A novel star auxetic honeycomb with enhanced in-plane crushing strength
Auxetic honeycombs exhibit low weight, shear stiffness, and excellent energy absorption capacity and thus have great potential for achieving the requirements of crashworthiness and lightweight in automotive fields. This work presents a novel auxetic structure called the star-triangular honeycomb (ST...
Uloženo v:
| Vydáno v: | Thin-walled structures Ročník 149; s. 106623 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2020
|
| Témata: | |
| ISSN: | 0263-8231, 1879-3223 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Auxetic honeycombs exhibit low weight, shear stiffness, and excellent energy absorption capacity and thus have great potential for achieving the requirements of crashworthiness and lightweight in automotive fields. This work presents a novel auxetic structure called the star-triangular honeycomb (STH), in which the horizontal and vertical ligaments of the star honeycombs (SH) are replaced with triangular structures. The dynamic crushing behaviors of the STH under three different crushing velocities were investigated using 1D shock theory. The results show that the STH has a more obvious negative Poisson's ratio effect than the SH and that transverse contraction mainly occurs in the first plateau stage. Theoretical models were deduced based on the collapse mechanism of the typical unit revealed by numerical simulation for STH crushing strength prediction. The theoretical predictions agreed well with the simulation results, and two different plateau stresses appeared under low-velocity crushing. In addition, the influences of the STH geometric parameters and crushing velocity on the energy-absorbing capacity and densification strain were systematically explored. The parameter analysis indicated that the effects of the cell-wall thickness and incline angle on the dynamic response and energy absorption capacity of the STH under low-and medium-velocity crushing are more significant than those under high-velocity crushing. Moreover, the STH showed better energy absorption capacity than the SH. Thus, this design is expected to provide a novel means of improving the mechanical properties of honeycombs.
•A novel auxetic honeycomb is designed by embedding the triangular structure into the star honeycomb.•Theoretical models are deduced to predict the plateau stress of the star-triangular honeycomb.•Two plateau stresses with different levels appear under the low-velocity impact model. |
|---|---|
| AbstractList | Auxetic honeycombs exhibit low weight, shear stiffness, and excellent energy absorption capacity and thus have great potential for achieving the requirements of crashworthiness and lightweight in automotive fields. This work presents a novel auxetic structure called the star-triangular honeycomb (STH), in which the horizontal and vertical ligaments of the star honeycombs (SH) are replaced with triangular structures. The dynamic crushing behaviors of the STH under three different crushing velocities were investigated using 1D shock theory. The results show that the STH has a more obvious negative Poisson's ratio effect than the SH and that transverse contraction mainly occurs in the first plateau stage. Theoretical models were deduced based on the collapse mechanism of the typical unit revealed by numerical simulation for STH crushing strength prediction. The theoretical predictions agreed well with the simulation results, and two different plateau stresses appeared under low-velocity crushing. In addition, the influences of the STH geometric parameters and crushing velocity on the energy-absorbing capacity and densification strain were systematically explored. The parameter analysis indicated that the effects of the cell-wall thickness and incline angle on the dynamic response and energy absorption capacity of the STH under low-and medium-velocity crushing are more significant than those under high-velocity crushing. Moreover, the STH showed better energy absorption capacity than the SH. Thus, this design is expected to provide a novel means of improving the mechanical properties of honeycombs.
•A novel auxetic honeycomb is designed by embedding the triangular structure into the star honeycomb.•Theoretical models are deduced to predict the plateau stress of the star-triangular honeycomb.•Two plateau stresses with different levels appear under the low-velocity impact model. |
| ArticleNumber | 106623 |
| Author | Wei, Lulu Yu, Qiang Zhao, Xuan Zhu, Guohua |
| Author_xml | – sequence: 1 givenname: Lulu surname: Wei fullname: Wei, Lulu – sequence: 2 givenname: Xuan surname: Zhao fullname: Zhao, Xuan email: zhaoxuan@chd.edu.cn – sequence: 3 givenname: Qiang surname: Yu fullname: Yu, Qiang – sequence: 4 givenname: Guohua surname: Zhu fullname: Zhu, Guohua |
| BookMark | eNp9kMtOwzAQRS1UJNrCB7DzD6T4kTiJWFUVFKRKbGBtOc64cZU6le229O9xVFYsWI2uNOdq5szQxA0OEHqkZEEJFU-7RTyHBSNszEIwfoOmtCrrjDPGJ2hKmOBZxTi9Q7MQdoTQktb5FK2X2A0n6HGIymN1_IZoNe5S-UUP-wafbewwuE45DS22Ljv0ygHW_hg667YJ8-C2sbtHt0b1AR5-5xx9vb58rt6yzcf6fbXcZJrVZcxUA4UpFFXpSJJXVBREUQqacFG2vAVqWgMmb5mAitRFmUMDJdTQ6LTKTc3nqLz2aj-E4MFIbaOKdnDRK9tLSuToQ-5k8iFHH_LqI5H0D3nwdq_85V_m-cpAeulkwcugLYwqrAcdZTvYf-gfe3Z7tQ |
| CitedBy_id | crossref_primary_10_1080_15376494_2024_2329311 crossref_primary_10_1016_j_mtcomm_2025_112203 crossref_primary_10_1002_pssb_202300231 crossref_primary_10_1080_00405167_2024_2318182 crossref_primary_10_1016_j_compstruct_2024_118267 crossref_primary_10_1002_pen_26620 crossref_primary_10_1016_j_compstruct_2021_114857 crossref_primary_10_1016_j_tws_2020_107366 crossref_primary_10_1016_j_engstruct_2021_113204 crossref_primary_10_3390_ma17071506 crossref_primary_10_1007_s40430_025_05634_6 crossref_primary_10_1016_j_compstruct_2022_115399 crossref_primary_10_1016_j_tws_2024_112569 crossref_primary_10_1080_15376494_2025_2490192 crossref_primary_10_1016_j_compstruct_2021_115154 crossref_primary_10_1080_15376494_2022_2084193 crossref_primary_10_1002_pc_26202 crossref_primary_10_1016_j_mechmat_2024_104975 crossref_primary_10_1016_j_polymertesting_2025_108745 crossref_primary_10_1007_s10999_021_09578_2 crossref_primary_10_1016_j_tws_2024_112287 crossref_primary_10_1016_j_ijmecsci_2021_106475 crossref_primary_10_1016_j_physa_2021_126120 crossref_primary_10_1080_15376494_2025_2457126 crossref_primary_10_1016_j_ijmecsci_2022_107286 crossref_primary_10_1016_j_ijmecsci_2024_109088 crossref_primary_10_1016_j_tws_2022_110140 crossref_primary_10_1080_15376494_2025_2471952 crossref_primary_10_1016_j_tws_2022_109434 crossref_primary_10_1177_13694332221086701 crossref_primary_10_1016_j_compstruct_2024_118835 crossref_primary_10_1002_adem_202201189 crossref_primary_10_1080_15376494_2024_2433092 crossref_primary_10_1007_s00419_022_02303_1 crossref_primary_10_1016_j_mechmat_2024_104980 crossref_primary_10_1088_1361_665X_ac7681 crossref_primary_10_1016_j_eml_2020_101164 crossref_primary_10_1016_j_tws_2024_111988 crossref_primary_10_1063_5_0237967 crossref_primary_10_1016_j_ijmecsci_2021_106405 crossref_primary_10_1016_j_tws_2023_111081 crossref_primary_10_1016_j_tws_2022_110491 crossref_primary_10_1108_RPJ_03_2023_0082 crossref_primary_10_1177_10996362251380663 crossref_primary_10_1088_1361_665X_ad8cb4 crossref_primary_10_1002_adem_202500686 crossref_primary_10_1002_adma_202402130 crossref_primary_10_1016_j_eml_2025_102291 crossref_primary_10_3103_S0025654422050193 crossref_primary_10_1016_j_compstruct_2025_118881 crossref_primary_10_1007_s10853_021_06141_4 crossref_primary_10_1088_1742_6596_1736_1_012026 crossref_primary_10_1016_j_ijmecsci_2021_107029 crossref_primary_10_1016_j_mtcomm_2022_104474 crossref_primary_10_1016_j_euromechsol_2025_105709 crossref_primary_10_1016_j_tws_2024_111856 crossref_primary_10_1088_1742_6596_1736_1_012025 crossref_primary_10_1007_s00339_023_07256_y crossref_primary_10_1016_j_compstruct_2022_116065 crossref_primary_10_1080_13588265_2024_2423450 crossref_primary_10_3390_jmse11091799 crossref_primary_10_1016_j_tws_2020_106929 crossref_primary_10_1080_15376494_2023_2299220 crossref_primary_10_1016_j_tws_2023_111011 crossref_primary_10_1088_1361_665X_ac9cac crossref_primary_10_3390_ma15186407 crossref_primary_10_3390_mi14061165 crossref_primary_10_1016_j_compstruct_2025_119284 crossref_primary_10_1016_j_engstruct_2024_118379 crossref_primary_10_1002_adem_202201769 crossref_primary_10_1016_j_compositesb_2025_112415 crossref_primary_10_1016_j_ijsolstr_2020_10_009 crossref_primary_10_1063_5_0076090 crossref_primary_10_1016_j_ast_2021_106797 crossref_primary_10_1016_j_compstruct_2021_113850 crossref_primary_10_1016_j_coco_2024_102018 crossref_primary_10_1016_j_compstruct_2023_117615 crossref_primary_10_1016_j_compstruct_2024_117921 crossref_primary_10_1007_s12008_025_02238_1 crossref_primary_10_1016_j_compstruct_2023_117620 crossref_primary_10_1016_j_mtcomm_2022_103797 crossref_primary_10_1016_j_tws_2023_111303 crossref_primary_10_1080_15376494_2022_2111730 crossref_primary_10_3390_jmmp9050155 crossref_primary_10_1016_j_tws_2025_113520 crossref_primary_10_1007_s10853_025_11072_5 crossref_primary_10_1016_j_tws_2025_113123 crossref_primary_10_1016_j_ijimpeng_2023_104759 crossref_primary_10_1177_07316844221139336 crossref_primary_10_1177_07316844211009599 crossref_primary_10_1016_j_ijmecsci_2022_107492 crossref_primary_10_1007_s12221_023_00455_7 crossref_primary_10_1007_s00170_025_16247_7 crossref_primary_10_1016_j_compositesb_2021_109437 crossref_primary_10_1016_j_compositesb_2021_109393 crossref_primary_10_1115_1_4068033 crossref_primary_10_1016_j_compositesb_2020_108340 crossref_primary_10_1016_j_tws_2021_108530 crossref_primary_10_1016_j_mtcomm_2023_106915 crossref_primary_10_1016_j_tws_2021_107682 crossref_primary_10_1016_j_ijimpeng_2020_103718 crossref_primary_10_1016_j_istruc_2025_108837 crossref_primary_10_1080_15376494_2024_2426777 crossref_primary_10_1016_j_compstruct_2023_116962 crossref_primary_10_1016_j_ijimpeng_2025_105297 crossref_primary_10_1016_j_ijmecsci_2021_106318 crossref_primary_10_1016_j_ijsolstr_2024_113001 crossref_primary_10_1155_2023_6050633 crossref_primary_10_1016_j_ijimpeng_2023_104807 crossref_primary_10_3390_ma16186275 crossref_primary_10_1016_j_compstruct_2022_115591 crossref_primary_10_1016_j_compstruct_2023_117493 crossref_primary_10_1016_j_ijmecsci_2022_107643 crossref_primary_10_1016_j_mtcomm_2024_110348 crossref_primary_10_1016_j_ijmecsci_2021_106793 crossref_primary_10_1088_2631_6331_ade759 crossref_primary_10_1007_s10338_023_00446_4 crossref_primary_10_1016_j_compstruct_2025_119268 crossref_primary_10_1080_2374068X_2024_2389752 crossref_primary_10_1002_pssb_202400295 crossref_primary_10_1016_j_tws_2022_110209 crossref_primary_10_1016_j_compositesb_2025_112957 crossref_primary_10_1002_admt_202500895 crossref_primary_10_1016_j_jallcom_2020_155425 crossref_primary_10_1016_j_compstruct_2023_116951 crossref_primary_10_1016_j_tws_2025_113746 crossref_primary_10_1016_j_tws_2024_112630 crossref_primary_10_3390_aerospace10050390 crossref_primary_10_1016_j_compstruct_2022_115484 crossref_primary_10_1016_j_ijmecsci_2021_106723 crossref_primary_10_3390_jmse11122261 crossref_primary_10_1080_15376494_2022_2059600 crossref_primary_10_1080_15376494_2024_2352036 crossref_primary_10_1016_j_engstruct_2025_120565 crossref_primary_10_1016_j_ijmecsci_2025_110404 crossref_primary_10_1016_j_ast_2024_109730 crossref_primary_10_1016_j_engstruct_2025_119731 crossref_primary_10_1016_j_compstruct_2024_118001 crossref_primary_10_1002_pssb_202400342 crossref_primary_10_1016_j_mtcomm_2023_105729 crossref_primary_10_1038_s41598_023_47525_7 crossref_primary_10_3390_met14101165 crossref_primary_10_1016_j_engstruct_2023_115729 crossref_primary_10_3390_polym17121717 crossref_primary_10_1155_2022_1411885 crossref_primary_10_1016_j_mtcomm_2023_106259 crossref_primary_10_1016_j_tws_2024_112348 crossref_primary_10_1088_1361_665X_adf78a crossref_primary_10_1016_j_compstruct_2021_114366 crossref_primary_10_1088_2053_1591_ac77dd crossref_primary_10_1016_j_compstruct_2023_116982 crossref_primary_10_1016_j_engstruct_2022_115377 crossref_primary_10_1002_pc_26022 crossref_primary_10_1016_j_engstruct_2022_114682 crossref_primary_10_1007_s00707_025_04319_4 crossref_primary_10_1016_j_rineng_2025_106137 crossref_primary_10_1016_j_matdes_2024_112963 crossref_primary_10_1080_15397734_2025_2450519 crossref_primary_10_1016_j_matdes_2025_114465 crossref_primary_10_1016_j_ijmecsci_2024_109100 crossref_primary_10_1080_15376494_2025_2508351 crossref_primary_10_3390_aerospace11110881 crossref_primary_10_1016_j_engstruct_2024_117482 crossref_primary_10_1016_j_ijmecsci_2022_108075 crossref_primary_10_1016_j_addma_2023_103525 crossref_primary_10_1016_j_engstruct_2025_121000 crossref_primary_10_1088_2053_1591_ac9d83 crossref_primary_10_1080_15376494_2025_2550017 crossref_primary_10_1002_eng2_12436 crossref_primary_10_1016_j_tws_2020_107390 crossref_primary_10_1080_15376494_2023_2204082 crossref_primary_10_1002_pen_27294 crossref_primary_10_1016_j_compstruct_2022_116397 crossref_primary_10_1016_j_euromechsol_2022_104847 crossref_primary_10_1002_adem_202301943 crossref_primary_10_1016_j_ijimpeng_2025_105285 crossref_primary_10_1016_j_oceaneng_2025_122772 crossref_primary_10_1016_j_ijmecsci_2023_108767 crossref_primary_10_1088_1361_665X_add8d3 crossref_primary_10_1016_j_ijimpeng_2025_105447 crossref_primary_10_1016_j_tws_2020_106739 crossref_primary_10_1016_j_engstruct_2024_119260 |
| Cites_doi | 10.1016/j.ijimpeng.2007.11.008 10.1016/j.matdes.2018.11.013 10.1016/j.compstruct.2018.10.024 10.1016/j.compstruct.2017.02.034 10.1016/S0020-7403(02)00060-7 10.1016/j.ijimpeng.2019.04.019 10.1115/1.4030007 10.1016/j.ijimpeng.2015.04.005 10.1016/j.ijengsci.2012.01.010 10.1016/j.tws.2018.04.020 10.1126/science.235.4792.1038 10.1088/0964-1726/13/1/006 10.1016/j.pmatsci.2015.05.001 10.1016/j.compstruct.2016.10.090 10.1038/353124a0 10.1007/s10853-017-1809-8 10.1016/j.compstruct.2019.110920 10.1016/j.compstruct.2017.05.027 10.1016/j.matdes.2018.09.041 10.3390/ma11071095 10.1177/1099636214554180 10.1016/j.compositesb.2017.01.048 10.1016/S0263-8223(96)00054-2 10.1016/j.matdes.2016.03.023 10.1007/s004190050117 10.1016/j.commatsci.2012.02.012 10.1046/j.1460-2695.2000.00278.x 10.1016/j.ijsolstr.2015.11.015 10.1016/j.ijimpeng.2020.103509 10.1243/0309324001514152 10.1002/pssb.201083977 10.1016/j.jmps.2005.05.003 10.1007/BF02403846 10.1016/j.matdes.2016.03.086 10.1016/j.ijimpeng.2009.12.001 10.1016/j.ijimpeng.2008.03.001 10.1115/1.2806807 10.1002/adma.201601363 10.1016/j.matdes.2017.11.024 10.1016/S0734-743X(99)00036-6 10.1016/j.ijsolstr.2018.06.028 10.1016/j.compstruct.2017.09.001 10.1016/j.ijmecsci.2018.12.009 10.1016/j.matdes.2016.12.067 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tws.2020.106623 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3223 |
| ExternalDocumentID | 10_1016_j_tws_2020_106623 S0263823119315423 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-abe5f5a1a1060481650a11ec0367d3de1fdfef4d26e809574ebe7e9ebc1653f93 |
| ISICitedReferencesCount | 211 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530705200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-8231 |
| IngestDate | Sat Nov 29 07:18:39 EST 2025 Tue Nov 18 22:13:46 EST 2025 Fri Feb 23 02:47:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Densification strain Crushing strength Negative Poisson's ratio Auxetic honeycomb Deformation model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-abe5f5a1a1060481650a11ec0367d3de1fdfef4d26e809574ebe7e9ebc1653f93 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_tws_2020_106623 crossref_primary_10_1016_j_tws_2020_106623 elsevier_sciencedirect_doi_10_1016_j_tws_2020_106623 |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 2020-04-00 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Thin-walled structures |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hu, Yu (bib48) 2010; 37 Elipe, Lantada (bib18) 2012; 21 Zhu, Sun, Li (bib43) 2018; 184 Qiao, Chen (bib26) 2015; 83 Fu, Chen, Hu (bib36) 2017 Liu, Zhang (bib32) 2009; 36 Sun, Lai, Fan (bib33) 2016; 100 Masters, Evans (bib20) 1996; 35 Hu, Zhou, Deng (bib29) 2018; 131 Zou, Reid, Tan (bib47) 2009; 36 Chen, Wang, Zhou (bib35) 2018; 11 Lakes (bib13) 1987; 235 Zhang, Yang, Li (bib1) 2015; 74 Zhao, Zhu, Zhou (bib2) 2019; 222 Wang, Lu, Yang (bib39) 2019; 151 Hönig, Stronge (bib24) 2002; 44 Wang, Lu, Yang (bib40) 2019; 208 Scarpa, Panayiotou, Tomlinson (bib19) 2000; 35 Yang, Chalivendra, Kim (bib11) 2017; 168 Zhu, Liao, Sun (bib51) 2020 Zhu, Yu, Zhao (bib44) 2019 Fu, Zheng, Li (bib17) 2017; 176 Choi, Lakes (bib4) 1992; 27 Chen, Lakes (bib8) 1996; 118 Huang, Chen (bib3) 2016 Wang, Jin, Li (bib50) 2019 Gao, Wang, Zhou (bib22) 2018; 139 Prawoto (bib34) 2012; 58 Jiang, Ren, Jin (bib41) 2019 Lu, Yu (bib42) 2003 Tan, Reid, Harrigan (bib46) 2005; 53 Gao, Ge, Zhuang (bib23) 2019; 161 Evans, Nkansah, Hutchinson (bib12) 1991; 353 Gu, Pavier, Shterenlikht (bib31) 2018; 152 Ingrole, Hao, Liang (bib49) 2017; 117 Zhang, An, Ding (bib28) 2015; 17 Qi, Jiang, Yu (bib30) 2019; 130 Theocaris, Stavroulakis, Panagiotopoulos (bib21) 1997; 67 Li, Yin, Dong (bib38) 2018; 53 Scarpa, Tomlin (bib5) 2000; 23 Zhang, Deng, Xu (bib16) 2017; 114 Coenen, Alderson (bib7) 2011; 248 Fu, Xu, Hu (bib15) 2016; 80 Zhao, Gao, Wang (bib25) 2018; 160 Scarpa, Ciffo, Yates (bib9) 2003; 13 Santosa, Wierzbicki, Hanssen (bib45) 2000; 24 Gibson, Ashby (bib14) 1999 Liu, Wang, Luo (bib10) 2016; 100 Qiao, Chen (bib27) 2015; 82 Argatov, Guinovart-Díaz, Sabina (bib6) 2012; 54 Fu, Chen, Hu (bib37) 2017; 160 Qi (10.1016/j.tws.2020.106623_bib30) 2019; 130 Zhao (10.1016/j.tws.2020.106623_bib25) 2018; 160 Zhang (10.1016/j.tws.2020.106623_bib28) 2015; 17 Qiao (10.1016/j.tws.2020.106623_bib26) 2015; 83 Evans (10.1016/j.tws.2020.106623_bib12) 1991; 353 Wang (10.1016/j.tws.2020.106623_bib50) 2019 Zhang (10.1016/j.tws.2020.106623_bib1) 2015; 74 Jiang (10.1016/j.tws.2020.106623_bib41) 2019 Tan (10.1016/j.tws.2020.106623_bib46) 2005; 53 Gu (10.1016/j.tws.2020.106623_bib31) 2018; 152 Theocaris (10.1016/j.tws.2020.106623_bib21) 1997; 67 Lu (10.1016/j.tws.2020.106623_bib42) 2003 Wang (10.1016/j.tws.2020.106623_bib40) 2019; 208 Fu (10.1016/j.tws.2020.106623_bib36) 2017 Masters (10.1016/j.tws.2020.106623_bib20) 1996; 35 Wang (10.1016/j.tws.2020.106623_bib39) 2019; 151 Zhang (10.1016/j.tws.2020.106623_bib16) 2017; 114 Fu (10.1016/j.tws.2020.106623_bib15) 2016; 80 Scarpa (10.1016/j.tws.2020.106623_bib19) 2000; 35 Hu (10.1016/j.tws.2020.106623_bib48) 2010; 37 Fu (10.1016/j.tws.2020.106623_bib37) 2017; 160 Choi (10.1016/j.tws.2020.106623_bib4) 1992; 27 Scarpa (10.1016/j.tws.2020.106623_bib5) 2000; 23 Fu (10.1016/j.tws.2020.106623_bib17) 2017; 176 Zou (10.1016/j.tws.2020.106623_bib47) 2009; 36 Santosa (10.1016/j.tws.2020.106623_bib45) 2000; 24 Gibson (10.1016/j.tws.2020.106623_bib14) 1999 Lakes (10.1016/j.tws.2020.106623_bib13) 1987; 235 Zhu (10.1016/j.tws.2020.106623_bib44) 2019 Sun (10.1016/j.tws.2020.106623_bib33) 2016; 100 Huang (10.1016/j.tws.2020.106623_bib3) 2016 Li (10.1016/j.tws.2020.106623_bib38) 2018; 53 Zhu (10.1016/j.tws.2020.106623_bib43) 2018; 184 Chen (10.1016/j.tws.2020.106623_bib35) 2018; 11 Gao (10.1016/j.tws.2020.106623_bib23) 2019; 161 Chen (10.1016/j.tws.2020.106623_bib8) 1996; 118 Liu (10.1016/j.tws.2020.106623_bib10) 2016; 100 Qiao (10.1016/j.tws.2020.106623_bib27) 2015; 82 Scarpa (10.1016/j.tws.2020.106623_bib9) 2003; 13 Argatov (10.1016/j.tws.2020.106623_bib6) 2012; 54 Yang (10.1016/j.tws.2020.106623_bib11) 2017; 168 Gao (10.1016/j.tws.2020.106623_bib22) 2018; 139 Zhao (10.1016/j.tws.2020.106623_bib2) 2019; 222 Elipe (10.1016/j.tws.2020.106623_bib18) 2012; 21 Liu (10.1016/j.tws.2020.106623_bib32) 2009; 36 Hönig (10.1016/j.tws.2020.106623_bib24) 2002; 44 Zhu (10.1016/j.tws.2020.106623_bib51) 2020 Hu (10.1016/j.tws.2020.106623_bib29) 2018; 131 Ingrole (10.1016/j.tws.2020.106623_bib49) 2017; 117 Coenen (10.1016/j.tws.2020.106623_bib7) 2011; 248 Prawoto (10.1016/j.tws.2020.106623_bib34) 2012; 58 |
| References_xml | – volume: 248 start-page: 66 year: 2011 end-page: 72 ident: bib7 article-title: Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates publication-title: Phys. Status Solidi – volume: 208 start-page: 758 year: 2019 end-page: 770 ident: bib40 article-title: A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance publication-title: Compos. Struct. – volume: 74 start-page: 332 year: 2015 end-page: 400 ident: bib1 article-title: Bioinspired engineering of honeycomb structure – using nature to inspire human innovation publication-title: Prog. Mater. Sci. – volume: 100 start-page: 280 year: 2016 end-page: 290 ident: bib33 article-title: In-plane compression and behavior and energy absorption of hierarchical triangular lattice structures[J] publication-title: Mater. Des. – volume: 24 start-page: 509 year: 2000 end-page: 534 ident: bib45 article-title: Experimental and numerical studies of foam-filled sections[J] publication-title: Int. J. Impact Eng. – volume: 54 start-page: 42 year: 2012 end-page: 57 ident: bib6 article-title: On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint publication-title: Int. J. Eng. Sci. – volume: 44 start-page: 1665 year: 2002 end-page: 1696 ident: bib24 article-title: In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping[J] publication-title: Int. J. Mech. Sci. – volume: 130 start-page: 247 year: 2019 end-page: 265 ident: bib30 article-title: In-plane crushing response of tetra-chiral honeycombs publication-title: Int. J. Impact Eng. – volume: 83 start-page: 47 year: 2015 end-page: 58 ident: bib26 article-title: Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs publication-title: Int. J. Impact Eng. – volume: 36 start-page: 165 year: 2009 end-page: 176 ident: bib47 article-title: Dynamic crushing of honeycombs and features of shock fronts publication-title: Int. J. Impact Eng. – year: 2017 ident: bib36 article-title: Bilinear Elastic Characteristic of Enhanced Auxetic honeycombs[J] – volume: 161 start-page: 22 year: 2019 end-page: 34 ident: bib23 article-title: Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading publication-title: Mater. Des. – volume: 160 start-page: 527 year: 2018 end-page: 537 ident: bib25 article-title: Dynamic crushing of double-arrowed auxetic structure under impact loading publication-title: Mater. Des. – volume: 152 start-page: 207 year: 2018 end-page: 216 ident: bib31 article-title: Experimental study of modulus, strength and toughness of 2D triangular lattices[J] publication-title: International Journal of Solids and Structures – volume: 13 start-page: 49 year: 2003 ident: bib9 article-title: Dynamic properties of high structural integrity auxetic open cell foam publication-title: Smart Mater. Struct. – volume: 37 start-page: 467 year: 2010 end-page: 474 ident: bib48 article-title: Dynamic crushing strength of hexagonal honeycombs publication-title: Int. J. Impact Eng. – year: 2019 ident: bib50 article-title: On crashworthiness design of hybrid metal-composite structures[J] publication-title: Int. J. Mech. Sci. – volume: 117 start-page: 72 year: 2017 end-page: 83 ident: bib49 article-title: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement[J] publication-title: Mater. Des. – volume: 131 start-page: 373 year: 2018 end-page: 384 ident: bib29 article-title: Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation publication-title: Thin-Walled Struct. – volume: 53 start-page: 3493 year: 2018 end-page: 3499 ident: bib38 article-title: Strong re-entrant cellular structures with negative Poisson's ratio publication-title: J. Mater. Sci. – year: 2016 ident: bib3 article-title: Negative Poisson\s ratio in modern functional materials publication-title: Adv. Mater. – volume: 11 start-page: 1095 year: 2018 ident: bib35 article-title: Novel negative Poisson's ratio lattice structures with enhanced stiffness and energy absorption capacity publication-title: Materials – volume: 176 start-page: 442 year: 2017 end-page: 448 ident: bib17 article-title: A novel chiral three-dimensional material with negative Poisson's ratio and the equivalent elastic parameters publication-title: Compos. Struct. – year: 1999 ident: bib14 article-title: Cellular Solids: Structure and Properties – volume: 80 start-page: 284 year: 2016 end-page: 296 ident: bib15 article-title: Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation publication-title: Int. J. Solid Struct. – volume: 23 start-page: 717 year: 2000 end-page: 720 ident: bib5 article-title: On the transverse shear modulus of negative Poisson's ratio honeycomb structures publication-title: Fatig. Fract. Eng. Mater. Struct. – volume: 353 year: 1991 ident: bib12 article-title: Molecular network design publication-title: Nature – volume: 151 start-page: 746 year: 2019 end-page: 759 ident: bib39 article-title: In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions publication-title: Int. J. Mech. Sci. – volume: 168 start-page: 120 year: 2017 end-page: 129 ident: bib11 article-title: Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites publication-title: Compos. Struct. – volume: 35 start-page: 403 year: 1996 end-page: 422 ident: bib20 article-title: Models for the elastic deformation of honeycombs[J] publication-title: Compos. Struct. – volume: 36 start-page: 98 year: 2009 end-page: 109 ident: bib32 article-title: The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J] publication-title: Int. J. Impact Eng. – year: 2019 ident: bib41 article-title: Flexural performances of fiber face-sheets/corrugated core sandwich composite structures reinforced by horizontal stiffeners[J] publication-title: Int. J. Mech. Sci. – year: 2003 ident: bib42 article-title: Energy Absorption of Structures and Materials – volume: 67 start-page: 274 year: 1997 end-page: 286 ident: bib21 article-title: Negative Poisson\s ratios in composites with star-shaped inclusions: a numerical homogenization approach publication-title: J. Arch. Appl. Mech. – volume: 21 year: 2012 ident: bib18 article-title: Comparative study of auxetic geometries by means of computer-aided design and engineering publication-title: Smart Mater. Struct. – volume: 235 start-page: 1038 year: 1987 end-page: 1041 ident: bib13 article-title: Foam structures with a negative Poisson's ratio publication-title: Science – volume: 35 start-page: 383 year: 2000 end-page: 388 ident: bib19 article-title: Numerical and experimental uniaxial loading on in-plane auxetic honeycombs[J] publication-title: J. Strain Anal. Eng. Des. – volume: 82 year: 2015 ident: bib27 article-title: Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs publication-title: J. Appl. Mech. – volume: 184 start-page: 41 year: 2018 end-page: 55 ident: bib43 article-title: Modeling for CFRP structures subjected to quasi-static crushing[J] publication-title: Compos. Struct. – year: 2019 ident: bib44 article-title: Energy-absorbing mechanisms and crashworthiness design of CFRP multi-cell structures[J] – volume: 100 start-page: 84 year: 2016 end-page: 91 ident: bib10 article-title: In-plane dynamic crushing of re-entrant auxetic cellular structure publication-title: Mater. Des. – volume: 118 start-page: 285 year: 1996 end-page: 288 ident: bib8 article-title: Micromechanical analysis of dynamic behavior of conventional and negative Poisson's ratio foams publication-title: J. Eng. Mater. Technol. – volume: 53 start-page: 2206 year: 2005 end-page: 2230 ident: bib46 article-title: Dynamic compressive strength properties of aluminium foams. Part II—'shock’ theory and comparison with experimental data and numerical models publication-title: J. Mech. Phys. Solid. – year: 2020 ident: bib51 article-title: Comparative study on metal/CFRP hybrid structures under static and dynamic loading[J] publication-title: Int. J. Impact Eng. – volume: 58 start-page: 140 year: 2012 end-page: 153 ident: bib34 article-title: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson's ratio publication-title: Comput. Mater. Sci. – volume: 27 year: 1992 ident: bib4 article-title: Non-linear properties of metallic cellular materials with a negative Poisson's ratio publication-title: J. Mater. Sci. – volume: 114 start-page: 80 year: 2017 end-page: 92 ident: bib16 article-title: Homogenization of hexagonal and re-entrant hexagonal structures and wave propagation of the sandwich plates with symplectic analysis publication-title: Compos. B Eng. – volume: 139 start-page: 380 year: 2018 end-page: 391 ident: bib22 article-title: Theoretical, numerical and experimental analysis of three-dimensional double-V honeycomb publication-title: Mater. Des. – volume: 160 start-page: 574 year: 2017 end-page: 585 ident: bib37 article-title: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength publication-title: Compos. Struct. – volume: 222 year: 2019 ident: bib2 article-title: Crashworthiness analysis and design of composite tapered tubes under multiple load cases[J] publication-title: Compos. Struct. – volume: 17 start-page: 26 year: 2015 end-page: 55 ident: bib28 article-title: The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio publication-title: J. Sandw. Struct. Mater. – volume: 36 start-page: 165 issue: 1 year: 2009 ident: 10.1016/j.tws.2020.106623_bib47 article-title: Dynamic crushing of honeycombs and features of shock fronts publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2007.11.008 – volume: 161 start-page: 22 year: 2019 ident: 10.1016/j.tws.2020.106623_bib23 article-title: Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.11.013 – volume: 208 start-page: 758 year: 2019 ident: 10.1016/j.tws.2020.106623_bib40 article-title: A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.10.024 – volume: 168 start-page: 120 year: 2017 ident: 10.1016/j.tws.2020.106623_bib11 article-title: Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.02.034 – volume: 44 start-page: 1665 issue: 8 year: 2002 ident: 10.1016/j.tws.2020.106623_bib24 article-title: In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping[J] publication-title: Int. J. Mech. Sci. doi: 10.1016/S0020-7403(02)00060-7 – volume: 130 start-page: 247 year: 2019 ident: 10.1016/j.tws.2020.106623_bib30 article-title: In-plane crushing response of tetra-chiral honeycombs publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2019.04.019 – volume: 82 issue: 5 year: 2015 ident: 10.1016/j.tws.2020.106623_bib27 article-title: Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs publication-title: J. Appl. Mech. doi: 10.1115/1.4030007 – year: 1999 ident: 10.1016/j.tws.2020.106623_bib14 – volume: 83 start-page: 47 year: 2015 ident: 10.1016/j.tws.2020.106623_bib26 article-title: Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2015.04.005 – volume: 54 start-page: 42 year: 2012 ident: 10.1016/j.tws.2020.106623_bib6 article-title: On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2012.01.010 – volume: 131 start-page: 373 year: 2018 ident: 10.1016/j.tws.2020.106623_bib29 article-title: Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2018.04.020 – volume: 235 start-page: 1038 year: 1987 ident: 10.1016/j.tws.2020.106623_bib13 article-title: Foam structures with a negative Poisson's ratio publication-title: Science doi: 10.1126/science.235.4792.1038 – volume: 21 issue: 10 year: 2012 ident: 10.1016/j.tws.2020.106623_bib18 article-title: Comparative study of auxetic geometries by means of computer-aided design and engineering publication-title: Smart Mater. Struct. – volume: 13 start-page: 49 issue: 1 year: 2003 ident: 10.1016/j.tws.2020.106623_bib9 article-title: Dynamic properties of high structural integrity auxetic open cell foam publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/13/1/006 – volume: 74 start-page: 332 year: 2015 ident: 10.1016/j.tws.2020.106623_bib1 article-title: Bioinspired engineering of honeycomb structure – using nature to inspire human innovation publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2015.05.001 – volume: 160 start-page: 574 year: 2017 ident: 10.1016/j.tws.2020.106623_bib37 article-title: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.10.090 – volume: 353 issue: 6340 year: 1991 ident: 10.1016/j.tws.2020.106623_bib12 article-title: Molecular network design publication-title: Nature doi: 10.1038/353124a0 – volume: 53 start-page: 3493 issue: 5 year: 2018 ident: 10.1016/j.tws.2020.106623_bib38 article-title: Strong re-entrant cellular structures with negative Poisson's ratio publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1809-8 – volume: 222 year: 2019 ident: 10.1016/j.tws.2020.106623_bib2 article-title: Crashworthiness analysis and design of composite tapered tubes under multiple load cases[J] publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.110920 – volume: 176 start-page: 442 year: 2017 ident: 10.1016/j.tws.2020.106623_bib17 article-title: A novel chiral three-dimensional material with negative Poisson's ratio and the equivalent elastic parameters publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.05.027 – volume: 160 start-page: 527 year: 2018 ident: 10.1016/j.tws.2020.106623_bib25 article-title: Dynamic crushing of double-arrowed auxetic structure under impact loading publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.09.041 – year: 2003 ident: 10.1016/j.tws.2020.106623_bib42 – volume: 11 start-page: 1095 issue: 7 year: 2018 ident: 10.1016/j.tws.2020.106623_bib35 article-title: Novel negative Poisson's ratio lattice structures with enhanced stiffness and energy absorption capacity publication-title: Materials doi: 10.3390/ma11071095 – volume: 17 start-page: 26 issue: 1 year: 2015 ident: 10.1016/j.tws.2020.106623_bib28 article-title: The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio publication-title: J. Sandw. Struct. Mater. doi: 10.1177/1099636214554180 – year: 2019 ident: 10.1016/j.tws.2020.106623_bib50 article-title: On crashworthiness design of hybrid metal-composite structures[J] publication-title: Int. J. Mech. Sci. – volume: 114 start-page: 80 year: 2017 ident: 10.1016/j.tws.2020.106623_bib16 article-title: Homogenization of hexagonal and re-entrant hexagonal structures and wave propagation of the sandwich plates with symplectic analysis publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2017.01.048 – volume: 35 start-page: 403 issue: 4 year: 1996 ident: 10.1016/j.tws.2020.106623_bib20 article-title: Models for the elastic deformation of honeycombs[J] publication-title: Compos. Struct. doi: 10.1016/S0263-8223(96)00054-2 – volume: 100 start-page: 280 year: 2016 ident: 10.1016/j.tws.2020.106623_bib33 article-title: In-plane compression and behavior and energy absorption of hierarchical triangular lattice structures[J] publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.03.023 – volume: 67 start-page: 274 issue: 4 year: 1997 ident: 10.1016/j.tws.2020.106623_bib21 article-title: Negative Poisson\s ratios in composites with star-shaped inclusions: a numerical homogenization approach publication-title: J. Arch. Appl. Mech. doi: 10.1007/s004190050117 – volume: 58 start-page: 140 year: 2012 ident: 10.1016/j.tws.2020.106623_bib34 article-title: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson's ratio publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.02.012 – volume: 23 start-page: 717 issue: 8 year: 2000 ident: 10.1016/j.tws.2020.106623_bib5 article-title: On the transverse shear modulus of negative Poisson's ratio honeycomb structures publication-title: Fatig. Fract. Eng. Mater. Struct. doi: 10.1046/j.1460-2695.2000.00278.x – volume: 80 start-page: 284 year: 2016 ident: 10.1016/j.tws.2020.106623_bib15 article-title: Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation publication-title: Int. J. Solid Struct. doi: 10.1016/j.ijsolstr.2015.11.015 – year: 2020 ident: 10.1016/j.tws.2020.106623_bib51 article-title: Comparative study on metal/CFRP hybrid structures under static and dynamic loading[J] publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2020.103509 – year: 2019 ident: 10.1016/j.tws.2020.106623_bib44 – volume: 35 start-page: 383 issue: 5 year: 2000 ident: 10.1016/j.tws.2020.106623_bib19 article-title: Numerical and experimental uniaxial loading on in-plane auxetic honeycombs[J] publication-title: J. Strain Anal. Eng. Des. doi: 10.1243/0309324001514152 – volume: 248 start-page: 66 issue: 1 year: 2011 ident: 10.1016/j.tws.2020.106623_bib7 article-title: Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates publication-title: Phys. Status Solidi doi: 10.1002/pssb.201083977 – year: 2017 ident: 10.1016/j.tws.2020.106623_bib36 – volume: 53 start-page: 2206 issue: 10 year: 2005 ident: 10.1016/j.tws.2020.106623_bib46 article-title: Dynamic compressive strength properties of aluminium foams. Part II—'shock’ theory and comparison with experimental data and numerical models publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2005.05.003 – volume: 27 issue: 19 year: 1992 ident: 10.1016/j.tws.2020.106623_bib4 article-title: Non-linear properties of metallic cellular materials with a negative Poisson's ratio publication-title: J. Mater. Sci. doi: 10.1007/BF02403846 – volume: 100 start-page: 84 year: 2016 ident: 10.1016/j.tws.2020.106623_bib10 article-title: In-plane dynamic crushing of re-entrant auxetic cellular structure publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.03.086 – volume: 37 start-page: 467 issue: 5 year: 2010 ident: 10.1016/j.tws.2020.106623_bib48 article-title: Dynamic crushing strength of hexagonal honeycombs publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2009.12.001 – volume: 36 start-page: 98 issue: 1 year: 2009 ident: 10.1016/j.tws.2020.106623_bib32 article-title: The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J] publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2008.03.001 – year: 2019 ident: 10.1016/j.tws.2020.106623_bib41 article-title: Flexural performances of fiber face-sheets/corrugated core sandwich composite structures reinforced by horizontal stiffeners[J] publication-title: Int. J. Mech. Sci. – volume: 118 start-page: 285 issue: 3 year: 1996 ident: 10.1016/j.tws.2020.106623_bib8 article-title: Micromechanical analysis of dynamic behavior of conventional and negative Poisson's ratio foams publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.2806807 – year: 2016 ident: 10.1016/j.tws.2020.106623_bib3 article-title: Negative Poisson\s ratio in modern functional materials publication-title: Adv. Mater. doi: 10.1002/adma.201601363 – volume: 139 start-page: 380 year: 2018 ident: 10.1016/j.tws.2020.106623_bib22 article-title: Theoretical, numerical and experimental analysis of three-dimensional double-V honeycomb publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.024 – volume: 24 start-page: 509 issue: 5 year: 2000 ident: 10.1016/j.tws.2020.106623_bib45 article-title: Experimental and numerical studies of foam-filled sections[J] publication-title: Int. J. Impact Eng. doi: 10.1016/S0734-743X(99)00036-6 – volume: 152 start-page: 207 year: 2018 ident: 10.1016/j.tws.2020.106623_bib31 article-title: Experimental study of modulus, strength and toughness of 2D triangular lattices[J] publication-title: International Journal of Solids and Structures doi: 10.1016/j.ijsolstr.2018.06.028 – volume: 184 start-page: 41 year: 2018 ident: 10.1016/j.tws.2020.106623_bib43 article-title: Modeling for CFRP structures subjected to quasi-static crushing[J] publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.09.001 – volume: 151 start-page: 746 year: 2019 ident: 10.1016/j.tws.2020.106623_bib39 article-title: In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.12.009 – volume: 117 start-page: 72 year: 2017 ident: 10.1016/j.tws.2020.106623_bib49 article-title: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement[J] publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.12.067 |
| SSID | ssj0017194 |
| Score | 2.6265438 |
| Snippet | Auxetic honeycombs exhibit low weight, shear stiffness, and excellent energy absorption capacity and thus have great potential for achieving the requirements... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106623 |
| SubjectTerms | Auxetic honeycomb Crushing strength Deformation model Densification strain Negative Poisson's ratio |
| Title | A novel star auxetic honeycomb with enhanced in-plane crushing strength |
| URI | https://dx.doi.org/10.1016/j.tws.2020.106623 |
| Volume | 149 |
| WOSCitedRecordID | wos000530705200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE-1vOQDJyKjJt7EznGFSnlIFYgillPkJJNuq1V2tV1vl3_PTBwnKS8BEpdoNbLX0XwT58t4How90yauICoqobUxYoyvKKGR5YpIxjgeNMiwbJpNqONjPZ2m70ejdz4XZjNXda2323T5X6FGGYJNqbN_AXf3pyjA3wg6XhF2vP4R8JOgXmyAskDMKjB2S1mKwWxRw1dcLXeOV6hn7uT_rBZLCncNipV1zihKHqlP17Mha6XmnuKSuq6UgSs4a1d97OFncBnWdm4HbujGBTu1vfF9sST5gOZ42g9rZEd2MbNm6H-IDgZhK41TzCfG9FFIF009VynohNG9ZtzeqlUqcP-QVzZfV7D0h43c-RTOX6wvqaZ6RJIkaaderY_9kdaipZCKIh-M5DW2G6k4xS1ud_LmcPq2O1RSYdMXs7s3f8jdhPt9t9DPacqAepzcZrfabwY-cVjfYSOo77Kbg0qS99jRhDeoc0Kdt6jzDnVOqHOPOveoc48696jfZ59eHZ68fC3aHhmiiFK1FiaHuIpNaEKqgqRDJNwmDKFAYqJKWUJYlRVU4zJKQCObVmN8aBWkkBc4VFapfMB2aryZPcZRiUYZaZIcKRt-FiOVyyvIlSpKSAzE--zAqyQr2gLy1MdknvlIwfMMtZiRFjOnxX32vJuydNVTfjd47PWctfTP0boMjeLX0x7-27RH7EZvzY_ZDj488IRdLzbrs4vV09Z0vgGEuH6e |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+star+auxetic+honeycomb+with+enhanced+in-plane+crushing+strength&rft.jtitle=Thin-walled+structures&rft.au=Wei%2C+Lulu&rft.au=Zhao%2C+Xuan&rft.au=Yu%2C+Qiang&rft.au=Zhu%2C+Guohua&rft.date=2020-04-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=149&rft_id=info:doi/10.1016%2Fj.tws.2020.106623&rft.externalDocID=S0263823119315423 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon |