Convergence of an inertial reflected–forward–backward splitting algorithm for solving monotone inclusion problems with application to image recovery

We first propose a reflected–forward–backward splitting algorithm with two inertial effects for solving monotone inclusions and then establish that the sequence of iterates it generates converges weakly in a real Hilbert space to a zero of the sum of a set-valued maximal monotone operator and a sing...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 460; s. 116405
Hlavní autori: Izuchukwu, Chinedu, Reich, Simeon, Shehu, Yekini
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.05.2025
Predmet:
ISSN:0377-0427
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We first propose a reflected–forward–backward splitting algorithm with two inertial effects for solving monotone inclusions and then establish that the sequence of iterates it generates converges weakly in a real Hilbert space to a zero of the sum of a set-valued maximal monotone operator and a single-valued monotone Lipschitz continuous operator. The proposed algorithm involves only one forward evaluation of the single-valued operator and one backward evaluation of the set-valued operator at each iteration. One inertial parameter is non-negative while the other is non-positive. These features are absent in many other available inertial splitting algorithms in the literature. Finally, we discuss some problems in image restoration in connection with the implementation of our algorithm and compare it with some known related algorithms in the literature.
AbstractList We first propose a reflected–forward–backward splitting algorithm with two inertial effects for solving monotone inclusions and then establish that the sequence of iterates it generates converges weakly in a real Hilbert space to a zero of the sum of a set-valued maximal monotone operator and a single-valued monotone Lipschitz continuous operator. The proposed algorithm involves only one forward evaluation of the single-valued operator and one backward evaluation of the set-valued operator at each iteration. One inertial parameter is non-negative while the other is non-positive. These features are absent in many other available inertial splitting algorithms in the literature. Finally, we discuss some problems in image restoration in connection with the implementation of our algorithm and compare it with some known related algorithms in the literature.
ArticleNumber 116405
Author Izuchukwu, Chinedu
Reich, Simeon
Shehu, Yekini
Author_xml – sequence: 1
  givenname: Chinedu
  surname: Izuchukwu
  fullname: Izuchukwu, Chinedu
  email: chinedu.izuchukwu@wits.ac.za
  organization: School of Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa
– sequence: 2
  givenname: Simeon
  surname: Reich
  fullname: Reich, Simeon
  email: sreich@technion.ac.il
  organization: Department of Mathematics, The Technion – Israel Institute of Technology, 32000 Haifa, Israel
– sequence: 3
  givenname: Yekini
  orcidid: 0000-0001-9224-7139
  surname: Shehu
  fullname: Shehu, Yekini
  email: yekini.shehu@zjnu.edu.cn
  organization: School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
BookMark eNp9kDtOAzEURV0EiQRYAJ03kGDPTOYjKhTxkyLRQG358xwcPHZkm0Tp2AMN62MleAgVRSo_2e9c33snaOS8A4QuKZlRQuur9UzyflaQoppRWldkPkJjUjbNlFRFc4omMa4JIXVHqzH6Wni3hbACJwF7jbnDxkFIhlscQFuQCdT3x6f2YcfDMAku34YRx401KRm3wtyufDDptcd5DUdvt8Nt751P2VkWlPY9Gu_wJnhhoY94l7cx32QFydPwkjw2PV9B_lT6bGh_jk40txEu_s4z9HJ3-7x4mC6f7h8XN8upLLomTQUpeVXISqhONZyrOaHzVrVUC4AWKG0KBVoJ2upOt0KWHQihalEQTTrdlV15huhBVwYfY47MNiE7CXtGCRvqZGuW62RDnexQZ2aaf4w06TdHCtzYo-T1gYQcaWsgsCjN0L0yOXhiypsj9A_IwZvz
CitedBy_id crossref_primary_10_1080_02331934_2025_2523918
crossref_primary_10_1016_j_cnsns_2025_109179
Cites_doi 10.1137/S0363012998338806
10.1016/0022-247X(79)90234-8
10.1007/s00025-022-01694-5
10.1137/080716542
10.1007/s10851-014-0523-2
10.1023/A:1025499305742
10.1137/14097238X
10.1137/10081602X
10.1080/01630563.2013.763825
10.1007/s11590-015-0904-5
10.1007/s11784-018-0526-5
10.1016/j.cam.2023.115702
10.1137/17M112806X
10.1016/j.cnsns.2024.108110
10.1080/10556788.2017.1300899
10.1007/s11228-020-00542-4
10.1137/18M1207260
10.1007/s10898-018-0727-x
10.1016/S0377-0427(02)00906-8
10.1137/0716071
10.1016/0041-5553(64)90137-5
10.1007/s10915-023-02311-5
10.1002/mma.8578
10.1080/02331934.2021.1981895
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2024.116405
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_cam_2024_116405
S0377042724006538
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AAOAW
AAQFI
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
9DU
AAFWJ
AALRI
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
NHB
R2-
SSZ
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-b03a42c4bd9d7aad50158d81fbee8e1172defdb18f9f8bc39ebbd6b20f09f9393
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001374557100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Tue Nov 18 21:18:57 EST 2025
Sat Nov 29 06:39:26 EST 2025
Sat Jan 18 16:09:10 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords 47H10
Monotone inclusion
49J20
Image restoration problem
49J40
Optimal control
47H09
Inertial method
Monotone operator
Reflected–forward–backward algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-b03a42c4bd9d7aad50158d81fbee8e1172defdb18f9f8bc39ebbd6b20f09f9393
ORCID 0000-0001-9224-7139
ParticipantIDs crossref_primary_10_1016_j_cam_2024_116405
crossref_citationtrail_10_1016_j_cam_2024_116405
elsevier_sciencedirect_doi_10_1016_j_cam_2024_116405
PublicationCentury 2000
PublicationDate 2025-05-01
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cholamjiak, Cholamjiak, Suantai (b18) 2018; 20
Moudafi, Oliny (b20) 2003; 155
C. Poon, J. Liang, Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration, in: 33rd Conference on Neural Information Processing Systems, Vancouver, Canada, 2019.
Izuchukwu, Reich, Shehu (b9) 2022; 77
Vũ (b6) 2016; 10
Polyak (b17) 1964; 4
Liang (b23) 2016
Dung, Anh, Thong (b29) 2023; 96
Malitsky (b11) 2015; 25
Beck, Teboulle (b30) 2009; 2
C. Poon, J. Liang, Geometry of first-order methods and adaptive acceleration
Peeyada, Cholamjiak (b15) 2024; 441
Izuchukwu, Reich, Shehu (b13) 2023; 72
Passty (b2) 1979; 72
Nesterov (b14) 1983; 27
Malitsky (b12) 2018; 33
Briceño-Arias, Combettes (b4) 2011; 21
Fang, Huang (b27) 2003; 118
Lions, Mercier (b1) 1979; 16
Dong, Huang, Li, Cho, Rassias (b25) 2019; 73
Cevher, Vũ (b10) 2021; 29
Peeyada, Dutta, Shiangjen, Cholamjiak (b16) 2023; 46
.
Malitsky, Tam (b8) 2020; 30
Polyak (b24) 1987
Lorenz, Pock (b19) 2015; 51
Combettes, Glaudin (b26) 2017; 27
Tseng (b3) 2000; 38
Lions (b7) 1971
Dung, Anh, Thong (b28) 2024; 136
Vũ (b5) 2013; 34
Polyak (10.1016/j.cam.2024.116405_b24) 1987
Lions (10.1016/j.cam.2024.116405_b1) 1979; 16
Izuchukwu (10.1016/j.cam.2024.116405_b13) 2023; 72
Combettes (10.1016/j.cam.2024.116405_b26) 2017; 27
Briceño-Arias (10.1016/j.cam.2024.116405_b4) 2011; 21
Lorenz (10.1016/j.cam.2024.116405_b19) 2015; 51
Vũ (10.1016/j.cam.2024.116405_b6) 2016; 10
Malitsky (10.1016/j.cam.2024.116405_b12) 2018; 33
Lions (10.1016/j.cam.2024.116405_b7) 1971
Fang (10.1016/j.cam.2024.116405_b27) 2003; 118
Vũ (10.1016/j.cam.2024.116405_b5) 2013; 34
Peeyada (10.1016/j.cam.2024.116405_b16) 2023; 46
Liang (10.1016/j.cam.2024.116405_b23) 2016
Dung (10.1016/j.cam.2024.116405_b29) 2023; 96
Passty (10.1016/j.cam.2024.116405_b2) 1979; 72
Peeyada (10.1016/j.cam.2024.116405_b15) 2024; 441
Cholamjiak (10.1016/j.cam.2024.116405_b18) 2018; 20
Cevher (10.1016/j.cam.2024.116405_b10) 2021; 29
Beck (10.1016/j.cam.2024.116405_b30) 2009; 2
Dung (10.1016/j.cam.2024.116405_b28) 2024; 136
Malitsky (10.1016/j.cam.2024.116405_b8) 2020; 30
Dong (10.1016/j.cam.2024.116405_b25) 2019; 73
10.1016/j.cam.2024.116405_b22
10.1016/j.cam.2024.116405_b21
Polyak (10.1016/j.cam.2024.116405_b17) 1964; 4
Malitsky (10.1016/j.cam.2024.116405_b11) 2015; 25
Nesterov (10.1016/j.cam.2024.116405_b14) 1983; 27
Moudafi (10.1016/j.cam.2024.116405_b20) 2003; 155
Tseng (10.1016/j.cam.2024.116405_b3) 2000; 38
Izuchukwu (10.1016/j.cam.2024.116405_b9) 2022; 77
References_xml – volume: 27
  start-page: 2356
  year: 2017
  end-page: 2380
  ident: b26
  article-title: Quasi-nonexpansive iterations on the affine hull of orbits: from Mann’s mean value algorithm to inertial methods
  publication-title: SIAM J. Optim.
– volume: 118
  start-page: 327
  year: 2003
  end-page: 338
  ident: b27
  article-title: Variational-like inequalities with generalized monotone mappings in Banach spaces
  publication-title: J. Optim. Theory Appl.
– volume: 10
  start-page: 781
  year: 2016
  end-page: 803
  ident: b6
  article-title: Almost sure convergence of the forward–backward-forward splitting algorithm
  publication-title: Optim. Lett.
– volume: 72
  start-page: 607
  year: 2023
  end-page: 646
  ident: b13
  article-title: Relaxed inertial methods for solving the split monotone variational inclusion problem beyond co-coerciveness
  publication-title: Optimization
– volume: 20
  start-page: 42
  year: 2018
  ident: b18
  article-title: An inertial forward–backward splitting method for solving inclusion problems in Hilbert spaces
  publication-title: J. Fixed Point Theory Appl.
– volume: 51
  start-page: 311
  year: 2015
  end-page: 325
  ident: b19
  article-title: An inertial forward–backward algorithm for monotone inclusions
  publication-title: J. Math. Imaging Vision
– volume: 25
  start-page: 502
  year: 2015
  end-page: 520
  ident: b11
  article-title: Projected reflected gradient methods for monotone variational inequalities
  publication-title: SIAM J. Optim.
– volume: 29
  start-page: 163
  year: 2021
  end-page: 174
  ident: b10
  article-title: A reflected forward–backward splitting method for monotone inclusions involving Lipschitzian operators
  publication-title: Set-Valued Var. Anal.
– volume: 136
  year: 2024
  ident: b28
  article-title: Convergence of two-step inertial Tseng’s extragradient methods for quasimonotone variational inequality problems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 33
  start-page: 140
  year: 2018
  end-page: 164
  ident: b12
  article-title: Proximal extrapolated gradient methods for variational inequalities
  publication-title: Optim. Methods Softw.
– volume: 16
  start-page: 964
  year: 1979
  end-page: 979
  ident: b1
  article-title: Splitting algorithms for the sum of two nonlinear operators
  publication-title: SIAM J. Numer. Anal.
– volume: 34
  start-page: 1050
  year: 2013
  end-page: 1065
  ident: b5
  article-title: A variable metric extension of the forward–backward–forward algorithm for monotone operators
  publication-title: Numer. Funct. Anal. Optim.
– volume: 72
  start-page: 383
  year: 1979
  end-page: 390
  ident: b2
  article-title: Ergodic convergence to a zero of the sum of monotone operators in Hilbert spaces
  publication-title: J. Math. Anal. Appl.
– volume: 30
  start-page: 1451
  year: 2020
  end-page: 1472
  ident: b8
  article-title: A forward–backward splitting method for monotone inclusions without cocoercivity
  publication-title: SIAM J. Optim.
– year: 1987
  ident: b24
  article-title: Introduction to Optimization, Optimization Software
– volume: 96
  start-page: 92
  year: 2023
  ident: b29
  article-title: A modified Tseng splitting method with double inertial steps for solving monotone inclusion problems
  publication-title: J. Sci. Comput.
– volume: 4
  start-page: 1
  year: 1964
  end-page: 17
  ident: b17
  article-title: Some methods of speeding up the convergence of iterates methods
  publication-title: USSR Comput. Math. Phys.
– year: 2016
  ident: b23
  article-title: Convergence Rates of First-Order Operator Splitting Methods
– reference: C. Poon, J. Liang, Geometry of first-order methods and adaptive acceleration,
– year: 1971
  ident: b7
  article-title: Optimal Control of Systems Governed By Partial Differential Equations
– volume: 77
  start-page: 143
  year: 2022
  ident: b9
  article-title: Convergence of two simple methods for solving monotone inclusion problems in reflexive Banach spaces
  publication-title: Results Math.
– reference: C. Poon, J. Liang, Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration, in: 33rd Conference on Neural Information Processing Systems, Vancouver, Canada, 2019.
– reference: .
– volume: 46
  start-page: 1251
  year: 2023
  end-page: 1265
  ident: b16
  article-title: A modified forward–backward splitting methods for the sum of two monotone operators with applications to breast cancer prediction
  publication-title: Math. Methods Appl. Sci.
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: b30
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– volume: 441
  year: 2024
  ident: b15
  article-title: A new projection algorithm for variational inclusion problems and its application to cervical cancer disease prediction
  publication-title: J. Comput. Appl. Math.
– volume: 21
  start-page: 1230
  year: 2011
  end-page: 1250
  ident: b4
  article-title: A monotone skew splitting model for composite monotone inclusions in duality
  publication-title: SIAM J. Optim.
– volume: 27
  start-page: 372
  year: 1983
  end-page: 376
  ident: b14
  article-title: A method of solving a convex programming problem with convergence rate O(
  publication-title: Sov. Math. Doklady
– volume: 155
  start-page: 447
  year: 2003
  end-page: 454
  ident: b20
  article-title: Convergence of a splitting inertial proximal method for monotone operators
  publication-title: J. Comput. Appl. Math.
– volume: 38
  start-page: 431
  year: 2000
  end-page: 446
  ident: b3
  article-title: A modified forward–backward splitting method for maximal monotone mappings
  publication-title: SIAM J. Control Optim.
– volume: 73
  start-page: 801
  year: 2019
  end-page: 824
  ident: b25
  article-title: MiKM: multi-step inertial Krasnosel’skii–Mann algorithm and its applications
  publication-title: J. Global Optim.
– year: 2016
  ident: 10.1016/j.cam.2024.116405_b23
– volume: 38
  start-page: 431
  year: 2000
  ident: 10.1016/j.cam.2024.116405_b3
  article-title: A modified forward–backward splitting method for maximal monotone mappings
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998338806
– ident: 10.1016/j.cam.2024.116405_b22
– volume: 72
  start-page: 383
  year: 1979
  ident: 10.1016/j.cam.2024.116405_b2
  article-title: Ergodic convergence to a zero of the sum of monotone operators in Hilbert spaces
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(79)90234-8
– volume: 77
  start-page: 143
  year: 2022
  ident: 10.1016/j.cam.2024.116405_b9
  article-title: Convergence of two simple methods for solving monotone inclusion problems in reflexive Banach spaces
  publication-title: Results Math.
  doi: 10.1007/s00025-022-01694-5
– volume: 2
  start-page: 183
  year: 2009
  ident: 10.1016/j.cam.2024.116405_b30
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 27
  start-page: 372
  year: 1983
  ident: 10.1016/j.cam.2024.116405_b14
  article-title: A method of solving a convex programming problem with convergence rate O(1/k2)
  publication-title: Sov. Math. Doklady
– volume: 51
  start-page: 311
  year: 2015
  ident: 10.1016/j.cam.2024.116405_b19
  article-title: An inertial forward–backward algorithm for monotone inclusions
  publication-title: J. Math. Imaging Vision
  doi: 10.1007/s10851-014-0523-2
– volume: 118
  start-page: 327
  year: 2003
  ident: 10.1016/j.cam.2024.116405_b27
  article-title: Variational-like inequalities with generalized monotone mappings in Banach spaces
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1025499305742
– volume: 25
  start-page: 502
  year: 2015
  ident: 10.1016/j.cam.2024.116405_b11
  article-title: Projected reflected gradient methods for monotone variational inequalities
  publication-title: SIAM J. Optim.
  doi: 10.1137/14097238X
– volume: 21
  start-page: 1230
  year: 2011
  ident: 10.1016/j.cam.2024.116405_b4
  article-title: A monotone skew splitting model for composite monotone inclusions in duality
  publication-title: SIAM J. Optim.
  doi: 10.1137/10081602X
– year: 1971
  ident: 10.1016/j.cam.2024.116405_b7
– volume: 34
  start-page: 1050
  year: 2013
  ident: 10.1016/j.cam.2024.116405_b5
  article-title: A variable metric extension of the forward–backward–forward algorithm for monotone operators
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2013.763825
– ident: 10.1016/j.cam.2024.116405_b21
– volume: 10
  start-page: 781
  year: 2016
  ident: 10.1016/j.cam.2024.116405_b6
  article-title: Almost sure convergence of the forward–backward-forward splitting algorithm
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-015-0904-5
– volume: 20
  start-page: 42
  year: 2018
  ident: 10.1016/j.cam.2024.116405_b18
  article-title: An inertial forward–backward splitting method for solving inclusion problems in Hilbert spaces
  publication-title: J. Fixed Point Theory Appl.
  doi: 10.1007/s11784-018-0526-5
– volume: 441
  year: 2024
  ident: 10.1016/j.cam.2024.116405_b15
  article-title: A new projection algorithm for variational inclusion problems and its application to cervical cancer disease prediction
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2023.115702
– volume: 27
  start-page: 2356
  year: 2017
  ident: 10.1016/j.cam.2024.116405_b26
  article-title: Quasi-nonexpansive iterations on the affine hull of orbits: from Mann’s mean value algorithm to inertial methods
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M112806X
– volume: 136
  year: 2024
  ident: 10.1016/j.cam.2024.116405_b28
  article-title: Convergence of two-step inertial Tseng’s extragradient methods for quasimonotone variational inequality problems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2024.108110
– volume: 33
  start-page: 140
  year: 2018
  ident: 10.1016/j.cam.2024.116405_b12
  article-title: Proximal extrapolated gradient methods for variational inequalities
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2017.1300899
– volume: 29
  start-page: 163
  year: 2021
  ident: 10.1016/j.cam.2024.116405_b10
  article-title: A reflected forward–backward splitting method for monotone inclusions involving Lipschitzian operators
  publication-title: Set-Valued Var. Anal.
  doi: 10.1007/s11228-020-00542-4
– volume: 30
  start-page: 1451
  year: 2020
  ident: 10.1016/j.cam.2024.116405_b8
  article-title: A forward–backward splitting method for monotone inclusions without cocoercivity
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1207260
– volume: 73
  start-page: 801
  year: 2019
  ident: 10.1016/j.cam.2024.116405_b25
  article-title: MiKM: multi-step inertial Krasnosel’skii–Mann algorithm and its applications
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-018-0727-x
– volume: 155
  start-page: 447
  year: 2003
  ident: 10.1016/j.cam.2024.116405_b20
  article-title: Convergence of a splitting inertial proximal method for monotone operators
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00906-8
– volume: 16
  start-page: 964
  year: 1979
  ident: 10.1016/j.cam.2024.116405_b1
  article-title: Splitting algorithms for the sum of two nonlinear operators
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– volume: 4
  start-page: 1
  year: 1964
  ident: 10.1016/j.cam.2024.116405_b17
  article-title: Some methods of speeding up the convergence of iterates methods
  publication-title: USSR Comput. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– year: 1987
  ident: 10.1016/j.cam.2024.116405_b24
– volume: 96
  start-page: 92
  year: 2023
  ident: 10.1016/j.cam.2024.116405_b29
  article-title: A modified Tseng splitting method with double inertial steps for solving monotone inclusion problems
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-023-02311-5
– volume: 46
  start-page: 1251
  year: 2023
  ident: 10.1016/j.cam.2024.116405_b16
  article-title: A modified forward–backward splitting methods for the sum of two monotone operators with applications to breast cancer prediction
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.8578
– volume: 72
  start-page: 607
  year: 2023
  ident: 10.1016/j.cam.2024.116405_b13
  article-title: Relaxed inertial methods for solving the split monotone variational inclusion problem beyond co-coerciveness
  publication-title: Optimization
  doi: 10.1080/02331934.2021.1981895
SSID ssj0006914
Score 2.4578664
Snippet We first propose a reflected–forward–backward splitting algorithm with two inertial effects for solving monotone inclusions and then establish that the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116405
SubjectTerms Image restoration problem
Inertial method
Monotone inclusion
Monotone operator
Optimal control
Reflected–forward–backward algorithm
Title Convergence of an inertial reflected–forward–backward splitting algorithm for solving monotone inclusion problems with application to image recovery
URI https://dx.doi.org/10.1016/j.cam.2024.116405
Volume 460
WOSCitedRecordID wos001374557100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006914
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FlgUsEE-1vDQLViAjx-9ZVlURRaJCapHCyponcZs4VWqnVVf8Axs-iC_hS7jjedgEiuiCjeVY48k492R85s659yL0Io0TJUjMAhoTESQFGQeERjQIZZiRXEVEctUVm8gPDorJhHwYjb67WJjVLK_r4uKCnP5XU8M1MLYOnb2GuX2ncAHOwehwBLPD8Z8Mv6t15EuTY1Nv8mspoxZPdxn8lfbSS-EkDjFQVi2b9Z-Zdudpz8IZkFMjiaazz4tl1UznnSIRxt65IOBxFjqPN3TOZ612ub2ytWlcvFy_M675bTXX4iC9_F6tRWEPKDHvSkw492SXRtaS5LnPLuvXAPuXLZ-2J-etUQ3AQ4rWbx_JypS4OqzmshcaHE7ltGv-SZ5UdTX0eERpry90kV55HugaIcNZPDFlCew8PIZVYBfO_fsrwngrjmH5rxMRRMnrvu2v6bjXXpNevOh0cccldFHqLkrTxQ20GeUpgbl1c2d_b_LOM4KMmBzzbtxud73TGa6N48_8aMB5ju6iO9YyeMeA7B4ayfo-uv2-t8UD9G0AN7xQmNbYwQ17uP348tUCDc4cxLCHGPYQw9AMW4hhBzHsIYYdxLCGGB5ADDcL3EEMO4g9RB_f7B3tvg1stY-ARyRvAhbGNIl4wgQROaUiBaJaiGKsmJSFHAPRFlIJNi4UUQXjMZGMiYxFoQqJIjGJH6GNGga1hbD2ImSMZ2kuVSKShLEciKuiLOYFF1Rto9D9xiW3qfB1RZZZeaVtt9FLf8upyQPzt8aJM1xpiawhqCWA8OrbHl_nO56gW_1_4ynaaJatfIZu8lVTnS2fWwT-BFIqyoo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+an+inertial+reflected%E2%80%93forward%E2%80%93backward+splitting+algorithm+for+solving+monotone+inclusion+problems+with+application+to+image+recovery&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Izuchukwu%2C+Chinedu&rft.au=Reich%2C+Simeon&rft.au=Shehu%2C+Yekini&rft.date=2025-05-01&rft.issn=0377-0427&rft.volume=460&rft.spage=116405&rft_id=info:doi/10.1016%2Fj.cam.2024.116405&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2024_116405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon