INSPM: An interactive evolutionary multi-objective algorithm with preference model

In this paper an interactive method for modeling the preferences of a Decision-Maker (DM) is employed to guide a modified version of the NSGA-II algorithm: the Interactive Non-dominated Sorting algorithm with Preference Model (INSPM). The INSPM’s task is to find a non-uniform sampling of the Pareto-...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 268; pp. 202 - 219
Main Authors: Pedro, Luciana R., Takahashi, Ricardo H.C.
Format: Journal Article
Language:English
Published: Elsevier Inc 01.06.2014
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper an interactive method for modeling the preferences of a Decision-Maker (DM) is employed to guide a modified version of the NSGA-II algorithm: the Interactive Non-dominated Sorting algorithm with Preference Model (INSPM). The INSPM’s task is to find a non-uniform sampling of the Pareto-optimal front with a detailed sampling of the DM’s preferred regions and a coarse sampling of the non-preferred regions. In the proposed technique, a Radial Basis Function (RBF) network is employed to construct a function which represents the DM’s utility function using ordinal information only, extracted from queries to the DM. The INSPM algorithm calls the DM’s preference model via a Dynamic Crowding Distance (DCD) density control method which provides the mechanism for increasing the sampling in the preferred regions and for decreasing it in non-preferred regions which allows a fine-tunning control of the Pareto-optimal front sampling density.
AbstractList In this paper an interactive method for modeling the preferences of a Decision-Maker (DM) is employed to guide a modified version of the NSGA-II algorithm: the Interactive Non-dominated Sorting algorithm with Preference Model (INSPM). The INSPM’s task is to find a non-uniform sampling of the Pareto-optimal front with a detailed sampling of the DM’s preferred regions and a coarse sampling of the non-preferred regions. In the proposed technique, a Radial Basis Function (RBF) network is employed to construct a function which represents the DM’s utility function using ordinal information only, extracted from queries to the DM. The INSPM algorithm calls the DM’s preference model via a Dynamic Crowding Distance (DCD) density control method which provides the mechanism for increasing the sampling in the preferred regions and for decreasing it in non-preferred regions which allows a fine-tunning control of the Pareto-optimal front sampling density.
Author Takahashi, Ricardo H.C.
Pedro, Luciana R.
Author_xml – sequence: 1
  givenname: Luciana R.
  surname: Pedro
  fullname: Pedro, Luciana R.
  organization: Electrical Engineering, Universidade Federal de Minas Gerais, Brazil
– sequence: 2
  givenname: Ricardo H.C.
  surname: Takahashi
  fullname: Takahashi, Ricardo H.C.
  email: taka@mat.ufmg.br
  organization: Dep. of Mathematics, Universidade Federal de Minas Gerais, Brazil
BookMark eNp9kMtOwzAQRS1UJNrCB7DLDyTYTmI3sKoqHpXKQzzWlmuPwVESV44bxN_jqKxYdDOzGJ3RvWeGJp3rAKFLgjOCCbuqM9v1GcUkzwjNcFGeoClZcJoyWpEJmmJMcYppWZ6hWd_XGOOCMzZFr-unt5fH62TZJbYL4KUKdoAEBtfsg3Wd9D9Ju2-CTd22hsNRNp_O2_DVJt9xJjsPBjx0CpLWaWjO0amRTQ8Xf3uOPu5u31cP6eb5fr1ablJFKx7SLc8Vzjmj2ijOSGV0pQq6MIZJtpVKG56bklBNK6MY51AsJKvynGpQBDAp8jnih7_Ku76PIYSyQY6hg5e2EQSLUY2oRVQjRjWCUBHVRJL8I3fetrHqUebmwECsNFjwold2LK2tj16EdvYI_Qu3y3__
CitedBy_id crossref_primary_10_1007_s13042_019_01036_y
crossref_primary_10_1109_ACCESS_2018_2856832
crossref_primary_10_1016_j_eswa_2024_125765
crossref_primary_10_1016_j_ins_2015_09_006
crossref_primary_10_1016_j_ins_2020_11_030
crossref_primary_10_1109_TEVC_2020_2987559
crossref_primary_10_1145_3448301
crossref_primary_10_3390_math11030627
crossref_primary_10_1016_j_ins_2014_05_049
crossref_primary_10_1016_j_eswa_2015_05_038
Cites_doi 10.1109/4235.996017
10.1162/106365600568202
10.2307/2332226
10.1145/1143997.1144112
10.1109/TEVC.2010.2064323
10.1007/978-3-642-19893-9_38
10.1109/TEVC.2010.2070070
10.1007/978-3-642-37140-0_60
10.1109/CEC.2000.870313
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright_xml – notice: 2014 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2013.12.045
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 219
ExternalDocumentID 10_1016_j_ins_2013_12_045
S0020025513009018
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
ID FETCH-LOGICAL-c297t-b73c03762dfc7619fd9c428ff6a6bacdf73f512d29fc677e48a69332dec1e0143
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335110700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 22:35:15 EST 2025
Sat Nov 29 07:57:49 EST 2025
Fri Feb 23 02:23:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Utility function model
Progressive preference
RBF network
Multi-objective optimization
Interactive algorithm
Evolutionary computation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-b73c03762dfc7619fd9c428ff6a6bacdf73f512d29fc677e48a69332dec1e0143
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2013_12_045
crossref_primary_10_1016_j_ins_2013_12_045
elsevier_sciencedirect_doi_10_1016_j_ins_2013_12_045
PublicationCentury 2000
PublicationDate 2014-06-01
2014-06-00
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References E. Zitzler, M. Laumanns, L. Thiele, SPEA 2: Improving the strength Pareto evolutionary algorithms, in EUROGEN 2001, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, 2002, pp. 95–100.
L.R. Pedro, R.H.C. Takahashi, Modeling decision-maker preferences through utility function level sets, in: 6th International Conference on Evolutionary Multi-criterion Optimization, vol. 1, 2011.
L.R. Pedro, R.H.C. Takahashi, Decision-maker preference modeling in interactive multiobjective optimization, in: 7th International Conference on Evolutionary Multi-criterion Optimization, vol. 7811, 2013.
Fonseca, Fleming (b0020) 1995; 7
Knuth (b0045) 1998; vol. 3
Zitzler, Deb, Thiele (b0070) 2000; 8
Luo, Zheng, Xie, Wu (b0055) 2008
Köksalan, Karahan (b0050) 2010; 14
Kendall (b0035) 1938; 30
K. Deb, J. Sundar, Reference point based multi-objective optimization using evolutionary algorithms, in: GECCO, 2006, pp. 635–642.
J.D. Knowles, D.W. Corne, M-paes: a memetic algorithm for multiobjective optimization, in Proceedings of the IEEE Congress on Evolutionary Computation, 2000, pp. 325–332.
Deb, Pratap, Agarwal, Meyarivan (b0005) 2002; 6
Deb, Sinha, Korhonen, Wallenius (b0010) 2010; 14
The MathWorks Inc. Matlab – Version 6.9.0 (R2009b). The MathWorks Inc., Natick, Massachusetts, 2009.
Keeney, Raiffa (b0030) 1976
10.1016/j.ins.2013.12.045_b0025
Kendall (10.1016/j.ins.2013.12.045_b0035) 1938; 30
Deb (10.1016/j.ins.2013.12.045_b0005) 2002; 6
10.1016/j.ins.2013.12.045_b0015
Deb (10.1016/j.ins.2013.12.045_b0010) 2010; 14
Keeney (10.1016/j.ins.2013.12.045_b0030) 1976
10.1016/j.ins.2013.12.045_b0065
Fonseca (10.1016/j.ins.2013.12.045_b0020) 1995; 7
10.1016/j.ins.2013.12.045_b0040
10.1016/j.ins.2013.12.045_b0075
Knuth (10.1016/j.ins.2013.12.045_b0045) 1998; vol. 3
10.1016/j.ins.2013.12.045_b0060
Luo (10.1016/j.ins.2013.12.045_b0055) 2008
Köksalan (10.1016/j.ins.2013.12.045_b0050) 2010; 14
Zitzler (10.1016/j.ins.2013.12.045_b0070) 2000; 8
References_xml – reference: K. Deb, J. Sundar, Reference point based multi-objective optimization using evolutionary algorithms, in: GECCO, 2006, pp. 635–642.
– start-page: 580
  year: 2008
  end-page: 585
  ident: b0055
  article-title: Dynamic crowding distance – a new diversity maintenance strategy for MOEAs
  publication-title: Proceedings of the 2008 Fourth International Conference on Natural Computation – vol. 01, ICNC ’08
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b0070
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evol. Comput.
– reference: The MathWorks Inc. Matlab – Version 6.9.0 (R2009b). The MathWorks Inc., Natick, Massachusetts, 2009.
– volume: 14
  start-page: 702
  year: 2010
  end-page: 722
  ident: b0050
  article-title: An interactive territory defining evolutionary algorithm: iTDEA
  publication-title: Trans. Evol. Comput.
– volume: 7
  start-page: 205
  year: 1995
  end-page: 230
  ident: b0020
  article-title: An overview of evolutionary algorithms in multiobjective optimization
  publication-title: Evol. Comput.
– reference: L.R. Pedro, R.H.C. Takahashi, Modeling decision-maker preferences through utility function level sets, in: 6th International Conference on Evolutionary Multi-criterion Optimization, vol. 1, 2011.
– reference: J.D. Knowles, D.W. Corne, M-paes: a memetic algorithm for multiobjective optimization, in Proceedings of the IEEE Congress on Evolutionary Computation, 2000, pp. 325–332.
– year: 1976
  ident: b0030
  article-title: Decisions with Multiple Objectives: Preferences and Value Tradeoffs
– volume: 30
  start-page: 81
  year: 1938
  end-page: 93
  ident: b0035
  article-title: A new measure of rank correlation
  publication-title: Biometrika
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0005
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA II
  publication-title: IEEE Trans. Evol. Comput.
– volume: vol. 3
  year: 1998
  ident: b0045
  article-title: The Art of Computer Programming
  publication-title: Sorting and Searching
– reference: L.R. Pedro, R.H.C. Takahashi, Decision-maker preference modeling in interactive multiobjective optimization, in: 7th International Conference on Evolutionary Multi-criterion Optimization, vol. 7811, 2013.
– reference: E. Zitzler, M. Laumanns, L. Thiele, SPEA 2: Improving the strength Pareto evolutionary algorithms, in EUROGEN 2001, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, 2002, pp. 95–100.
– volume: 14
  start-page: 723
  year: 2010
  end-page: 739
  ident: b0010
  article-title: An interactive evolutionary multiobjective optimization method based on progressively approximated value functions
  publication-title: Trans. Evol. Comput.
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2013.12.045_b0005
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– year: 1976
  ident: 10.1016/j.ins.2013.12.045_b0030
– volume: 7
  start-page: 205
  issue: 3
  year: 1995
  ident: 10.1016/j.ins.2013.12.045_b0020
  article-title: An overview of evolutionary algorithms in multiobjective optimization
  publication-title: Evol. Comput.
– volume: 8
  start-page: 173
  year: 2000
  ident: 10.1016/j.ins.2013.12.045_b0070
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– ident: 10.1016/j.ins.2013.12.045_b0025
– volume: 30
  start-page: 81
  issue: 1/2
  year: 1938
  ident: 10.1016/j.ins.2013.12.045_b0035
  article-title: A new measure of rank correlation
  publication-title: Biometrika
  doi: 10.2307/2332226
– volume: vol. 3
  year: 1998
  ident: 10.1016/j.ins.2013.12.045_b0045
  article-title: The Art of Computer Programming
– ident: 10.1016/j.ins.2013.12.045_b0015
  doi: 10.1145/1143997.1144112
– ident: 10.1016/j.ins.2013.12.045_b0075
– volume: 14
  start-page: 723
  issue: 5
  year: 2010
  ident: 10.1016/j.ins.2013.12.045_b0010
  article-title: An interactive evolutionary multiobjective optimization method based on progressively approximated value functions
  publication-title: Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2064323
– start-page: 580
  year: 2008
  ident: 10.1016/j.ins.2013.12.045_b0055
  article-title: Dynamic crowding distance – a new diversity maintenance strategy for MOEAs
– ident: 10.1016/j.ins.2013.12.045_b0060
  doi: 10.1007/978-3-642-19893-9_38
– volume: 14
  start-page: 702
  issue: 5
  year: 2010
  ident: 10.1016/j.ins.2013.12.045_b0050
  article-title: An interactive territory defining evolutionary algorithm: iTDEA
  publication-title: Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2070070
– ident: 10.1016/j.ins.2013.12.045_b0065
  doi: 10.1007/978-3-642-37140-0_60
– ident: 10.1016/j.ins.2013.12.045_b0040
  doi: 10.1109/CEC.2000.870313
SSID ssj0004766
Score 2.1955283
Snippet In this paper an interactive method for modeling the preferences of a Decision-Maker (DM) is employed to guide a modified version of the NSGA-II algorithm: the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 202
SubjectTerms Evolutionary computation
Interactive algorithm
Multi-objective optimization
Progressive preference
RBF network
Utility function model
Title INSPM: An interactive evolutionary multi-objective algorithm with preference model
URI https://dx.doi.org/10.1016/j.ins.2013.12.045
Volume 268
WOSCitedRecordID wos000335110700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFB409UEfRKti1ZZ5EB8ME7Kzl5nxLZSWVqRIqZC3ZeemTesmJGnoz_fMZS_WWlTwZQnLTjbM-XJuc75zEHor83FhIGIjquAVyYTWhHOVkFzmNrUpt1JbP2yCnZzw6VR8juySlR8nwOqaX1-LxX8VNdwDYTvq7F-Iu_1SuAGfQehwBbHD9Y8Ef-xaY8d8n2sG4WlQGzM0m_haVyfn6wjJXM6CvhtWl1_ny_P1t-8hMbtop4-EUTl9FzYSmDxuov1cdQpWB97MpyuXLamGp6MuNXDh2GN-hrCj8wMy58Oj0f6on3dIsq4-KiTDGkLMT_WazvskLkwJ5iXoVM4oKWgYytUoXRqG6TRqc0x7Fjgq0V-Ue8gzzCAicX3Wk9TncbO8s2RtfaE7gvbRkjusA4-H30dblOWCD9DW5Phg-rGjzrJwnN387ubg25cA3njR7a5Lzx05e4IexzgCT4L8n6J7pt5Gj3rdJbfRbuSk4He4JzMctfkzdOqR8gFPatzDCe7jBN_ACW5xgh1OcIcT7HHyHH05PDjbPyJxxAZRVLA1kSxVY7AxVFvlElpWCwUBqbVFVchKactSCy6hpsKqgjGT8aoQaUq1UYlxrSFfoEE9r81LhKnWGQQXXDOp4TErZGakzjPLjMk1Mzto3OxeqWL_eTcG5bJsCg1nJWx46Ta8TGgJG76D3rdLFqH5yl0PZ41Iyoj-4BWWgJ_fL3v1b8teo4fdn-INGqyXV2YXPVCb9flquRdR9gNvgJUk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=INSPM%3A+An+interactive+evolutionary+multi-objective+algorithm+with+preference+model&rft.jtitle=Information+sciences&rft.au=Pedro%2C+Luciana+R.&rft.au=Takahashi%2C+Ricardo+H.C.&rft.date=2014-06-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=268&rft.spage=202&rft.epage=219&rft_id=info:doi/10.1016%2Fj.ins.2013.12.045&rft.externalDocID=S0020025513009018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon