A simpler analysis of Burrows–Wheeler-based compression

In this paper, we present a new technique for worst-case analysis of compression algorithms which are based on the Burrows–Wheeler Transform. We mainly deal with the algorithm proposed by Burrows and Wheeler in their first paper on the subject [M. Burrows, D.J. Wheeler, A block sorting lossless data...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 387; číslo 3; s. 220 - 235
Hlavní autoři: Kaplan, Haim, Landau, Shir, Verbin, Elad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 22.11.2007
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we present a new technique for worst-case analysis of compression algorithms which are based on the Burrows–Wheeler Transform. We mainly deal with the algorithm proposed by Burrows and Wheeler in their first paper on the subject [M. Burrows, D.J. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994], called bw0. This algorithm consists of the following three essential steps: (1) Obtain the Burrows–Wheeler Transform of the text, (2) Convert the transform into a sequence of integers using the move-to-front algorithm, (3) Encode the integers using Arithmetic code or any order-0 encoding (possibly with run-length encoding). We achieve a strong upper bound on the worst-case compression ratio of this algorithm. This bound is significantly better than bounds known to date and is obtained via simple analytical techniques. Specifically, we show that for any input string s , and μ > 1 , the length of the compressed string is bounded by μ ⋅ | s | H k ( s ) + log ( ζ ( μ ) ) ⋅ | s | + μ g k + O ( log n ) where H k is the k th order empirical entropy, g k is a constant depending only on k and on the size of the alphabet, and ζ ( μ ) = 1 1 μ + 1 2 μ + ⋯ is the standard zeta function. As part of the analysis, we prove a result on the compressibility of integer sequences, which is of independent interest. Finally, we apply our techniques to prove a worst-case bound on the compression ratio of a compression algorithm based on the Burrows–Wheeler Transform followed by distance coding, for which worst-case guarantees have never been given. We prove that the length of the compressed string is bounded by 1.7286 ⋅ | s | H k ( s ) + g k + O ( log n ) . This bound is better than the bound we give for bw0.
AbstractList In this paper, we present a new technique for worst-case analysis of compression algorithms which are based on the Burrows–Wheeler Transform. We mainly deal with the algorithm proposed by Burrows and Wheeler in their first paper on the subject [M. Burrows, D.J. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994], called bw0. This algorithm consists of the following three essential steps: (1) Obtain the Burrows–Wheeler Transform of the text, (2) Convert the transform into a sequence of integers using the move-to-front algorithm, (3) Encode the integers using Arithmetic code or any order-0 encoding (possibly with run-length encoding). We achieve a strong upper bound on the worst-case compression ratio of this algorithm. This bound is significantly better than bounds known to date and is obtained via simple analytical techniques. Specifically, we show that for any input string s , and μ > 1 , the length of the compressed string is bounded by μ ⋅ | s | H k ( s ) + log ( ζ ( μ ) ) ⋅ | s | + μ g k + O ( log n ) where H k is the k th order empirical entropy, g k is a constant depending only on k and on the size of the alphabet, and ζ ( μ ) = 1 1 μ + 1 2 μ + ⋯ is the standard zeta function. As part of the analysis, we prove a result on the compressibility of integer sequences, which is of independent interest. Finally, we apply our techniques to prove a worst-case bound on the compression ratio of a compression algorithm based on the Burrows–Wheeler Transform followed by distance coding, for which worst-case guarantees have never been given. We prove that the length of the compressed string is bounded by 1.7286 ⋅ | s | H k ( s ) + g k + O ( log n ) . This bound is better than the bound we give for bw0.
Author Landau, Shir
Kaplan, Haim
Verbin, Elad
Author_xml – sequence: 1
  givenname: Haim
  surname: Kaplan
  fullname: Kaplan, Haim
  email: haimk@post.tau.ac.il
– sequence: 2
  givenname: Shir
  surname: Landau
  fullname: Landau, Shir
  email: landaush@post.tau.ac.il
– sequence: 3
  givenname: Elad
  surname: Verbin
  fullname: Verbin, Elad
  email: eladv@post.tau.ac.il
BookMark eNp9kM1KAzEUhYNUsK0-gLt5gRlvMmnS4KoW_6DgRnEZ0uQOpkwnJRmV7nwH39AnMUNduejlwF1cvss5Z0JGXeiQkEsKFQUqrjZVb1PFAGQ1iMEJGdO5VCVjio_IGGrgZa3k7IxMUtpAnpkUY6IWRfLbXYuxMJ1p98mnIjTFzXuM4TP9fH2_viHma7k2CV1hw3YXMSUfunNy2pg24cXfnpKXu9vn5UO5erp_XC5WpWVK9uVaMt4wowSVToAyDsApapx0zIqZAMtN3YCyMnvmTM4pnyOqupYoeLOmpp4SefhrY0gpYqOt702fHfTR-FZT0EMDeqNzA3poQA9ikEn6j9xFvzVxf5S5PjCYI314jDpZj51F5yPaXrvgj9C_BZ92kg
CitedBy_id crossref_primary_10_1007_s00453_018_0461_2
crossref_primary_10_1007_s00453_013_9800_5
crossref_primary_10_1016_j_tcs_2021_01_008
crossref_primary_10_1007_s00453_010_9437_6
crossref_primary_10_1016_j_tcs_2010_04_024
crossref_primary_10_1016_j_tcs_2010_11_040
crossref_primary_10_1016_j_tcs_2017_07_015
Cites_doi 10.1145/1082036.1082039
10.1145/214762.214771
10.1007/s00453-004-1094-1
10.1016/0166-218X(93)00116-H
10.1007/11841036_67
10.1109/TIT.1987.1057284
10.1109/TIT.1975.1055349
10.1145/5684.5688
10.1145/290159.290162
10.1145/45072.45074
10.1145/382780.382782
10.1002/spe.426
10.1145/1082036.1082043
10.1007/978-3-540-30213-1_23
ContentType Journal Article
Copyright 2007 Elsevier Ltd
Copyright_xml – notice: 2007 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.tcs.2007.07.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 235
ExternalDocumentID 10_1016_j_tcs_2007_07_020
S0304397507005221
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-b724f2a9617d609ad00d91ad7d2c6560c4a3f09c70204278148ee9337e64fb1a3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000251280800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Tue Nov 18 22:33:26 EST 2025
Sat Nov 29 05:14:53 EST 2025
Fri Feb 23 02:16:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Text compression
Worst-case analysis
Burrows–Wheeler Transform
Distance coding
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-b724f2a9617d609ad00d91ad7d2c6560c4a3f09c70204278148ee9337e64fb1a3
OpenAccessLink https://dx.doi.org/10.1016/j.tcs.2007.07.020
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_tcs_2007_07_020
crossref_primary_10_1016_j_tcs_2007_07_020
elsevier_sciencedirect_doi_10_1016_j_tcs_2007_07_020
PublicationCentury 2000
PublicationDate 2007-11-22
PublicationDateYYYYMMDD 2007-11-22
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-22
  day: 22
PublicationDecade 2000
PublicationTitle Theoretical computer science
PublicationYear 2007
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References R. Grossi, A. Gupta, J.S. Vitter, High-order entropy-compressed text indexes, in: Proc. 14th ACM-SIAM Symposium on Discrete algorithms, SODA ’03, 2003, pp. 841–850
Ferragina, Manzini (b14) 2005; 52
Fenwick (b10) 2003
b1
Seward (b25)
R. Grossi, A. Gupta, J.S. Vitter, When indexing equals compression: Experiments with compressing suffix arrays and applications, in: Proc. 15th ACM-SIAM Symposium on Discrete Algorithms, SODA ’04, 2004, pp. 636–645
Bentley, Sleator, Tarjan, Wei (b4) 1986; 29
Deorowicz (b8) 2002; 32
M. Burrows, D.J. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994
Elias (b9) 1975; 21
Lelewer, Hirschberg (b20) 1987; 19
Fraenkel, Klein (b16) 1996; 64
Huffman (b19) 1952; 40
Manzini (b21) 2001; 48
Abel (b2)
Witten, Neal, Cleary (b26) 1987; 30
Apostolico, Fraenkel (b3) 1987; 33
P. Ferragina, R. Giancarlo, G. Manzini, The engineering of a compression boosting library: Theory vs practice in BWT compression, Technical Report TR-INF-2006-06-03-UNIPMN, Universitá degli Studi del Piemonte Orientale, June 2006
E. Binder, Distance coder, Usenet group comp.compression, 2000
Ferragina, Giancarlo, Manzini, Sciortino (b13) 2005; 52
P. Ferragina, R. Giancarlo, G. Manzini, The engineering of a compression boosting library: Theory vs practice in BWT compression, in: Proc. 14th European Symposium on Algorithms, ESA ’06, 2006, pp. 756–767
P. Ferragina, G. Manzini, V. Mākinen, G. Navarro, An alphabet friendly FM-index, in: Proc. 11th Symposium on String Processing and Information Retrieval, SPIRE ’04, 2004, pp. 150–160
R. Raman, V. Raman, S.S. Rao, Succinct indexable dictionaries with applications to encoding k-ary trees and multisets, in: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, 2002, pp. 233–242
Cormen, Leiserson, Rivest, Stein (b7) 2001
Manzini, Ferragina (b22) 2004; 40
Moffat, Neal, Witten (b23) 1998; 16
Abel (10.1016/j.tcs.2007.07.020_b2)
10.1016/j.tcs.2007.07.020_b6
Elias (10.1016/j.tcs.2007.07.020_b9) 1975; 21
10.1016/j.tcs.2007.07.020_b5
Ferragina (10.1016/j.tcs.2007.07.020_b14) 2005; 52
Huffman (10.1016/j.tcs.2007.07.020_b19) 1952; 40
Manzini (10.1016/j.tcs.2007.07.020_b22) 2004; 40
Bentley (10.1016/j.tcs.2007.07.020_b4) 1986; 29
Manzini (10.1016/j.tcs.2007.07.020_b21) 2001; 48
Deorowicz (10.1016/j.tcs.2007.07.020_b8) 2002; 32
10.1016/j.tcs.2007.07.020_b24
Cormen (10.1016/j.tcs.2007.07.020_b7) 2001
10.1016/j.tcs.2007.07.020_b18
Fraenkel (10.1016/j.tcs.2007.07.020_b16) 1996; 64
Fenwick (10.1016/j.tcs.2007.07.020_b10) 2003
Moffat (10.1016/j.tcs.2007.07.020_b23) 1998; 16
Seward (10.1016/j.tcs.2007.07.020_b25)
Ferragina (10.1016/j.tcs.2007.07.020_b13) 2005; 52
Apostolico (10.1016/j.tcs.2007.07.020_b3) 1987; 33
Witten (10.1016/j.tcs.2007.07.020_b26) 1987; 30
Lelewer (10.1016/j.tcs.2007.07.020_b20) 1987; 19
10.1016/j.tcs.2007.07.020_b12
10.1016/j.tcs.2007.07.020_b11
10.1016/j.tcs.2007.07.020_b17
10.1016/j.tcs.2007.07.020_b15
References_xml – ident: b25
  article-title: bzip2, a program and library for data compression
– volume: 32
  start-page: 99
  year: 2002
  end-page: 111
  ident: b8
  article-title: Second step algorithms in the Burrows–Wheeler compression algorithm
  publication-title: Software - Practice and Experience
– volume: 29
  start-page: 320
  year: 1986
  end-page: 330
  ident: b4
  article-title: A locally adaptive data compression scheme
  publication-title: Communications of the ACM
– volume: 40
  start-page: 1098
  year: 1952
  end-page: 1101
  ident: b19
  article-title: A method for the construction of minimum-redundancy codes
  publication-title: Proceedings of the Institute of Radio Engineers
– ident: b1
  article-title: The Canterbury Corpus
– volume: 30
  start-page: 520
  year: 1987
  end-page: 540
  ident: b26
  article-title: Arithmetic coding for data compression
  publication-title: Communications of the ACM
– reference: E. Binder, Distance coder, Usenet group comp.compression, 2000
– reference: M. Burrows, D.J. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994
– reference: R. Grossi, A. Gupta, J.S. Vitter, High-order entropy-compressed text indexes, in: Proc. 14th ACM-SIAM Symposium on Discrete algorithms, SODA ’03, 2003, pp. 841–850
– volume: 48
  start-page: 407
  year: 2001
  end-page: 430
  ident: b21
  article-title: An analysis of the Burrows–Wheeler transform
  publication-title: Journal of the ACM
– volume: 16
  start-page: 256
  year: 1998
  end-page: 294
  ident: b23
  article-title: Arithmetic coding revisited
  publication-title: ACM Transactions on Information Systems
– year: 2001
  ident: b7
  article-title: Introduction to Algorithms
– year: 2003
  ident: b10
  article-title: Universal codes
  publication-title: Lossless Data Compression Handbook
– volume: 21
  start-page: 194
  year: 1975
  end-page: 203
  ident: b9
  article-title: Universal codeword sets and representation of the integers
  publication-title: IEEE Transactions on Information Theory
– ident: b2
  article-title: Web page about distance coding
– reference: R. Raman, V. Raman, S.S. Rao, Succinct indexable dictionaries with applications to encoding k-ary trees and multisets, in: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, 2002, pp. 233–242
– reference: P. Ferragina, R. Giancarlo, G. Manzini, The engineering of a compression boosting library: Theory vs practice in BWT compression, in: Proc. 14th European Symposium on Algorithms, ESA ’06, 2006, pp. 756–767
– volume: 52
  start-page: 688
  year: 2005
  end-page: 713
  ident: b13
  article-title: Boosting textual compression in optimal linear time
  publication-title: Journal of the ACM
– volume: 64
  start-page: 31
  year: 1996
  end-page: 55
  ident: b16
  article-title: Robust universal complete codes for transmission and compression
  publication-title: Discrete Applied Mathematics
– volume: 33
  start-page: 238
  year: 1987
  end-page: 245
  ident: b3
  article-title: Robust transmission of unbounded strings using Fibonacci representations
  publication-title: IEEE Transactions on Information Theory
– volume: 40
  start-page: 33
  year: 2004
  end-page: 50
  ident: b22
  article-title: Engineering a lightweight suffix array construction algorithm
  publication-title: Algorithmica
– reference: P. Ferragina, G. Manzini, V. Mākinen, G. Navarro, An alphabet friendly FM-index, in: Proc. 11th Symposium on String Processing and Information Retrieval, SPIRE ’04, 2004, pp. 150–160
– reference: R. Grossi, A. Gupta, J.S. Vitter, When indexing equals compression: Experiments with compressing suffix arrays and applications, in: Proc. 15th ACM-SIAM Symposium on Discrete Algorithms, SODA ’04, 2004, pp. 636–645
– volume: 52
  start-page: 552
  year: 2005
  end-page: 581
  ident: b14
  article-title: Indexing compressed text
  publication-title: Journal of the ACM
– reference: P. Ferragina, R. Giancarlo, G. Manzini, The engineering of a compression boosting library: Theory vs practice in BWT compression, Technical Report TR-INF-2006-06-03-UNIPMN, Universitá degli Studi del Piemonte Orientale, June 2006
– volume: 19
  start-page: 261
  year: 1987
  end-page: 296
  ident: b20
  article-title: Data compression
  publication-title: ACM Computing Surveys
– volume: 52
  start-page: 552
  year: 2005
  ident: 10.1016/j.tcs.2007.07.020_b14
  article-title: Indexing compressed text
  publication-title: Journal of the ACM
  doi: 10.1145/1082036.1082039
– ident: 10.1016/j.tcs.2007.07.020_b6
– volume: 40
  start-page: 1098
  issue: 9
  year: 1952
  ident: 10.1016/j.tcs.2007.07.020_b19
  article-title: A method for the construction of minimum-redundancy codes
  publication-title: Proceedings of the Institute of Radio Engineers
– volume: 30
  start-page: 520
  issue: 6
  year: 1987
  ident: 10.1016/j.tcs.2007.07.020_b26
  article-title: Arithmetic coding for data compression
  publication-title: Communications of the ACM
  doi: 10.1145/214762.214771
– volume: 40
  start-page: 33
  year: 2004
  ident: 10.1016/j.tcs.2007.07.020_b22
  article-title: Engineering a lightweight suffix array construction algorithm
  publication-title: Algorithmica
  doi: 10.1007/s00453-004-1094-1
– ident: 10.1016/j.tcs.2007.07.020_b17
– volume: 64
  start-page: 31
  issue: 1
  year: 1996
  ident: 10.1016/j.tcs.2007.07.020_b16
  article-title: Robust universal complete codes for transmission and compression
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/0166-218X(93)00116-H
– ident: 10.1016/j.tcs.2007.07.020_b11
  doi: 10.1007/11841036_67
– volume: 33
  start-page: 238
  issue: 2
  year: 1987
  ident: 10.1016/j.tcs.2007.07.020_b3
  article-title: Robust transmission of unbounded strings using Fibonacci representations
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1987.1057284
– year: 2001
  ident: 10.1016/j.tcs.2007.07.020_b7
– year: 2003
  ident: 10.1016/j.tcs.2007.07.020_b10
  article-title: Universal codes
– ident: 10.1016/j.tcs.2007.07.020_b12
  doi: 10.1007/11841036_67
– volume: 21
  start-page: 194
  issue: 2
  year: 1975
  ident: 10.1016/j.tcs.2007.07.020_b9
  article-title: Universal codeword sets and representation of the integers
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1975.1055349
– volume: 29
  start-page: 320
  issue: 4
  year: 1986
  ident: 10.1016/j.tcs.2007.07.020_b4
  article-title: A locally adaptive data compression scheme
  publication-title: Communications of the ACM
  doi: 10.1145/5684.5688
– ident: 10.1016/j.tcs.2007.07.020_b5
– ident: 10.1016/j.tcs.2007.07.020_b18
– volume: 16
  start-page: 256
  issue: 3
  year: 1998
  ident: 10.1016/j.tcs.2007.07.020_b23
  article-title: Arithmetic coding revisited
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/290159.290162
– volume: 19
  start-page: 261
  issue: 3
  year: 1987
  ident: 10.1016/j.tcs.2007.07.020_b20
  article-title: Data compression
  publication-title: ACM Computing Surveys
  doi: 10.1145/45072.45074
– volume: 48
  start-page: 407
  issue: 3
  year: 2001
  ident: 10.1016/j.tcs.2007.07.020_b21
  article-title: An analysis of the Burrows–Wheeler transform
  publication-title: Journal of the ACM
  doi: 10.1145/382780.382782
– volume: 32
  start-page: 99
  issue: 2
  year: 2002
  ident: 10.1016/j.tcs.2007.07.020_b8
  article-title: Second step algorithms in the Burrows–Wheeler compression algorithm
  publication-title: Software - Practice and Experience
  doi: 10.1002/spe.426
– ident: 10.1016/j.tcs.2007.07.020_b24
– ident: 10.1016/j.tcs.2007.07.020_b2
– volume: 52
  start-page: 688
  year: 2005
  ident: 10.1016/j.tcs.2007.07.020_b13
  article-title: Boosting textual compression in optimal linear time
  publication-title: Journal of the ACM
  doi: 10.1145/1082036.1082043
– ident: 10.1016/j.tcs.2007.07.020_b25
– ident: 10.1016/j.tcs.2007.07.020_b15
  doi: 10.1007/978-3-540-30213-1_23
SSID ssj0000576
Score 1.9297423
Snippet In this paper, we present a new technique for worst-case analysis of compression algorithms which are based on the Burrows–Wheeler Transform. We mainly deal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 220
SubjectTerms Burrows–Wheeler Transform
Distance coding
Text compression
Worst-case analysis
Title A simpler analysis of Burrows–Wheeler-based compression
URI https://dx.doi.org/10.1016/j.tcs.2007.07.020
Volume 387
WOSCitedRecordID wos000251280800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELa2jofxMGAMMQYoDzwxBbm2W8eP3VQ0JjHxUFDfIseJtUwlq5oW7ZH_wD_kl3AX22k2GNoeJkVRFMVOmzvdnc9330fIu6E1BdI3xEoWNhaW0lhnmscDBQuirEGUEw3ZhDw7S6ZT9cW3ENQNnYCsquTqSs0fVNRwD4SNrbP3EHc7KdyAaxA6nEHscL6T4EeHdYmQv1gcuQYcOVoh2GIdahs4GGFwOIsYvVjT2OYLYqtutDrpdDkaT_9w6H1ma6n1fOaSqCe6_N7W92CCYtWkVs_Ltv73G8jQYRaMZzq_lnCQ2HnHujlIjpspyhGeBCPKvdssu4tsZxIZ7XhX5sBJ_jLcLodw8WFpao8rCUcY2QXJvuG82pLCUK12kcIUSK4pUzwY3SRbTA5U0iNbo0_j6enaTw-k28n2fyfseTfVfzd-x7-jlk4kMnlKdvwSIho50T8jG0W1S54Eeo7IW-td8vhzC8lbPydqFHm9iIJeRJc28nrx--evaxoRdTRij3z9OJ4cn8SeNyM2TMllnEkmLNMKgtN8SJXOKc1VX-cyZwaxlozQ3FJlJDZGM8Q8S4pCcS6LobBZX_MXpFddVsVLLHzrawsxtc0zIShML5KMszzROmHInbxPaPguqfGg8shtMktvlcc-ed8OmTtElf89LMLHTr16u1AvBcW5fdir-7zjgGyv1fw16S0Xq-INeWR-LMt68dZrzR9Ewn8Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simpler+analysis+of+Burrows%E2%80%93Wheeler-based+compression&rft.jtitle=Theoretical+computer+science&rft.au=Kaplan%2C+Haim&rft.au=Landau%2C+Shir&rft.au=Verbin%2C+Elad&rft.date=2007-11-22&rft.issn=0304-3975&rft.volume=387&rft.issue=3&rft.spage=220&rft.epage=235&rft_id=info:doi/10.1016%2Fj.tcs.2007.07.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2007_07_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon