis
– volume: 28
  start-page: 365
  year: 2012
  end-page: 380
  ident: br0160
  publication-title: Graphs Comb.
– volume: 37
  start-page: 573
  year: 2017
  end-page: 586
  ident: br0100
  article-title: Regularity and planarity of token graphs
  publication-title: Discuss. Math., Graph Theory
– ident: 10.1016/j.laa.2024.02.004_br0170
– volume: 85
  start-page: 5468
  issue: 25
  year: 2000
  ident: 10.1016/j.laa.2024.02.004_br0080
  article-title: Network robustness and fragility: percolation on random graphs
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.5468
– volume: 18
  start-page: 709
  year: 2002
  ident: 10.1016/j.laa.2024.02.004_br0010
  article-title: Survey of double vertex graphs
  publication-title: Graphs Comb.
  doi: 10.1007/s003730200055
– ident: 10.1016/j.laa.2024.02.004_br0280
– volume: 76
  start-page: 387
  issue: 3
  year: 2020
  ident: 10.1016/j.laa.2024.02.004_br0150
  article-title: Independence and matching numbers of some token graphs
  publication-title: Australas. J. Comb.
– volume: 387
  start-page: 41
  year: 2004
  ident: 10.1016/j.laa.2024.02.004_br0330
  article-title: On the spectral radius of graphs
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2004.01.020
– volume: 56
  start-page: 597
  issue: 6
  year: 2008
  ident: 10.1016/j.laa.2024.02.004_br0060
  article-title: On trees with Laplacian eigenvalue one
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081080600679029
– volume: 23
  start-page: 831
  issue: 3
  year: 2010
  ident: 10.1016/j.laa.2024.02.004_br0090
  article-title: Proof of Aldous' spectral gap conjecture
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-10-00659-4
– volume: 247
  start-page: 327
  year: 2018
  ident: 10.1016/j.laa.2024.02.004_br0200
  article-title: The packing number of the double vertex graph of the path graph
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.03.085
– volume: 410
  start-page: 268
  year: 2001
  ident: 10.1016/j.laa.2024.02.004_br0320
  article-title: Exploring complex networks
  publication-title: Nature
  doi: 10.1038/35065725
– volume: 226–228
  start-page: 593
  year: 1995
  ident: 10.1016/j.laa.2024.02.004_br0220
  article-title: Interlacing eigenvalues and graphs
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(95)00199-2
– volume: 60
  issue: 7
  year: 2019
  ident: 10.1016/j.laa.2024.02.004_br0270
  article-title: Computing spectral bounds of the Heisenberg ferromagnet from geometric consideration
  publication-title: J. Math. Phys.
  doi: 10.1063/1.5084136
– year: 2001
  ident: 10.1016/j.laa.2024.02.004_br0190
– ident: 10.1016/j.laa.2024.02.004_br0290
– ident: 10.1016/j.laa.2024.02.004_br0130
– volume: vol. 497
  start-page: 225
  year: 1997
  ident: 10.1016/j.laa.2024.02.004_br0260
  article-title: Some applications of Laplace eigenvalues of graphs
– volume: 37
  start-page: 573
  issue: 3
  year: 2017
  ident: 10.1016/j.laa.2024.02.004_br0100
  article-title: Regularity and planarity of token graphs
  publication-title: Discuss. Math., Graph Theory
  doi: 10.7151/dmgt.1959
– volume: 625
  start-page: 322
  year: 2021
  ident: 10.1016/j.laa.2024.02.004_br0110
  article-title: On the Laplacian spectra of token graphs
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2021.05.005
– year: 2012
  ident: 10.1016/j.laa.2024.02.004_br0230
– ident: 10.1016/j.laa.2024.02.004_br0240
– ident: 10.1016/j.laa.2024.02.004_br0310
– year: 2011
  ident: 10.1016/j.laa.2024.02.004_br0070
– ident: 10.1016/j.laa.2024.02.004_br0120
– volume: 100
  start-page: 671
  issue: 6
  year: 2010
  ident: 10.1016/j.laa.2024.02.004_br0020
  article-title: Spectra of symmetric powers of graphs and the Weisfeiler-Lehman refinements
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/j.jctb.2010.07.001
– year: 2014
  ident: 10.1016/j.laa.2024.02.004_br0040
– volume: 404
  start-page: 92
  year: 2014
  ident: 10.1016/j.laa.2024.02.004_br0250
  article-title: Algebraic connectivity of interdependent networks
  publication-title: Phys. A, Stat. Mech. Appl.
  doi: 10.1016/j.physa.2014.02.043
– volume: 7
  start-page: 221
  issue: 2
  year: 1994
  ident: 10.1016/j.laa.2024.02.004_br0210
  article-title: The Laplacian spectrum of graph II
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480191222653
– volume: 1
  year: 2018
  ident: 10.1016/j.laa.2024.02.004_br0300
  article-title: Hamiltonicity of token graphs of fan graphs
  publication-title: Art Discrete Appl. Math.
  doi: 10.26493/2590-9770.1244.720
– volume: 16
  issue: 1
  year: 2009
  ident: 10.1016/j.laa.2024.02.004_br0050
  article-title: Non-isomorphic graphs with cospectral symmetric powers
  publication-title: Electron. J. Comb.
– volume: 23
  start-page: 298
  issue: 2
  year: 1973
  ident: 10.1016/j.laa.2024.02.004_br0180
  article-title: Algebraic connectivity of graphs
  publication-title: Czechoslov. Math. J.
  doi: 10.21136/CMJ.1973.101168
– volume: 97
  start-page: 74
  issue: 1
  year: 2007
  ident: 10.1016/j.laa.2024.02.004_br0030
  article-title: Symmetric squares of graphs
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/j.jctb.2006.04.002
– volume: 423
  start-page: 53
  issue: 1
  year: 2007
  ident: 10.1016/j.laa.2024.02.004_br0140
  article-title: Old and new results on algebraic connectivity of graphs
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2006.08.017
– volume: 28
  start-page: 365
  issue: 3
  year: 2012
  ident: 10.1016/j.laa.2024.02.004_br0160
  publication-title: Graphs Comb.
  doi: 10.1007/s00373-011-1055-9
SSID ssj0004702
Score 2.4004536
Snippet Let G be a graph on n vertices. For a given integer k such that 1≤k≤n, the k-token graph Fk(G) of G is defined as the graph whose vertices are the k-subsets of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 181
SubjectTerms Adjacency spectrum
Algebraic connectivity
Laplacian spectrum
Spectral radius
Token graph
Title Spectral properties of token graphs
URI https://dx.doi.org/10.1016/j.laa.2024.02.004
Volume 687
WOSCitedRecordID wos001184555300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004702
  issn: 0024-3795
  databaseCode: AIEXJ
  dateStart: 20211214
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbocigHBLQVZVMkegKlSrzE8bFCRYBEhUSL5hZ5izpdMqNJBk3_fZ9jZykFBJW4RKNoPJP4s997fn7-PoT2U4sTbomKGdc2pjCm4jxLy5howriSQqfKtGIT_Pg4n0zE1yCCWLdyAryq8tVKzP8r1HAPwHZHZ_8B7v5H4QZ8BtDhCrDD9a-Ad4ryLn3hSq_mrmra08o2swtbvWv5qetxRAqLUcfl4-Q-YOHc7yWMN7aHbOdieuHTyPXVtOkN-ndn3dtwdHq9rM_GiQTc1p_4o5Q-u9WdcLlVgOl8OBghL4R5YL2RzDmJwc9nYyuaBb_p7WDqdViCS8UtqcBda-0TB-cHl9IxQGHq2VPp4Jr6gsFvgTmRuZJX50PX0AbmTIAp3jj8dDT5PJyF5UlgiPfP3e1ktzV9P_3Rr2ORUXxx8hg9CguD6NAD-gQ9sNVT9PBLz6pbb6M3HbTRAG00K6MW2shDu4NOPxydvP8YB5GLWGPBm1jxPJFSaZpnuSFKSK1SIRNmTC7LBMNUkpIwk5UaZ0xyYwgEVMYqJaGBBpu8i9arWWWfoUiZzDCphUqppYSWoiREwWRLNVU2pWwPJd3rFjowwDshksuiK_U7L6CHCtdDRYIL6KE99LZvMvf0J3_6Mu36sAjxm4_LCgD8982e36_ZC7Q1jOKXaL1ZLO0rtKl_NNN68ToMixs_H2cq
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+properties+of+token+graphs&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Barik%2C+Sasmita&rft.au=Verma%2C+Piyush&rft.date=2024-04-15&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=687&rft.spage=181&rft.epage=206&rft_id=info:doi/10.1016%2Fj.laa.2024.02.004&rft.externalDocID=S0024379524000429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon