SpecSpatMamba: an efficient hyperspectral image classification method integrating spectral-spatial dual-path and state space model

Current hyperspectral image classification methods face three critical limitations: (1) traditional CNNs suffer from the curse of dimensionality when processing high-dimensional spectral data, leading to overfitting and poor generalization; (2) existing approaches fail to effectively address spectra...

Full description

Saved in:
Bibliographic Details
Published in:The Egyptian journal of remote sensing and space sciences Vol. 28; no. 4; pp. 628 - 644
Main Authors: Liao, Jianshang, Wang, Liguo
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2025
Subjects:
ISSN:1110-9823
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Current hyperspectral image classification methods face three critical limitations: (1) traditional CNNs suffer from the curse of dimensionality when processing high-dimensional spectral data, leading to overfitting and poor generalization; (2) existing approaches fail to effectively address spectral band redundancy, resulting in computational inefficiency and suboptimal feature representation; (3) conventional methods lack synergistic utilization of spatial-spectral information, treating spectral and spatial dimensions uniformly rather than exploiting their distinct characteristics. To address these gaps, this paper proposes SpecSpatMamba, a novel hyperspectral image classification method integrating spectral-spatial dual-path feature extraction with state space models. SpecSpatMamba introduces three core innovations: (1) Dual-path feature extraction with spectral-spatial separation, where 1 × 1 convolutions extract spectral features and 3 × 3 convolutions capture spatial features; (2) Hybrid architecture combining state space models with convolutional operations for balanced long-range dependency and local feature capture; (3) Computational efficiency breakthrough achieving O(L·d) linear complexity compared to Transformer’s O(L2·d) complexity. Experiments on four benchmark datasets—Indian Pines, Pavia University, Salinas Valley, and Houston2013—demonstrate competitive performance compared to state-of-the-art methods. SpecSpatMamba achieves overall accuracies of 95.11 %, 98.61 %, 96.97 %, and 91.48 %, respectively. Notably, SpecSpatMamba demonstrates superior cross-dataset consistency and robust performance across diverse geographic environments, with particularly strong improvements in complex urban scenarios (+0.39 % on Houston2013) and agricultural settings (+0.57 % on Salinas Valley), confirming the method’s effectiveness in addressing high-dimensional hyperspectral data challenges.
AbstractList Current hyperspectral image classification methods face three critical limitations: (1) traditional CNNs suffer from the curse of dimensionality when processing high-dimensional spectral data, leading to overfitting and poor generalization; (2) existing approaches fail to effectively address spectral band redundancy, resulting in computational inefficiency and suboptimal feature representation; (3) conventional methods lack synergistic utilization of spatial-spectral information, treating spectral and spatial dimensions uniformly rather than exploiting their distinct characteristics. To address these gaps, this paper proposes SpecSpatMamba, a novel hyperspectral image classification method integrating spectral-spatial dual-path feature extraction with state space models. SpecSpatMamba introduces three core innovations: (1) Dual-path feature extraction with spectral-spatial separation, where 1 × 1 convolutions extract spectral features and 3 × 3 convolutions capture spatial features; (2) Hybrid architecture combining state space models with convolutional operations for balanced long-range dependency and local feature capture; (3) Computational efficiency breakthrough achieving O(L·d) linear complexity compared to Transformer’s O(L2·d) complexity. Experiments on four benchmark datasets—Indian Pines, Pavia University, Salinas Valley, and Houston2013—demonstrate competitive performance compared to state-of-the-art methods. SpecSpatMamba achieves overall accuracies of 95.11 %, 98.61 %, 96.97 %, and 91.48 %, respectively. Notably, SpecSpatMamba demonstrates superior cross-dataset consistency and robust performance across diverse geographic environments, with particularly strong improvements in complex urban scenarios (+0.39 % on Houston2013) and agricultural settings (+0.57 % on Salinas Valley), confirming the method’s effectiveness in addressing high-dimensional hyperspectral data challenges.
Author Liao, Jianshang
Wang, Liguo
Author_xml – sequence: 1
  givenname: Jianshang
  orcidid: 0000-0003-0358-6089
  surname: Liao
  fullname: Liao, Jianshang
  email: liaojianshang@126.com
  organization: School of Computer Science, Guangzhou Maritime University, Guangzhou 510725, China
– sequence: 2
  givenname: Liguo
  surname: Wang
  fullname: Wang, Liguo
  email: wangliguo@hrbeu.edu.cn
  organization: College of Information and Communications Engineering, Dalian Minzu University, Dalian 116600, China
BookMark eNp9kM1OAyEUhVnUxKp9AVe8wIzAtMyMcWMa_5IaF9U1YeDSMpmfBtCkW5_cO6luZQOcnO_k3nNBZsM4ACHXnOWccXnT5tCGmAsmVijkjPEZmXPOWVZXojgnixhbhkeyVbmUc_K9PYDZHnR61X2jb6keKDjnjYch0f3xACGiIQXdUd_rHVDT6Rg9OnTy40B7SPvRUj8k2AWUhh39A7KIsR5B-4kffO8x3dKYdAI0aQO0Hy10V-TM6S7C4ve-JB-PD-_r52zz9vSyvt9kRtRlyhpZ8soJa4VzRgspayN0U9RNWVvHlxIqJiwTAIXQkpvK2mVZ10VRla6U2pbFJRGnXBPGGAM4dQi4UzgqztRUnmrVVJ6ayps0LA-huxMEONmXh6Di1I0B6wOuqezo_8N_ADsHf6U
Cites_doi 10.1016/j.dt.2022.02.007
10.1117/1.JRS.16.044525
10.3390/rs11020159
10.1155/2021/9962057
10.1109/TGRS.2022.3216319
10.1109/TGRS.2023.3286950
10.1109/JSTARS.2022.3185125
10.1080/10106049.2023.2226112
10.1109/LGRS.2024.3356422
10.1109/TMM.2025.3604954
10.3390/rs16244661
10.3390/rs17152577
10.1016/j.neunet.2025.107350
10.3390/rs16071180
10.1016/j.neucom.2024.128751
10.1109/TGRS.2019.2951160
10.1109/JSTARS.2024.3461851
10.1117/1.JRS.11.046010
10.1109/TGRS.2024.3469384
10.1109/JSTARS.2021.3056124
10.3390/rs16214001
10.1109/TGRS.2024.3516817
10.1109/LGRS.2023.3255867
10.1109/TIM.2023.3279922
10.1109/TGRS.2021.3102034
10.1109/LGRS.2017.2764915
10.3390/rs15020428
10.1109/LGRS.2013.2254108
10.3390/rs13030498
10.1049/iet-ipr.2018.5063
10.1109/TGRS.2024.3493101
10.1109/LGRS.2023.3287277
10.3390/rs13132445
10.1109/LGRS.2014.2320258
10.1109/LGRS.2019.2918719
10.1109/JSTARS.2024.3510468
10.1016/j.infrared.2020.103326
10.1109/TGRS.2022.3201056
10.1155/2018/8602103
10.3390/rs12030582
10.3390/s24144760
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ejrs.2025.10.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 644
ExternalDocumentID 10_1016_j_ejrs_2025_10_001
S1110982325000626
GroupedDBID --K
0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAYXX
CITATION
ID FETCH-LOGICAL-c297t-b6718f2dd2ffca2669c2ab39b79df146e802d02ee32a61c8dd47993387f76ad73
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001598743400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1110-9823
IngestDate Thu Nov 20 00:48:22 EST 2025
Sat Nov 08 17:26:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
State space model
Linear computational complexity
Spectral-spatial dual-path
Hyperspectral image classification
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-b6718f2dd2ffca2669c2ab39b79df146e802d02ee32a61c8dd47993387f76ad73
ORCID 0000-0003-0358-6089
OpenAccessLink http://dx.doi.org/10.1016/j.ejrs.2025.10.001
PageCount 17
ParticipantIDs crossref_primary_10_1016_j_ejrs_2025_10_001
elsevier_sciencedirect_doi_10_1016_j_ejrs_2025_10_001
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle The Egyptian journal of remote sensing and space sciences
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sun, Zheng, Lu, Wu (b0180) 2020; 58
Xing, Wang, Liu, Cheng, Xu (b0215) 2024; 16
Zhang, Bi, Hao, Du, Zhu, Gao (b0245) 2022; 16
Fang, Li, Zhang, Chan (b0065) 2019; 11
Xia, Du, He, Chanussot (b0210) 2014; 11
Mei, Li, Liu, Cai, Du (b0155) 2022; 60
Wu, Wang (b0205) 2023; 38
Liu, Wang, Liu, Li, Yang, Chen, Liu, Han (b0135) 2023; 15
Li, Luo, Zhang, Wang, Du (b0120) 2024; 62
Yang, Zhang (b0235) 2024; 24
Zhou, Zhang, Zhang, Ma (b0250) 2023; 20
He, Chen, Lin (b0095) 2021; 13
Wang, Sun, Zhang, Ren, Wang, Ren, Liu (b0195) 2025; 187
Ding, Zhang, Kang, Yang, Zhao, Feng, Xiao, Cai, Hong, Zheng (b0050) 2025; 63
Mohan, Venkatesan (b0160) 2020; 108
Ahmad, Butt, Mazzara, Distefano, Khan, Altuwaijri (b0005) 2024; 17
Yan, Zhang, Wang, Leng, Basu, Peng (b0225) 2023; 20
Ding, Y., Zhang, Z., Yang, A., Cai, Y., Xiao, X., Hong, D., & Yuan, J. (2025b). SLCGC: A lightweight self-supervised low-pass contrastive graph clustering network for hyperspectral images. arXiv preprint arXiv:2502.03497. doi:10.48550/arXiv.2502.03497.
Liu, Hu, Kang, Luo, Fan (b0145) 2022; 60
Yang, Li, Ding, Fang, Cai, He (b0230) 2024; 62
Gao, Jin, Zhou, Dong, Du (b0075) 2025; 63
He, Tu, Jiang, Liu, Li, Plaza (b0100) 2024; 62
Gao, Miao, Cao, Li (b0085) 2021; 14
Chen, Zhu, Ghamisi, Jia, Li, Tang (b0025) 2017; 14
Jamali, Roy, Hong, Atkinson, Ghamisi (b0105) 2024; 21
Ding, Zhang, Zhao, Cai, Yang, Hu, Xu, Li, Cai, Cai (b0060) 2022; 60
Cheng, Chan, Du (b0030) 2024; 62
Liu, R. M., Ning, X., Cai, W. W., & Li, G. J. (2021). Multiscale Dense Cross-Attention Mechanism with Covariance Pooling for Hyperspectral Image Scene Classification. MOBILE INFORMATION SYSTEMS, 2021, 9962057. doi:10.1155/2021/9962057.
Ren, Tu, Li, He, Peng (b0165) 2022; 15
Xu, Xue, Li, Cheng, Su, Xia (b0220) 2025; 63
Gao, H. M., Lin, S., Yang, Y., Li, C. M., & Yang, M. X. (2018). Convolution Neural Network Based on Two-Dimensional Spectrum for Hyperspectral Image Classification. JOURNAL OF SENSORS, 2018, 8602103. doi:10.1155/2018/8602103.
Sheng, Zhou, Wang, Ye, Fan (b0175) 2025; 63
Aria, Menenti, Gorte (b0015) 2017; 11
Anandakrishnan, Sundaram, Paneer (b0010) 2025; 18
Roy, Krishna, Dubey, Chaudhuri (b0170) 2020; 17
Wang, Yang, Cui, Ding, Xue, Su (b0190) 2024; 16
Yao, Zhang, Zhao, Cai, He, Cai, Cai (b0240) 2023; 23
Wang, Sun, Lu, Li (b0200) 2024; 16
Ding, Li, Yang, Li, Liu, Liu, Zhang (b0045) 2021; 13
Fu, Xiong, Lu, Zhou, Zhou, Qian (b0070) 2024; 62
Liao, Shi, Wang (b0125) 2023; 61
Cui, Xia, Wang, Gao, Wang (b0035) 2022; 60
Hamouda, Ettabaa, Bouhlel (b0090) 2019; 13
Cai, Ning, Zhou, Bai, Jiang, Li, Qian (b0020) 2023; 61
Khodadadzadeh, Li, Plaza, Bioucas-Dias (b0110) 2014; 11
Liao, Wang (b0130) 2025; 17
Wang, Wang, Wu (b0185) 2025; 20
Ding, Lu, Fu, Li, Ma (b0040) 2022; 60
Zhou, Kamata, Wang, Wong, Hou (b0255) 2025; 613
Li, Zheng, Duan, Yang, Wang (b0115) 2020; 12
Ma, Wan, Wu, Kong, Shao, Wang, Chen, Gu (b0150) 2023; 72
Ahmad (10.1016/j.ejrs.2025.10.001_b0005) 2024; 17
He (10.1016/j.ejrs.2025.10.001_b0095) 2021; 13
Chen (10.1016/j.ejrs.2025.10.001_b0025) 2017; 14
Li (10.1016/j.ejrs.2025.10.001_b0120) 2024; 62
Fu (10.1016/j.ejrs.2025.10.001_b0070) 2024; 62
Ding (10.1016/j.ejrs.2025.10.001_b0050) 2025; 63
Ding (10.1016/j.ejrs.2025.10.001_b0040) 2022; 60
Sheng (10.1016/j.ejrs.2025.10.001_b0175) 2025; 63
Yao (10.1016/j.ejrs.2025.10.001_b0240) 2023; 23
Liu (10.1016/j.ejrs.2025.10.001_b0135) 2023; 15
10.1016/j.ejrs.2025.10.001_b0140
Ren (10.1016/j.ejrs.2025.10.001_b0165) 2022; 15
Jamali (10.1016/j.ejrs.2025.10.001_b0105) 2024; 21
Xia (10.1016/j.ejrs.2025.10.001_b0210) 2014; 11
Sun (10.1016/j.ejrs.2025.10.001_b0180) 2020; 58
Gao (10.1016/j.ejrs.2025.10.001_b0085) 2021; 14
Hamouda (10.1016/j.ejrs.2025.10.001_b0090) 2019; 13
Xing (10.1016/j.ejrs.2025.10.001_b0215) 2024; 16
10.1016/j.ejrs.2025.10.001_b0055
He (10.1016/j.ejrs.2025.10.001_b0100) 2024; 62
Liao (10.1016/j.ejrs.2025.10.001_b0125) 2023; 61
Zhou (10.1016/j.ejrs.2025.10.001_b0250) 2023; 20
Liu (10.1016/j.ejrs.2025.10.001_b0145) 2022; 60
Wang (10.1016/j.ejrs.2025.10.001_b0185) 2025; 20
Khodadadzadeh (10.1016/j.ejrs.2025.10.001_b0110) 2014; 11
Yang (10.1016/j.ejrs.2025.10.001_b0235) 2024; 24
Zhang (10.1016/j.ejrs.2025.10.001_b0245) 2022; 16
Zhou (10.1016/j.ejrs.2025.10.001_b0255) 2025; 613
Ding (10.1016/j.ejrs.2025.10.001_b0060) 2022; 60
Gao (10.1016/j.ejrs.2025.10.001_b0075) 2025; 63
Ding (10.1016/j.ejrs.2025.10.001_b0045) 2021; 13
Cheng (10.1016/j.ejrs.2025.10.001_b0030) 2024; 62
Fang (10.1016/j.ejrs.2025.10.001_b0065) 2019; 11
10.1016/j.ejrs.2025.10.001_b0080
Wang (10.1016/j.ejrs.2025.10.001_b0195) 2025; 187
Li (10.1016/j.ejrs.2025.10.001_b0115) 2020; 12
Wang (10.1016/j.ejrs.2025.10.001_b0200) 2024; 16
Roy (10.1016/j.ejrs.2025.10.001_b0170) 2020; 17
Ma (10.1016/j.ejrs.2025.10.001_b0150) 2023; 72
Mei (10.1016/j.ejrs.2025.10.001_b0155) 2022; 60
Aria (10.1016/j.ejrs.2025.10.001_b0015) 2017; 11
Anandakrishnan (10.1016/j.ejrs.2025.10.001_b0010) 2025; 18
Cai (10.1016/j.ejrs.2025.10.001_b0020) 2023; 61
Liao (10.1016/j.ejrs.2025.10.001_b0130) 2025; 17
Wang (10.1016/j.ejrs.2025.10.001_b0190) 2024; 16
Wu (10.1016/j.ejrs.2025.10.001_b0205) 2023; 38
Yan (10.1016/j.ejrs.2025.10.001_b0225) 2023; 20
Xu (10.1016/j.ejrs.2025.10.001_b0220) 2025; 63
Cui (10.1016/j.ejrs.2025.10.001_b0035) 2022; 60
Mohan (10.1016/j.ejrs.2025.10.001_b0160) 2020; 108
Yang (10.1016/j.ejrs.2025.10.001_b0230) 2024; 62
References_xml – volume: 11
  start-page: 2105
  year: 2014
  end-page: 2109
  ident: b0110
  article-title: A subspace-based multinomial logistic regression for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 11
  start-page: 239
  year: 2014
  end-page: 243
  ident: b0210
  article-title: Hyperspectral remote sensing image classification based on rotation forest
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 16
  year: 2022
  ident: b0245
  article-title: Transformer attention network and unmanned aerial vehicle hyperspectral remote sensing for grassland rodent pest monitoring research
  publication-title: J. Appl. Remote Sens.
– volume: 11
  start-page: 159
  year: 2019
  ident: b0065
  article-title: Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism
  publication-title: Remote Sens. (Basel)
– volume: 60
  year: 2022
  ident: b0040
  article-title: Global-local transformer network for HSI and LiDAR data joint classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 63
  year: 2025
  ident: b0175
  article-title: DualMamba: a lightweight spectral-spatial mamba-convolution network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 62
  year: 2024
  ident: b0120
  article-title: MambaHSI: spatial-spectral mamba for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 277
  year: 2020
  end-page: 281
  ident: b0170
  article-title: HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 61
  year: 2023
  ident: b0125
  article-title: A spectral-spatial fusion transformer network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 16
  start-page: 4001
  year: 2024
  ident: b0190
  article-title: Capsule attention network for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
– volume: 14
  start-page: 2355
  year: 2017
  end-page: 2359
  ident: b0025
  article-title: Hyperspectral images classification with gabor filtering and convolutional neural network
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 15
  start-page: 428
  year: 2023
  ident: b0135
  article-title: A Multiscale cross interaction attention network for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
– volume: 11
  year: 2017
  ident: b0015
  article-title: Spectral region identification versus individual channel selection in supervised dimensionality reduction of hyperspectral image data
  publication-title: J. Appl. Remote Sens.
– volume: 613
  year: 2025
  ident: b0255
  article-title: Mamba-in-mamba: centralized mamba-cross-scan in tokenized mamba model for hyperspectral image classification
  publication-title: Neurocomputing
– volume: 187
  year: 2025
  ident: b0195
  article-title: A spatial-spectral fusion convolutional transformer network with contextual multi-head self-attention for hyperspectral image classification
  publication-title: Neural Netw.
– volume: 21
  year: 2024
  ident: b0105
  article-title: Attention graph convolutional network for disjoint hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Liu, R. M., Ning, X., Cai, W. W., & Li, G. J. (2021). Multiscale Dense Cross-Attention Mechanism with Covariance Pooling for Hyperspectral Image Scene Classification. MOBILE INFORMATION SYSTEMS, 2021, 9962057. doi:10.1155/2021/9962057.
– volume: 62
  year: 2024
  ident: b0070
  article-title: Hyperspectral image denoising via spatial-spectral recurrent transformer
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 62
  year: 2024
  ident: b0030
  article-title: MS2I2Former: multiscale spatial–spectral information interactive transformer for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 23
  start-page: 164
  year: 2023
  end-page: 176
  ident: b0240
  article-title: Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification
  publication-title: Def. Technol.
– volume: 60
  year: 2022
  ident: b0145
  article-title: Interactformer: interactive transformer and CNN for hyperspectral image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 58
  start-page: 3232
  year: 2020
  end-page: 3245
  ident: b0180
  article-title: Spectral-spatial attention network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 72
  year: 2023
  ident: b0150
  article-title: Light self-gaussian-attention vision transformer for hyperspectral image classification
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 63
  year: 2025
  ident: b0220
  article-title: UM2Former: U-shaped multimixed transformer network for large-scale hyperspectral image semantic segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 108
  year: 2020
  ident: b0160
  article-title: HybridCNN based hyperspectral image classification using multiscale spatiospectral features
  publication-title: Infrared Phys. Technol.
– volume: 13
  start-page: 392
  year: 2019
  end-page: 398
  ident: b0090
  article-title: Hyperspectral imaging classification based on convolutional neural networks by adaptive sizes of windows and filters
  publication-title: IET Image Proc.
– volume: 62
  year: 2024
  ident: b0100
  article-title: IGroupSS-Mamba: interval group spatial-spectral mamba for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 2577
  year: 2025
  ident: b0130
  article-title: HyperspectralMamba: a novel state space model architecture for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
– volume: 61
  year: 2023
  ident: b0020
  article-title: A novel hyperspectral image classification model using bole convolution with three-direction attention mechanism: small sample and unbalanced learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 20
  year: 2023
  ident: b0225
  article-title: Hybrid conv-ViT Network for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 63
  year: 2025
  ident: b0075
  article-title: MSFMamba: multiscale feature fusion state space model for multisource remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 20
  year: 2023
  ident: b0250
  article-title: Vision Transformer with contrastive learning for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 12
  start-page: 582
  year: 2020
  ident: b0115
  article-title: Classification of hyperspectral image based on double-branch dual-attention mechanism network
  publication-title: Remote Sens. (Basel)
– volume: 13
  start-page: 498
  year: 2021
  ident: b0095
  article-title: Spatial-spectral transformer for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
– volume: 18
  start-page: 1817
  year: 2025
  end-page: 1826
  ident: b0010
  article-title: STA-AgriNet: a spatio-temporal attention framework for crop type mapping from fused multi-sensor multi-temporal SITS
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 15
  start-page: 5115
  year: 2022
  end-page: 5130
  ident: b0165
  article-title: Multiscale adaptive convolution for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 60
  year: 2022
  ident: b0155
  article-title: Hyperspectral image classification using attention-based bidirectional long short-term memory network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Gao, H. M., Lin, S., Yang, Y., Li, C. M., & Yang, M. X. (2018). Convolution Neural Network Based on Two-Dimensional Spectrum for Hyperspectral Image Classification. JOURNAL OF SENSORS, 2018, 8602103. doi:10.1155/2018/8602103.
– volume: 16
  start-page: 1180
  year: 2024
  ident: b0200
  article-title: A novel Transformer network with a CNN-enhanced cross-attention mechanism for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
– volume: 20
  year: 2025
  ident: b0185
  article-title: TGF-Net: transformer and gist CNN fusion network for multi-modal remote sensing image classification
  publication-title: PLoS One
– volume: 16
  start-page: 4661
  year: 2024
  ident: b0215
  article-title: MambaHR: state space model for hyperspectral image restoration under stray light interference
  publication-title: Remote Sens. (Basel)
– volume: 62
  year: 2024
  ident: b0230
  article-title: GraphMamba: an efficient graph structure learning vision mamba for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  year: 2022
  ident: b0035
  article-title: Lightweight spectral-spatial attention network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  year: 2022
  ident: b0060
  article-title: Unsupervised self-correlated learning smoothy enhanced locality preserving graph convolution embedding clustering for hyperspectral images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 63
  start-page: 1
  year: 2025
  end-page: 13
  ident: b0050
  article-title: Adaptive homophily clustering: structure homophily graph learning with adaptive filter for hyperspectral image
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Ding, Y., Zhang, Z., Yang, A., Cai, Y., Xiao, X., Hong, D., & Yuan, J. (2025b). SLCGC: A lightweight self-supervised low-pass contrastive graph clustering network for hyperspectral images. arXiv preprint arXiv:2502.03497. doi:10.48550/arXiv.2502.03497.
– volume: 17
  start-page: 17681
  year: 2024
  end-page: 17689
  ident: b0005
  article-title: Pyramid hierarchical spatial-spectral transformer for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 24
  start-page: 4760
  year: 2024
  ident: b0235
  article-title: A dual-branch fusion of a graph convolutional network and a convolutional neural network for hyperspectral image classification
  publication-title: Sensors
– volume: 14
  start-page: 2563
  year: 2021
  end-page: 2576
  ident: b0085
  article-title: Densely connected multiscale attention network for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 13
  start-page: 2445
  year: 2021
  ident: b0045
  article-title: An adaptive capsule network for hyperspectral remote sensing classification
  publication-title: Remote Sens. (Basel)
– volume: 38
  year: 2023
  ident: b0205
  article-title: Global and pyramid convolutional neural network with hybrid attention mechanism for hyperspectral image classification
  publication-title: Geocarto Int.
– volume: 63
  start-page: 1
  year: 2025
  ident: 10.1016/j.ejrs.2025.10.001_b0050
  article-title: Adaptive homophily clustering: structure homophily graph learning with adaptive filter for hyperspectral image
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 62
  year: 2024
  ident: 10.1016/j.ejrs.2025.10.001_b0120
  article-title: MambaHSI: spatial-spectral mamba for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 23
  start-page: 164
  year: 2023
  ident: 10.1016/j.ejrs.2025.10.001_b0240
  article-title: Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2022.02.007
– volume: 16
  issue: 4
  year: 2022
  ident: 10.1016/j.ejrs.2025.10.001_b0245
  article-title: Transformer attention network and unmanned aerial vehicle hyperspectral remote sensing for grassland rodent pest monitoring research
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.16.044525
– volume: 11
  start-page: 159
  issue: 2
  year: 2019
  ident: 10.1016/j.ejrs.2025.10.001_b0065
  article-title: Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs11020159
– ident: 10.1016/j.ejrs.2025.10.001_b0140
  doi: 10.1155/2021/9962057
– volume: 60
  year: 2022
  ident: 10.1016/j.ejrs.2025.10.001_b0040
  article-title: Global-local transformer network for HSI and LiDAR data joint classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3216319
– volume: 60
  year: 2022
  ident: 10.1016/j.ejrs.2025.10.001_b0145
  article-title: Interactformer: interactive transformer and CNN for hyperspectral image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 61
  year: 2023
  ident: 10.1016/j.ejrs.2025.10.001_b0125
  article-title: A spectral-spatial fusion transformer network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3286950
– volume: 15
  start-page: 5115
  year: 2022
  ident: 10.1016/j.ejrs.2025.10.001_b0165
  article-title: Multiscale adaptive convolution for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3185125
– volume: 38
  issue: 1
  year: 2023
  ident: 10.1016/j.ejrs.2025.10.001_b0205
  article-title: Global and pyramid convolutional neural network with hybrid attention mechanism for hyperspectral image classification
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2023.2226112
– volume: 20
  issue: 2
  year: 2025
  ident: 10.1016/j.ejrs.2025.10.001_b0185
  article-title: TGF-Net: transformer and gist CNN fusion network for multi-modal remote sensing image classification
  publication-title: PLoS One
– volume: 21
  year: 2024
  ident: 10.1016/j.ejrs.2025.10.001_b0105
  article-title: Attention graph convolutional network for disjoint hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2024.3356422
– ident: 10.1016/j.ejrs.2025.10.001_b0055
  doi: 10.1109/TMM.2025.3604954
– volume: 16
  start-page: 4661
  issue: 24
  year: 2024
  ident: 10.1016/j.ejrs.2025.10.001_b0215
  article-title: MambaHR: state space model for hyperspectral image restoration under stray light interference
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs16244661
– volume: 63
  year: 2025
  ident: 10.1016/j.ejrs.2025.10.001_b0220
  article-title: UM2Former: U-shaped multimixed transformer network for large-scale hyperspectral image semantic segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 2577
  issue: 15
  year: 2025
  ident: 10.1016/j.ejrs.2025.10.001_b0130
  article-title: HyperspectralMamba: a novel state space model architecture for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs17152577
– volume: 187
  year: 2025
  ident: 10.1016/j.ejrs.2025.10.001_b0195
  article-title: A spatial-spectral fusion convolutional transformer network with contextual multi-head self-attention for hyperspectral image classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2025.107350
– volume: 16
  start-page: 1180
  issue: 7
  year: 2024
  ident: 10.1016/j.ejrs.2025.10.001_b0200
  article-title: A novel Transformer network with a CNN-enhanced cross-attention mechanism for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs16071180
– volume: 613
  year: 2025
  ident: 10.1016/j.ejrs.2025.10.001_b0255
  article-title: Mamba-in-mamba: centralized mamba-cross-scan in tokenized mamba model for hyperspectral image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.128751
– volume: 58
  start-page: 3232
  issue: 5
  year: 2020
  ident: 10.1016/j.ejrs.2025.10.001_b0180
  article-title: Spectral-spatial attention network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2951160
– volume: 60
  year: 2022
  ident: 10.1016/j.ejrs.2025.10.001_b0060
  article-title: Unsupervised self-correlated learning smoothy enhanced locality preserving graph convolution embedding clustering for hyperspectral images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 17681
  year: 2024
  ident: 10.1016/j.ejrs.2025.10.001_b0005
  article-title: Pyramid hierarchical spatial-spectral transformer for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3461851
– volume: 11
  year: 2017
  ident: 10.1016/j.ejrs.2025.10.001_b0015
  article-title: Spectral region identification versus individual channel selection in supervised dimensionality reduction of hyperspectral image data
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.11.046010
– volume: 62
  year: 2024
  ident: 10.1016/j.ejrs.2025.10.001_b0030
  article-title: MS2I2Former: multiscale spatial–spectral information interactive transformer for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3469384
– volume: 14
  start-page: 2563
  year: 2021
  ident: 10.1016/j.ejrs.2025.10.001_b0085
  article-title: Densely connected multiscale attention network for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3056124
– volume: 16
  start-page: 4001
  issue: 21
  year: 2024
  ident: 10.1016/j.ejrs.2025.10.001_b0190
  article-title: Capsule attention network for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs16214001
– volume: 63
  year: 2025
  ident: 10.1016/j.ejrs.2025.10.001_b0175
  article-title: DualMamba: a lightweight spectral-spatial mamba-convolution network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3516817
– volume: 20
  year: 2023
  ident: 10.1016/j.ejrs.2025.10.001_b0250
  article-title: Vision Transformer with contrastive learning for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2023.3255867
– volume: 72
  year: 2023
  ident: 10.1016/j.ejrs.2025.10.001_b0150
  article-title: Light self-gaussian-attention vision transformer for hyperspectral image classification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3279922
– volume: 60
  year: 2022
  ident: 10.1016/j.ejrs.2025.10.001_b0155
  article-title: Hyperspectral image classification using attention-based bidirectional long short-term memory network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3102034
– volume: 14
  start-page: 2355
  issue: 12
  year: 2017
  ident: 10.1016/j.ejrs.2025.10.001_b0025
  article-title: Hyperspectral images classification with gabor filtering and convolutional neural network
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2764915
– volume: 62
  year: 2024
  ident: 10.1016/j.ejrs.2025.10.001_b0070
  article-title: Hyperspectral image denoising via spatial-spectral recurrent transformer
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 63
  year: 2025
  ident: 10.1016/j.ejrs.2025.10.001_b0075
  article-title: MSFMamba: multiscale feature fusion state space model for multisource remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  year: 2022
  ident: 10.1016/j.ejrs.2025.10.001_b0035
  article-title: Lightweight spectral-spatial attention network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 15
  start-page: 428
  issue: 2
  year: 2023
  ident: 10.1016/j.ejrs.2025.10.001_b0135
  article-title: A Multiscale cross interaction attention network for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs15020428
– volume: 11
  start-page: 239
  issue: 1
  year: 2014
  ident: 10.1016/j.ejrs.2025.10.001_b0210
  article-title: Hyperspectral remote sensing image classification based on rotation forest
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2254108
– volume: 13
  start-page: 498
  issue: 3
  year: 2021
  ident: 10.1016/j.ejrs.2025.10.001_b0095
  article-title: Spatial-spectral transformer for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13030498
– volume: 13
  start-page: 392
  issue: 2
  year: 2019
  ident: 10.1016/j.ejrs.2025.10.001_b0090
  article-title: Hyperspectral imaging classification based on convolutional neural networks by adaptive sizes of windows and filters
  publication-title: IET Image Proc.
  doi: 10.1049/iet-ipr.2018.5063
– volume: 62
  year: 2024
  ident: 10.1016/j.ejrs.2025.10.001_b0230
  article-title: GraphMamba: an efficient graph structure learning vision mamba for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3493101
– volume: 20
  year: 2023
  ident: 10.1016/j.ejrs.2025.10.001_b0225
  article-title: Hybrid conv-ViT Network for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2023.3287277
– volume: 13
  start-page: 2445
  issue: 13
  year: 2021
  ident: 10.1016/j.ejrs.2025.10.001_b0045
  article-title: An adaptive capsule network for hyperspectral remote sensing classification
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13132445
– volume: 11
  start-page: 2105
  issue: 12
  year: 2014
  ident: 10.1016/j.ejrs.2025.10.001_b0110
  article-title: A subspace-based multinomial logistic regression for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2320258
– volume: 17
  start-page: 277
  issue: 2
  year: 2020
  ident: 10.1016/j.ejrs.2025.10.001_b0170
  article-title: HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2918719
– volume: 18
  start-page: 1817
  year: 2025
  ident: 10.1016/j.ejrs.2025.10.001_b0010
  article-title: STA-AgriNet: a spatio-temporal attention framework for crop type mapping from fused multi-sensor multi-temporal SITS
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3510468
– volume: 62
  year: 2024
  ident: 10.1016/j.ejrs.2025.10.001_b0100
  article-title: IGroupSS-Mamba: interval group spatial-spectral mamba for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 108
  year: 2020
  ident: 10.1016/j.ejrs.2025.10.001_b0160
  article-title: HybridCNN based hyperspectral image classification using multiscale spatiospectral features
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103326
– volume: 61
  year: 2023
  ident: 10.1016/j.ejrs.2025.10.001_b0020
  article-title: A novel hyperspectral image classification model using bole convolution with three-direction attention mechanism: small sample and unbalanced learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3201056
– ident: 10.1016/j.ejrs.2025.10.001_b0080
  doi: 10.1155/2018/8602103
– volume: 12
  start-page: 582
  issue: 3
  year: 2020
  ident: 10.1016/j.ejrs.2025.10.001_b0115
  article-title: Classification of hyperspectral image based on double-branch dual-attention mechanism network
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs12030582
– volume: 24
  start-page: 4760
  issue: 14
  year: 2024
  ident: 10.1016/j.ejrs.2025.10.001_b0235
  article-title: A dual-branch fusion of a graph convolutional network and a convolutional neural network for hyperspectral image classification
  publication-title: Sensors
  doi: 10.3390/s24144760
SSID ssj0000605746
Score 2.3354142
Snippet Current hyperspectral image classification methods face three critical limitations: (1) traditional CNNs suffer from the curse of dimensionality when...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 628
SubjectTerms Deep learning
Hyperspectral image classification
Linear computational complexity
Spectral-spatial dual-path
State space model
Title SpecSpatMamba: an efficient hyperspectral image classification method integrating spectral-spatial dual-path and state space model
URI https://dx.doi.org/10.1016/j.ejrs.2025.10.001
Volume 28
WOSCitedRecordID wos001598743400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1110-9823
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000605746
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELZS4NALatVW5VHkQ2-VEfE-bPeGKioOFFUqSNxW3rUXEpUF5YE480P4rZ3xeDebUKG2Ui-rxIntyPPF83k8D8Y-YmxkktW5QG0kQF87UdrMCtCuDjWaK10dik2o01N9cWG-DwaPbSzM3U_VNPr-3tz-V1FDGwgbQ2f_QtzdoNAAr0Ho8ASxw_OPBI8V5bHQ8Dd7XYbCO_AP9iFRBF77X8G5k8IrQ7qNa3TZqZBBo8sQgYGKSneJJILBIXYQU3TAxnudObzBasbh8iFEJcGXLGwSobROn_IiEI-w2Nko2vwj_514QAn0Qg_6GChJI0Sl3JH9k5Gl6yEYYIr27cUlAG1UJ6PL-U3ffCGzFVeQp3E1YRsGUiKMpkjkdp-WuofHtLfp5vET0t855ZN8ohrISjHe9-MJpmmX2X7w6hsuFGHnnvgD58fpJZaLgCPfC7YuVWZ078hOmh7YLgWwtT84xmWRC-HqVL_nPj0-c_aKbcaDCD8kAL1mA9-8YQ9L4PnMbcM76PAl6PAAHb4MHU7Q4T3o8FXo8A46MLrjATo8CJ4H6Lxl51-Pzr4ci1ilQ1TSqJkoc6A3tXRO1nVlge-ZStoyMaUyrgY97PWBdAfS-0TafFhp51IFpDjRqla5dSp5x9aam8a_Z7xKa115IKjQPbVqaIA-5d4MvVbep0m6xT6161fcUjKWovVSHBe42gWuNrbBam-xrF3iIiKXaGIBkHim3_Y_9tthLxcA32Vrs8ncf2Ab1d1sNJ3sBeT8AneaoGQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpecSpatMamba%3A+an+efficient+hyperspectral+image+classification+method+integrating+spectral-spatial+dual-path+and+state+space+model&rft.jtitle=The+Egyptian+journal+of+remote+sensing+and+space+sciences&rft.au=Liao%2C+Jianshang&rft.au=Wang%2C+Liguo&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=1110-9823&rft.volume=28&rft.issue=4&rft.spage=628&rft.epage=644&rft_id=info:doi/10.1016%2Fj.ejrs.2025.10.001&rft.externalDocID=S1110982325000626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-9823&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-9823&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-9823&client=summon