A novel star auxetic honeycomb with enhanced in-plane crushing strength

Auxetic honeycombs exhibit low weight, shear stiffness, and excellent energy absorption capacity and thus have great potential for achieving the requirements of crashworthiness and lightweight in automotive fields. This work presents a novel auxetic structure called the star-triangular honeycomb (ST...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Thin-walled structures Ročník 149; s. 106623
Hlavní autoři: Wei, Lulu, Zhao, Xuan, Yu, Qiang, Zhu, Guohua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2020
Témata:
ISSN:0263-8231, 1879-3223
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Auxetic honeycombs exhibit low weight, shear stiffness, and excellent energy absorption capacity and thus have great potential for achieving the requirements of crashworthiness and lightweight in automotive fields. This work presents a novel auxetic structure called the star-triangular honeycomb (STH), in which the horizontal and vertical ligaments of the star honeycombs (SH) are replaced with triangular structures. The dynamic crushing behaviors of the STH under three different crushing velocities were investigated using 1D shock theory. The results show that the STH has a more obvious negative Poisson's ratio effect than the SH and that transverse contraction mainly occurs in the first plateau stage. Theoretical models were deduced based on the collapse mechanism of the typical unit revealed by numerical simulation for STH crushing strength prediction. The theoretical predictions agreed well with the simulation results, and two different plateau stresses appeared under low-velocity crushing. In addition, the influences of the STH geometric parameters and crushing velocity on the energy-absorbing capacity and densification strain were systematically explored. The parameter analysis indicated that the effects of the cell-wall thickness and incline angle on the dynamic response and energy absorption capacity of the STH under low-and medium-velocity crushing are more significant than those under high-velocity crushing. Moreover, the STH showed better energy absorption capacity than the SH. Thus, this design is expected to provide a novel means of improving the mechanical properties of honeycombs. •A novel auxetic honeycomb is designed by embedding the triangular structure into the star honeycomb.•Theoretical models are deduced to predict the plateau stress of the star-triangular honeycomb.•Two plateau stresses with different levels appear under the low-velocity impact model.
AbstractList Auxetic honeycombs exhibit low weight, shear stiffness, and excellent energy absorption capacity and thus have great potential for achieving the requirements of crashworthiness and lightweight in automotive fields. This work presents a novel auxetic structure called the star-triangular honeycomb (STH), in which the horizontal and vertical ligaments of the star honeycombs (SH) are replaced with triangular structures. The dynamic crushing behaviors of the STH under three different crushing velocities were investigated using 1D shock theory. The results show that the STH has a more obvious negative Poisson's ratio effect than the SH and that transverse contraction mainly occurs in the first plateau stage. Theoretical models were deduced based on the collapse mechanism of the typical unit revealed by numerical simulation for STH crushing strength prediction. The theoretical predictions agreed well with the simulation results, and two different plateau stresses appeared under low-velocity crushing. In addition, the influences of the STH geometric parameters and crushing velocity on the energy-absorbing capacity and densification strain were systematically explored. The parameter analysis indicated that the effects of the cell-wall thickness and incline angle on the dynamic response and energy absorption capacity of the STH under low-and medium-velocity crushing are more significant than those under high-velocity crushing. Moreover, the STH showed better energy absorption capacity than the SH. Thus, this design is expected to provide a novel means of improving the mechanical properties of honeycombs. •A novel auxetic honeycomb is designed by embedding the triangular structure into the star honeycomb.•Theoretical models are deduced to predict the plateau stress of the star-triangular honeycomb.•Two plateau stresses with different levels appear under the low-velocity impact model.
ArticleNumber 106623
Author Wei, Lulu
Yu, Qiang
Zhao, Xuan
Zhu, Guohua
Author_xml – sequence: 1
  givenname: Lulu
  surname: Wei
  fullname: Wei, Lulu
– sequence: 2
  givenname: Xuan
  surname: Zhao
  fullname: Zhao, Xuan
  email: zhaoxuan@chd.edu.cn
– sequence: 3
  givenname: Qiang
  surname: Yu
  fullname: Yu, Qiang
– sequence: 4
  givenname: Guohua
  surname: Zhu
  fullname: Zhu, Guohua
BookMark eNp9kMtOwzAQRS1UJNrCB7DzD6T4kTiJWFUVFKRKbGBtOc64cZU6le229O9xVFYsWI2uNOdq5szQxA0OEHqkZEEJFU-7RTyHBSNszEIwfoOmtCrrjDPGJ2hKmOBZxTi9Q7MQdoTQktb5FK2X2A0n6HGIymN1_IZoNe5S-UUP-wafbewwuE45DS22Ljv0ygHW_hg667YJ8-C2sbtHt0b1AR5-5xx9vb58rt6yzcf6fbXcZJrVZcxUA4UpFFXpSJJXVBREUQqacFG2vAVqWgMmb5mAitRFmUMDJdTQ6LTKTc3nqLz2aj-E4MFIbaOKdnDRK9tLSuToQ-5k8iFHH_LqI5H0D3nwdq_85V_m-cpAeulkwcugLYwqrAcdZTvYf-gfe3Z7tQ
CitedBy_id crossref_primary_10_1080_15376494_2024_2329311
crossref_primary_10_1016_j_mtcomm_2025_112203
crossref_primary_10_1002_pssb_202300231
crossref_primary_10_1080_00405167_2024_2318182
crossref_primary_10_1016_j_compstruct_2024_118267
crossref_primary_10_1002_pen_26620
crossref_primary_10_1016_j_compstruct_2021_114857
crossref_primary_10_1016_j_tws_2020_107366
crossref_primary_10_1016_j_engstruct_2021_113204
crossref_primary_10_3390_ma17071506
crossref_primary_10_1007_s40430_025_05634_6
crossref_primary_10_1016_j_compstruct_2022_115399
crossref_primary_10_1016_j_tws_2024_112569
crossref_primary_10_1080_15376494_2025_2490192
crossref_primary_10_1016_j_compstruct_2021_115154
crossref_primary_10_1080_15376494_2022_2084193
crossref_primary_10_1002_pc_26202
crossref_primary_10_1016_j_mechmat_2024_104975
crossref_primary_10_1016_j_polymertesting_2025_108745
crossref_primary_10_1007_s10999_021_09578_2
crossref_primary_10_1016_j_tws_2024_112287
crossref_primary_10_1016_j_ijmecsci_2021_106475
crossref_primary_10_1016_j_physa_2021_126120
crossref_primary_10_1080_15376494_2025_2457126
crossref_primary_10_1016_j_ijmecsci_2022_107286
crossref_primary_10_1016_j_ijmecsci_2024_109088
crossref_primary_10_1016_j_tws_2022_110140
crossref_primary_10_1080_15376494_2025_2471952
crossref_primary_10_1016_j_tws_2022_109434
crossref_primary_10_1177_13694332221086701
crossref_primary_10_1016_j_compstruct_2024_118835
crossref_primary_10_1002_adem_202201189
crossref_primary_10_1080_15376494_2024_2433092
crossref_primary_10_1007_s00419_022_02303_1
crossref_primary_10_1016_j_mechmat_2024_104980
crossref_primary_10_1088_1361_665X_ac7681
crossref_primary_10_1016_j_eml_2020_101164
crossref_primary_10_1016_j_tws_2024_111988
crossref_primary_10_1063_5_0237967
crossref_primary_10_1016_j_ijmecsci_2021_106405
crossref_primary_10_1016_j_tws_2023_111081
crossref_primary_10_1016_j_tws_2022_110491
crossref_primary_10_1108_RPJ_03_2023_0082
crossref_primary_10_1177_10996362251380663
crossref_primary_10_1088_1361_665X_ad8cb4
crossref_primary_10_1002_adem_202500686
crossref_primary_10_1002_adma_202402130
crossref_primary_10_1016_j_eml_2025_102291
crossref_primary_10_3103_S0025654422050193
crossref_primary_10_1016_j_compstruct_2025_118881
crossref_primary_10_1007_s10853_021_06141_4
crossref_primary_10_1088_1742_6596_1736_1_012026
crossref_primary_10_1016_j_ijmecsci_2021_107029
crossref_primary_10_1016_j_mtcomm_2022_104474
crossref_primary_10_1016_j_euromechsol_2025_105709
crossref_primary_10_1016_j_tws_2024_111856
crossref_primary_10_1088_1742_6596_1736_1_012025
crossref_primary_10_1007_s00339_023_07256_y
crossref_primary_10_1016_j_compstruct_2022_116065
crossref_primary_10_1080_13588265_2024_2423450
crossref_primary_10_3390_jmse11091799
crossref_primary_10_1016_j_tws_2020_106929
crossref_primary_10_1080_15376494_2023_2299220
crossref_primary_10_1016_j_tws_2023_111011
crossref_primary_10_1088_1361_665X_ac9cac
crossref_primary_10_3390_ma15186407
crossref_primary_10_3390_mi14061165
crossref_primary_10_1016_j_compstruct_2025_119284
crossref_primary_10_1016_j_engstruct_2024_118379
crossref_primary_10_1002_adem_202201769
crossref_primary_10_1016_j_compositesb_2025_112415
crossref_primary_10_1016_j_ijsolstr_2020_10_009
crossref_primary_10_1063_5_0076090
crossref_primary_10_1016_j_ast_2021_106797
crossref_primary_10_1016_j_compstruct_2021_113850
crossref_primary_10_1016_j_coco_2024_102018
crossref_primary_10_1016_j_compstruct_2023_117615
crossref_primary_10_1016_j_compstruct_2024_117921
crossref_primary_10_1007_s12008_025_02238_1
crossref_primary_10_1016_j_compstruct_2023_117620
crossref_primary_10_1016_j_mtcomm_2022_103797
crossref_primary_10_1016_j_tws_2023_111303
crossref_primary_10_1080_15376494_2022_2111730
crossref_primary_10_3390_jmmp9050155
crossref_primary_10_1016_j_tws_2025_113520
crossref_primary_10_1007_s10853_025_11072_5
crossref_primary_10_1016_j_tws_2025_113123
crossref_primary_10_1016_j_ijimpeng_2023_104759
crossref_primary_10_1177_07316844221139336
crossref_primary_10_1177_07316844211009599
crossref_primary_10_1016_j_ijmecsci_2022_107492
crossref_primary_10_1007_s12221_023_00455_7
crossref_primary_10_1007_s00170_025_16247_7
crossref_primary_10_1016_j_compositesb_2021_109437
crossref_primary_10_1016_j_compositesb_2021_109393
crossref_primary_10_1115_1_4068033
crossref_primary_10_1016_j_compositesb_2020_108340
crossref_primary_10_1016_j_tws_2021_108530
crossref_primary_10_1016_j_mtcomm_2023_106915
crossref_primary_10_1016_j_tws_2021_107682
crossref_primary_10_1016_j_ijimpeng_2020_103718
crossref_primary_10_1016_j_istruc_2025_108837
crossref_primary_10_1080_15376494_2024_2426777
crossref_primary_10_1016_j_compstruct_2023_116962
crossref_primary_10_1016_j_ijimpeng_2025_105297
crossref_primary_10_1016_j_ijmecsci_2021_106318
crossref_primary_10_1016_j_ijsolstr_2024_113001
crossref_primary_10_1155_2023_6050633
crossref_primary_10_1016_j_ijimpeng_2023_104807
crossref_primary_10_3390_ma16186275
crossref_primary_10_1016_j_compstruct_2022_115591
crossref_primary_10_1016_j_compstruct_2023_117493
crossref_primary_10_1016_j_ijmecsci_2022_107643
crossref_primary_10_1016_j_mtcomm_2024_110348
crossref_primary_10_1016_j_ijmecsci_2021_106793
crossref_primary_10_1088_2631_6331_ade759
crossref_primary_10_1007_s10338_023_00446_4
crossref_primary_10_1016_j_compstruct_2025_119268
crossref_primary_10_1080_2374068X_2024_2389752
crossref_primary_10_1002_pssb_202400295
crossref_primary_10_1016_j_tws_2022_110209
crossref_primary_10_1016_j_compositesb_2025_112957
crossref_primary_10_1002_admt_202500895
crossref_primary_10_1016_j_jallcom_2020_155425
crossref_primary_10_1016_j_compstruct_2023_116951
crossref_primary_10_1016_j_tws_2025_113746
crossref_primary_10_1016_j_tws_2024_112630
crossref_primary_10_3390_aerospace10050390
crossref_primary_10_1016_j_compstruct_2022_115484
crossref_primary_10_1016_j_ijmecsci_2021_106723
crossref_primary_10_3390_jmse11122261
crossref_primary_10_1080_15376494_2022_2059600
crossref_primary_10_1080_15376494_2024_2352036
crossref_primary_10_1016_j_engstruct_2025_120565
crossref_primary_10_1016_j_ijmecsci_2025_110404
crossref_primary_10_1016_j_ast_2024_109730
crossref_primary_10_1016_j_engstruct_2025_119731
crossref_primary_10_1016_j_compstruct_2024_118001
crossref_primary_10_1002_pssb_202400342
crossref_primary_10_1016_j_mtcomm_2023_105729
crossref_primary_10_1038_s41598_023_47525_7
crossref_primary_10_3390_met14101165
crossref_primary_10_1016_j_engstruct_2023_115729
crossref_primary_10_3390_polym17121717
crossref_primary_10_1155_2022_1411885
crossref_primary_10_1016_j_mtcomm_2023_106259
crossref_primary_10_1016_j_tws_2024_112348
crossref_primary_10_1088_1361_665X_adf78a
crossref_primary_10_1016_j_compstruct_2021_114366
crossref_primary_10_1088_2053_1591_ac77dd
crossref_primary_10_1016_j_compstruct_2023_116982
crossref_primary_10_1016_j_engstruct_2022_115377
crossref_primary_10_1002_pc_26022
crossref_primary_10_1016_j_engstruct_2022_114682
crossref_primary_10_1007_s00707_025_04319_4
crossref_primary_10_1016_j_rineng_2025_106137
crossref_primary_10_1016_j_matdes_2024_112963
crossref_primary_10_1080_15397734_2025_2450519
crossref_primary_10_1016_j_matdes_2025_114465
crossref_primary_10_1016_j_ijmecsci_2024_109100
crossref_primary_10_1080_15376494_2025_2508351
crossref_primary_10_3390_aerospace11110881
crossref_primary_10_1016_j_engstruct_2024_117482
crossref_primary_10_1016_j_ijmecsci_2022_108075
crossref_primary_10_1016_j_addma_2023_103525
crossref_primary_10_1016_j_engstruct_2025_121000
crossref_primary_10_1088_2053_1591_ac9d83
crossref_primary_10_1080_15376494_2025_2550017
crossref_primary_10_1002_eng2_12436
crossref_primary_10_1016_j_tws_2020_107390
crossref_primary_10_1080_15376494_2023_2204082
crossref_primary_10_1002_pen_27294
crossref_primary_10_1016_j_compstruct_2022_116397
crossref_primary_10_1016_j_euromechsol_2022_104847
crossref_primary_10_1002_adem_202301943
crossref_primary_10_1016_j_ijimpeng_2025_105285
crossref_primary_10_1016_j_oceaneng_2025_122772
crossref_primary_10_1016_j_ijmecsci_2023_108767
crossref_primary_10_1088_1361_665X_add8d3
crossref_primary_10_1016_j_ijimpeng_2025_105447
crossref_primary_10_1016_j_tws_2020_106739
crossref_primary_10_1016_j_engstruct_2024_119260
Cites_doi 10.1016/j.ijimpeng.2007.11.008
10.1016/j.matdes.2018.11.013
10.1016/j.compstruct.2018.10.024
10.1016/j.compstruct.2017.02.034
10.1016/S0020-7403(02)00060-7
10.1016/j.ijimpeng.2019.04.019
10.1115/1.4030007
10.1016/j.ijimpeng.2015.04.005
10.1016/j.ijengsci.2012.01.010
10.1016/j.tws.2018.04.020
10.1126/science.235.4792.1038
10.1088/0964-1726/13/1/006
10.1016/j.pmatsci.2015.05.001
10.1016/j.compstruct.2016.10.090
10.1038/353124a0
10.1007/s10853-017-1809-8
10.1016/j.compstruct.2019.110920
10.1016/j.compstruct.2017.05.027
10.1016/j.matdes.2018.09.041
10.3390/ma11071095
10.1177/1099636214554180
10.1016/j.compositesb.2017.01.048
10.1016/S0263-8223(96)00054-2
10.1016/j.matdes.2016.03.023
10.1007/s004190050117
10.1016/j.commatsci.2012.02.012
10.1046/j.1460-2695.2000.00278.x
10.1016/j.ijsolstr.2015.11.015
10.1016/j.ijimpeng.2020.103509
10.1243/0309324001514152
10.1002/pssb.201083977
10.1016/j.jmps.2005.05.003
10.1007/BF02403846
10.1016/j.matdes.2016.03.086
10.1016/j.ijimpeng.2009.12.001
10.1016/j.ijimpeng.2008.03.001
10.1115/1.2806807
10.1002/adma.201601363
10.1016/j.matdes.2017.11.024
10.1016/S0734-743X(99)00036-6
10.1016/j.ijsolstr.2018.06.028
10.1016/j.compstruct.2017.09.001
10.1016/j.ijmecsci.2018.12.009
10.1016/j.matdes.2016.12.067
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tws.2020.106623
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3223
ExternalDocumentID 10_1016_j_tws_2020_106623
S0263823119315423
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-abe5f5a1a1060481650a11ec0367d3de1fdfef4d26e809574ebe7e9ebc1653f93
ISICitedReferencesCount 211
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530705200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-8231
IngestDate Sat Nov 29 07:18:39 EST 2025
Tue Nov 18 22:13:46 EST 2025
Fri Feb 23 02:47:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Densification strain
Crushing strength
Negative Poisson's ratio
Auxetic honeycomb
Deformation model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-abe5f5a1a1060481650a11ec0367d3de1fdfef4d26e809574ebe7e9ebc1653f93
ParticipantIDs crossref_citationtrail_10_1016_j_tws_2020_106623
crossref_primary_10_1016_j_tws_2020_106623
elsevier_sciencedirect_doi_10_1016_j_tws_2020_106623
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Thin-walled structures
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hu, Yu (bib48) 2010; 37
Elipe, Lantada (bib18) 2012; 21
Zhu, Sun, Li (bib43) 2018; 184
Qiao, Chen (bib26) 2015; 83
Fu, Chen, Hu (bib36) 2017
Liu, Zhang (bib32) 2009; 36
Sun, Lai, Fan (bib33) 2016; 100
Masters, Evans (bib20) 1996; 35
Hu, Zhou, Deng (bib29) 2018; 131
Zou, Reid, Tan (bib47) 2009; 36
Chen, Wang, Zhou (bib35) 2018; 11
Lakes (bib13) 1987; 235
Zhang, Yang, Li (bib1) 2015; 74
Zhao, Zhu, Zhou (bib2) 2019; 222
Wang, Lu, Yang (bib39) 2019; 151
Hönig, Stronge (bib24) 2002; 44
Wang, Lu, Yang (bib40) 2019; 208
Scarpa, Panayiotou, Tomlinson (bib19) 2000; 35
Yang, Chalivendra, Kim (bib11) 2017; 168
Zhu, Liao, Sun (bib51) 2020
Zhu, Yu, Zhao (bib44) 2019
Fu, Zheng, Li (bib17) 2017; 176
Choi, Lakes (bib4) 1992; 27
Chen, Lakes (bib8) 1996; 118
Huang, Chen (bib3) 2016
Wang, Jin, Li (bib50) 2019
Gao, Wang, Zhou (bib22) 2018; 139
Prawoto (bib34) 2012; 58
Jiang, Ren, Jin (bib41) 2019
Lu, Yu (bib42) 2003
Tan, Reid, Harrigan (bib46) 2005; 53
Gao, Ge, Zhuang (bib23) 2019; 161
Evans, Nkansah, Hutchinson (bib12) 1991; 353
Gu, Pavier, Shterenlikht (bib31) 2018; 152
Ingrole, Hao, Liang (bib49) 2017; 117
Zhang, An, Ding (bib28) 2015; 17
Qi, Jiang, Yu (bib30) 2019; 130
Theocaris, Stavroulakis, Panagiotopoulos (bib21) 1997; 67
Li, Yin, Dong (bib38) 2018; 53
Scarpa, Tomlin (bib5) 2000; 23
Zhang, Deng, Xu (bib16) 2017; 114
Coenen, Alderson (bib7) 2011; 248
Fu, Xu, Hu (bib15) 2016; 80
Zhao, Gao, Wang (bib25) 2018; 160
Scarpa, Ciffo, Yates (bib9) 2003; 13
Santosa, Wierzbicki, Hanssen (bib45) 2000; 24
Gibson, Ashby (bib14) 1999
Liu, Wang, Luo (bib10) 2016; 100
Qiao, Chen (bib27) 2015; 82
Argatov, Guinovart-Díaz, Sabina (bib6) 2012; 54
Fu, Chen, Hu (bib37) 2017; 160
Qi (10.1016/j.tws.2020.106623_bib30) 2019; 130
Zhao (10.1016/j.tws.2020.106623_bib25) 2018; 160
Zhang (10.1016/j.tws.2020.106623_bib28) 2015; 17
Qiao (10.1016/j.tws.2020.106623_bib26) 2015; 83
Evans (10.1016/j.tws.2020.106623_bib12) 1991; 353
Wang (10.1016/j.tws.2020.106623_bib50) 2019
Zhang (10.1016/j.tws.2020.106623_bib1) 2015; 74
Jiang (10.1016/j.tws.2020.106623_bib41) 2019
Tan (10.1016/j.tws.2020.106623_bib46) 2005; 53
Gu (10.1016/j.tws.2020.106623_bib31) 2018; 152
Theocaris (10.1016/j.tws.2020.106623_bib21) 1997; 67
Lu (10.1016/j.tws.2020.106623_bib42) 2003
Wang (10.1016/j.tws.2020.106623_bib40) 2019; 208
Fu (10.1016/j.tws.2020.106623_bib36) 2017
Masters (10.1016/j.tws.2020.106623_bib20) 1996; 35
Wang (10.1016/j.tws.2020.106623_bib39) 2019; 151
Zhang (10.1016/j.tws.2020.106623_bib16) 2017; 114
Fu (10.1016/j.tws.2020.106623_bib15) 2016; 80
Scarpa (10.1016/j.tws.2020.106623_bib19) 2000; 35
Hu (10.1016/j.tws.2020.106623_bib48) 2010; 37
Fu (10.1016/j.tws.2020.106623_bib37) 2017; 160
Choi (10.1016/j.tws.2020.106623_bib4) 1992; 27
Scarpa (10.1016/j.tws.2020.106623_bib5) 2000; 23
Fu (10.1016/j.tws.2020.106623_bib17) 2017; 176
Zou (10.1016/j.tws.2020.106623_bib47) 2009; 36
Santosa (10.1016/j.tws.2020.106623_bib45) 2000; 24
Gibson (10.1016/j.tws.2020.106623_bib14) 1999
Lakes (10.1016/j.tws.2020.106623_bib13) 1987; 235
Zhu (10.1016/j.tws.2020.106623_bib44) 2019
Sun (10.1016/j.tws.2020.106623_bib33) 2016; 100
Huang (10.1016/j.tws.2020.106623_bib3) 2016
Li (10.1016/j.tws.2020.106623_bib38) 2018; 53
Zhu (10.1016/j.tws.2020.106623_bib43) 2018; 184
Chen (10.1016/j.tws.2020.106623_bib35) 2018; 11
Gao (10.1016/j.tws.2020.106623_bib23) 2019; 161
Chen (10.1016/j.tws.2020.106623_bib8) 1996; 118
Liu (10.1016/j.tws.2020.106623_bib10) 2016; 100
Qiao (10.1016/j.tws.2020.106623_bib27) 2015; 82
Scarpa (10.1016/j.tws.2020.106623_bib9) 2003; 13
Argatov (10.1016/j.tws.2020.106623_bib6) 2012; 54
Yang (10.1016/j.tws.2020.106623_bib11) 2017; 168
Gao (10.1016/j.tws.2020.106623_bib22) 2018; 139
Zhao (10.1016/j.tws.2020.106623_bib2) 2019; 222
Elipe (10.1016/j.tws.2020.106623_bib18) 2012; 21
Liu (10.1016/j.tws.2020.106623_bib32) 2009; 36
Hönig (10.1016/j.tws.2020.106623_bib24) 2002; 44
Zhu (10.1016/j.tws.2020.106623_bib51) 2020
Hu (10.1016/j.tws.2020.106623_bib29) 2018; 131
Ingrole (10.1016/j.tws.2020.106623_bib49) 2017; 117
Coenen (10.1016/j.tws.2020.106623_bib7) 2011; 248
Prawoto (10.1016/j.tws.2020.106623_bib34) 2012; 58
References_xml – volume: 248
  start-page: 66
  year: 2011
  end-page: 72
  ident: bib7
  article-title: Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates
  publication-title: Phys. Status Solidi
– volume: 208
  start-page: 758
  year: 2019
  end-page: 770
  ident: bib40
  article-title: A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance
  publication-title: Compos. Struct.
– volume: 74
  start-page: 332
  year: 2015
  end-page: 400
  ident: bib1
  article-title: Bioinspired engineering of honeycomb structure – using nature to inspire human innovation
  publication-title: Prog. Mater. Sci.
– volume: 100
  start-page: 280
  year: 2016
  end-page: 290
  ident: bib33
  article-title: In-plane compression and behavior and energy absorption of hierarchical triangular lattice structures[J]
  publication-title: Mater. Des.
– volume: 24
  start-page: 509
  year: 2000
  end-page: 534
  ident: bib45
  article-title: Experimental and numerical studies of foam-filled sections[J]
  publication-title: Int. J. Impact Eng.
– volume: 54
  start-page: 42
  year: 2012
  end-page: 57
  ident: bib6
  article-title: On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint
  publication-title: Int. J. Eng. Sci.
– volume: 44
  start-page: 1665
  year: 2002
  end-page: 1696
  ident: bib24
  article-title: In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping[J]
  publication-title: Int. J. Mech. Sci.
– volume: 130
  start-page: 247
  year: 2019
  end-page: 265
  ident: bib30
  article-title: In-plane crushing response of tetra-chiral honeycombs
  publication-title: Int. J. Impact Eng.
– volume: 83
  start-page: 47
  year: 2015
  end-page: 58
  ident: bib26
  article-title: Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs
  publication-title: Int. J. Impact Eng.
– volume: 36
  start-page: 165
  year: 2009
  end-page: 176
  ident: bib47
  article-title: Dynamic crushing of honeycombs and features of shock fronts
  publication-title: Int. J. Impact Eng.
– year: 2017
  ident: bib36
  article-title: Bilinear Elastic Characteristic of Enhanced Auxetic honeycombs[J]
– volume: 161
  start-page: 22
  year: 2019
  end-page: 34
  ident: bib23
  article-title: Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading
  publication-title: Mater. Des.
– volume: 160
  start-page: 527
  year: 2018
  end-page: 537
  ident: bib25
  article-title: Dynamic crushing of double-arrowed auxetic structure under impact loading
  publication-title: Mater. Des.
– volume: 152
  start-page: 207
  year: 2018
  end-page: 216
  ident: bib31
  article-title: Experimental study of modulus, strength and toughness of 2D triangular lattices[J]
  publication-title: International Journal of Solids and Structures
– volume: 13
  start-page: 49
  year: 2003
  ident: bib9
  article-title: Dynamic properties of high structural integrity auxetic open cell foam
  publication-title: Smart Mater. Struct.
– volume: 37
  start-page: 467
  year: 2010
  end-page: 474
  ident: bib48
  article-title: Dynamic crushing strength of hexagonal honeycombs
  publication-title: Int. J. Impact Eng.
– year: 2019
  ident: bib50
  article-title: On crashworthiness design of hybrid metal-composite structures[J]
  publication-title: Int. J. Mech. Sci.
– volume: 117
  start-page: 72
  year: 2017
  end-page: 83
  ident: bib49
  article-title: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement[J]
  publication-title: Mater. Des.
– volume: 131
  start-page: 373
  year: 2018
  end-page: 384
  ident: bib29
  article-title: Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation
  publication-title: Thin-Walled Struct.
– volume: 53
  start-page: 3493
  year: 2018
  end-page: 3499
  ident: bib38
  article-title: Strong re-entrant cellular structures with negative Poisson's ratio
  publication-title: J. Mater. Sci.
– year: 2016
  ident: bib3
  article-title: Negative Poisson\s ratio in modern functional materials
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1095
  year: 2018
  ident: bib35
  article-title: Novel negative Poisson's ratio lattice structures with enhanced stiffness and energy absorption capacity
  publication-title: Materials
– volume: 176
  start-page: 442
  year: 2017
  end-page: 448
  ident: bib17
  article-title: A novel chiral three-dimensional material with negative Poisson's ratio and the equivalent elastic parameters
  publication-title: Compos. Struct.
– year: 1999
  ident: bib14
  article-title: Cellular Solids: Structure and Properties
– volume: 80
  start-page: 284
  year: 2016
  end-page: 296
  ident: bib15
  article-title: Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation
  publication-title: Int. J. Solid Struct.
– volume: 23
  start-page: 717
  year: 2000
  end-page: 720
  ident: bib5
  article-title: On the transverse shear modulus of negative Poisson's ratio honeycomb structures
  publication-title: Fatig. Fract. Eng. Mater. Struct.
– volume: 353
  year: 1991
  ident: bib12
  article-title: Molecular network design
  publication-title: Nature
– volume: 151
  start-page: 746
  year: 2019
  end-page: 759
  ident: bib39
  article-title: In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions
  publication-title: Int. J. Mech. Sci.
– volume: 168
  start-page: 120
  year: 2017
  end-page: 129
  ident: bib11
  article-title: Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites
  publication-title: Compos. Struct.
– volume: 35
  start-page: 403
  year: 1996
  end-page: 422
  ident: bib20
  article-title: Models for the elastic deformation of honeycombs[J]
  publication-title: Compos. Struct.
– volume: 36
  start-page: 98
  year: 2009
  end-page: 109
  ident: bib32
  article-title: The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J]
  publication-title: Int. J. Impact Eng.
– year: 2019
  ident: bib41
  article-title: Flexural performances of fiber face-sheets/corrugated core sandwich composite structures reinforced by horizontal stiffeners[J]
  publication-title: Int. J. Mech. Sci.
– year: 2003
  ident: bib42
  article-title: Energy Absorption of Structures and Materials
– volume: 67
  start-page: 274
  year: 1997
  end-page: 286
  ident: bib21
  article-title: Negative Poisson\s ratios in composites with star-shaped inclusions: a numerical homogenization approach
  publication-title: J. Arch. Appl. Mech.
– volume: 21
  year: 2012
  ident: bib18
  article-title: Comparative study of auxetic geometries by means of computer-aided design and engineering
  publication-title: Smart Mater. Struct.
– volume: 235
  start-page: 1038
  year: 1987
  end-page: 1041
  ident: bib13
  article-title: Foam structures with a negative Poisson's ratio
  publication-title: Science
– volume: 35
  start-page: 383
  year: 2000
  end-page: 388
  ident: bib19
  article-title: Numerical and experimental uniaxial loading on in-plane auxetic honeycombs[J]
  publication-title: J. Strain Anal. Eng. Des.
– volume: 82
  year: 2015
  ident: bib27
  article-title: Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs
  publication-title: J. Appl. Mech.
– volume: 184
  start-page: 41
  year: 2018
  end-page: 55
  ident: bib43
  article-title: Modeling for CFRP structures subjected to quasi-static crushing[J]
  publication-title: Compos. Struct.
– year: 2019
  ident: bib44
  article-title: Energy-absorbing mechanisms and crashworthiness design of CFRP multi-cell structures[J]
– volume: 100
  start-page: 84
  year: 2016
  end-page: 91
  ident: bib10
  article-title: In-plane dynamic crushing of re-entrant auxetic cellular structure
  publication-title: Mater. Des.
– volume: 118
  start-page: 285
  year: 1996
  end-page: 288
  ident: bib8
  article-title: Micromechanical analysis of dynamic behavior of conventional and negative Poisson's ratio foams
  publication-title: J. Eng. Mater. Technol.
– volume: 53
  start-page: 2206
  year: 2005
  end-page: 2230
  ident: bib46
  article-title: Dynamic compressive strength properties of aluminium foams. Part II—'shock’ theory and comparison with experimental data and numerical models
  publication-title: J. Mech. Phys. Solid.
– year: 2020
  ident: bib51
  article-title: Comparative study on metal/CFRP hybrid structures under static and dynamic loading[J]
  publication-title: Int. J. Impact Eng.
– volume: 58
  start-page: 140
  year: 2012
  end-page: 153
  ident: bib34
  article-title: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson's ratio
  publication-title: Comput. Mater. Sci.
– volume: 27
  year: 1992
  ident: bib4
  article-title: Non-linear properties of metallic cellular materials with a negative Poisson's ratio
  publication-title: J. Mater. Sci.
– volume: 114
  start-page: 80
  year: 2017
  end-page: 92
  ident: bib16
  article-title: Homogenization of hexagonal and re-entrant hexagonal structures and wave propagation of the sandwich plates with symplectic analysis
  publication-title: Compos. B Eng.
– volume: 139
  start-page: 380
  year: 2018
  end-page: 391
  ident: bib22
  article-title: Theoretical, numerical and experimental analysis of three-dimensional double-V honeycomb
  publication-title: Mater. Des.
– volume: 160
  start-page: 574
  year: 2017
  end-page: 585
  ident: bib37
  article-title: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength
  publication-title: Compos. Struct.
– volume: 222
  year: 2019
  ident: bib2
  article-title: Crashworthiness analysis and design of composite tapered tubes under multiple load cases[J]
  publication-title: Compos. Struct.
– volume: 17
  start-page: 26
  year: 2015
  end-page: 55
  ident: bib28
  article-title: The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio
  publication-title: J. Sandw. Struct. Mater.
– volume: 36
  start-page: 165
  issue: 1
  year: 2009
  ident: 10.1016/j.tws.2020.106623_bib47
  article-title: Dynamic crushing of honeycombs and features of shock fronts
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2007.11.008
– volume: 161
  start-page: 22
  year: 2019
  ident: 10.1016/j.tws.2020.106623_bib23
  article-title: Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.11.013
– volume: 208
  start-page: 758
  year: 2019
  ident: 10.1016/j.tws.2020.106623_bib40
  article-title: A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.10.024
– volume: 168
  start-page: 120
  year: 2017
  ident: 10.1016/j.tws.2020.106623_bib11
  article-title: Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.02.034
– volume: 44
  start-page: 1665
  issue: 8
  year: 2002
  ident: 10.1016/j.tws.2020.106623_bib24
  article-title: In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping[J]
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/S0020-7403(02)00060-7
– volume: 130
  start-page: 247
  year: 2019
  ident: 10.1016/j.tws.2020.106623_bib30
  article-title: In-plane crushing response of tetra-chiral honeycombs
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2019.04.019
– volume: 82
  issue: 5
  year: 2015
  ident: 10.1016/j.tws.2020.106623_bib27
  article-title: Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4030007
– year: 1999
  ident: 10.1016/j.tws.2020.106623_bib14
– volume: 83
  start-page: 47
  year: 2015
  ident: 10.1016/j.tws.2020.106623_bib26
  article-title: Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2015.04.005
– volume: 54
  start-page: 42
  year: 2012
  ident: 10.1016/j.tws.2020.106623_bib6
  article-title: On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2012.01.010
– volume: 131
  start-page: 373
  year: 2018
  ident: 10.1016/j.tws.2020.106623_bib29
  article-title: Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2018.04.020
– volume: 235
  start-page: 1038
  year: 1987
  ident: 10.1016/j.tws.2020.106623_bib13
  article-title: Foam structures with a negative Poisson's ratio
  publication-title: Science
  doi: 10.1126/science.235.4792.1038
– volume: 21
  issue: 10
  year: 2012
  ident: 10.1016/j.tws.2020.106623_bib18
  article-title: Comparative study of auxetic geometries by means of computer-aided design and engineering
  publication-title: Smart Mater. Struct.
– volume: 13
  start-page: 49
  issue: 1
  year: 2003
  ident: 10.1016/j.tws.2020.106623_bib9
  article-title: Dynamic properties of high structural integrity auxetic open cell foam
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/13/1/006
– volume: 74
  start-page: 332
  year: 2015
  ident: 10.1016/j.tws.2020.106623_bib1
  article-title: Bioinspired engineering of honeycomb structure – using nature to inspire human innovation
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2015.05.001
– volume: 160
  start-page: 574
  year: 2017
  ident: 10.1016/j.tws.2020.106623_bib37
  article-title: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.10.090
– volume: 353
  issue: 6340
  year: 1991
  ident: 10.1016/j.tws.2020.106623_bib12
  article-title: Molecular network design
  publication-title: Nature
  doi: 10.1038/353124a0
– volume: 53
  start-page: 3493
  issue: 5
  year: 2018
  ident: 10.1016/j.tws.2020.106623_bib38
  article-title: Strong re-entrant cellular structures with negative Poisson's ratio
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1809-8
– volume: 222
  year: 2019
  ident: 10.1016/j.tws.2020.106623_bib2
  article-title: Crashworthiness analysis and design of composite tapered tubes under multiple load cases[J]
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.110920
– volume: 176
  start-page: 442
  year: 2017
  ident: 10.1016/j.tws.2020.106623_bib17
  article-title: A novel chiral three-dimensional material with negative Poisson's ratio and the equivalent elastic parameters
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.05.027
– volume: 160
  start-page: 527
  year: 2018
  ident: 10.1016/j.tws.2020.106623_bib25
  article-title: Dynamic crushing of double-arrowed auxetic structure under impact loading
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.09.041
– year: 2003
  ident: 10.1016/j.tws.2020.106623_bib42
– volume: 11
  start-page: 1095
  issue: 7
  year: 2018
  ident: 10.1016/j.tws.2020.106623_bib35
  article-title: Novel negative Poisson's ratio lattice structures with enhanced stiffness and energy absorption capacity
  publication-title: Materials
  doi: 10.3390/ma11071095
– volume: 17
  start-page: 26
  issue: 1
  year: 2015
  ident: 10.1016/j.tws.2020.106623_bib28
  article-title: The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio
  publication-title: J. Sandw. Struct. Mater.
  doi: 10.1177/1099636214554180
– year: 2019
  ident: 10.1016/j.tws.2020.106623_bib50
  article-title: On crashworthiness design of hybrid metal-composite structures[J]
  publication-title: Int. J. Mech. Sci.
– volume: 114
  start-page: 80
  year: 2017
  ident: 10.1016/j.tws.2020.106623_bib16
  article-title: Homogenization of hexagonal and re-entrant hexagonal structures and wave propagation of the sandwich plates with symplectic analysis
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2017.01.048
– volume: 35
  start-page: 403
  issue: 4
  year: 1996
  ident: 10.1016/j.tws.2020.106623_bib20
  article-title: Models for the elastic deformation of honeycombs[J]
  publication-title: Compos. Struct.
  doi: 10.1016/S0263-8223(96)00054-2
– volume: 100
  start-page: 280
  year: 2016
  ident: 10.1016/j.tws.2020.106623_bib33
  article-title: In-plane compression and behavior and energy absorption of hierarchical triangular lattice structures[J]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.03.023
– volume: 67
  start-page: 274
  issue: 4
  year: 1997
  ident: 10.1016/j.tws.2020.106623_bib21
  article-title: Negative Poisson\s ratios in composites with star-shaped inclusions: a numerical homogenization approach
  publication-title: J. Arch. Appl. Mech.
  doi: 10.1007/s004190050117
– volume: 58
  start-page: 140
  year: 2012
  ident: 10.1016/j.tws.2020.106623_bib34
  article-title: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson's ratio
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.02.012
– volume: 23
  start-page: 717
  issue: 8
  year: 2000
  ident: 10.1016/j.tws.2020.106623_bib5
  article-title: On the transverse shear modulus of negative Poisson's ratio honeycomb structures
  publication-title: Fatig. Fract. Eng. Mater. Struct.
  doi: 10.1046/j.1460-2695.2000.00278.x
– volume: 80
  start-page: 284
  year: 2016
  ident: 10.1016/j.tws.2020.106623_bib15
  article-title: Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation
  publication-title: Int. J. Solid Struct.
  doi: 10.1016/j.ijsolstr.2015.11.015
– year: 2020
  ident: 10.1016/j.tws.2020.106623_bib51
  article-title: Comparative study on metal/CFRP hybrid structures under static and dynamic loading[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2020.103509
– year: 2019
  ident: 10.1016/j.tws.2020.106623_bib44
– volume: 35
  start-page: 383
  issue: 5
  year: 2000
  ident: 10.1016/j.tws.2020.106623_bib19
  article-title: Numerical and experimental uniaxial loading on in-plane auxetic honeycombs[J]
  publication-title: J. Strain Anal. Eng. Des.
  doi: 10.1243/0309324001514152
– volume: 248
  start-page: 66
  issue: 1
  year: 2011
  ident: 10.1016/j.tws.2020.106623_bib7
  article-title: Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssb.201083977
– year: 2017
  ident: 10.1016/j.tws.2020.106623_bib36
– volume: 53
  start-page: 2206
  issue: 10
  year: 2005
  ident: 10.1016/j.tws.2020.106623_bib46
  article-title: Dynamic compressive strength properties of aluminium foams. Part II—'shock’ theory and comparison with experimental data and numerical models
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2005.05.003
– volume: 27
  issue: 19
  year: 1992
  ident: 10.1016/j.tws.2020.106623_bib4
  article-title: Non-linear properties of metallic cellular materials with a negative Poisson's ratio
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF02403846
– volume: 100
  start-page: 84
  year: 2016
  ident: 10.1016/j.tws.2020.106623_bib10
  article-title: In-plane dynamic crushing of re-entrant auxetic cellular structure
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.03.086
– volume: 37
  start-page: 467
  issue: 5
  year: 2010
  ident: 10.1016/j.tws.2020.106623_bib48
  article-title: Dynamic crushing strength of hexagonal honeycombs
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2009.12.001
– volume: 36
  start-page: 98
  issue: 1
  year: 2009
  ident: 10.1016/j.tws.2020.106623_bib32
  article-title: The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2008.03.001
– year: 2019
  ident: 10.1016/j.tws.2020.106623_bib41
  article-title: Flexural performances of fiber face-sheets/corrugated core sandwich composite structures reinforced by horizontal stiffeners[J]
  publication-title: Int. J. Mech. Sci.
– volume: 118
  start-page: 285
  issue: 3
  year: 1996
  ident: 10.1016/j.tws.2020.106623_bib8
  article-title: Micromechanical analysis of dynamic behavior of conventional and negative Poisson's ratio foams
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.2806807
– year: 2016
  ident: 10.1016/j.tws.2020.106623_bib3
  article-title: Negative Poisson\s ratio in modern functional materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601363
– volume: 139
  start-page: 380
  year: 2018
  ident: 10.1016/j.tws.2020.106623_bib22
  article-title: Theoretical, numerical and experimental analysis of three-dimensional double-V honeycomb
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.024
– volume: 24
  start-page: 509
  issue: 5
  year: 2000
  ident: 10.1016/j.tws.2020.106623_bib45
  article-title: Experimental and numerical studies of foam-filled sections[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/S0734-743X(99)00036-6
– volume: 152
  start-page: 207
  year: 2018
  ident: 10.1016/j.tws.2020.106623_bib31
  article-title: Experimental study of modulus, strength and toughness of 2D triangular lattices[J]
  publication-title: International Journal of Solids and Structures
  doi: 10.1016/j.ijsolstr.2018.06.028
– volume: 184
  start-page: 41
  year: 2018
  ident: 10.1016/j.tws.2020.106623_bib43
  article-title: Modeling for CFRP structures subjected to quasi-static crushing[J]
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.09.001
– volume: 151
  start-page: 746
  year: 2019
  ident: 10.1016/j.tws.2020.106623_bib39
  article-title: In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2018.12.009
– volume: 117
  start-page: 72
  year: 2017
  ident: 10.1016/j.tws.2020.106623_bib49
  article-title: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement[J]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.12.067
SSID ssj0017194
Score 2.6265438
Snippet Auxetic honeycombs exhibit low weight, shear stiffness, and excellent energy absorption capacity and thus have great potential for achieving the requirements...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106623
SubjectTerms Auxetic honeycomb
Crushing strength
Deformation model
Densification strain
Negative Poisson's ratio
Title A novel star auxetic honeycomb with enhanced in-plane crushing strength
URI https://dx.doi.org/10.1016/j.tws.2020.106623
Volume 149
WOSCitedRecordID wos000530705200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE-1vOQDJyKjJt7EznGFSnlIFYgillPkJJNuq1V2tV1vl3_PTBwnKS8BEpdoNbLX0XwT58t4How90yauICoqobUxYoyvKKGR5YpIxjgeNMiwbJpNqONjPZ2m70ejdz4XZjNXda2323T5X6FGGYJNqbN_AXf3pyjA3wg6XhF2vP4R8JOgXmyAskDMKjB2S1mKwWxRw1dcLXeOV6hn7uT_rBZLCncNipV1zihKHqlP17Mha6XmnuKSuq6UgSs4a1d97OFncBnWdm4HbujGBTu1vfF9sST5gOZ42g9rZEd2MbNm6H-IDgZhK41TzCfG9FFIF009VynohNG9ZtzeqlUqcP-QVzZfV7D0h43c-RTOX6wvqaZ6RJIkaaderY_9kdaipZCKIh-M5DW2G6k4xS1ud_LmcPq2O1RSYdMXs7s3f8jdhPt9t9DPacqAepzcZrfabwY-cVjfYSOo77Kbg0qS99jRhDeoc0Kdt6jzDnVOqHOPOveoc48696jfZ59eHZ68fC3aHhmiiFK1FiaHuIpNaEKqgqRDJNwmDKFAYqJKWUJYlRVU4zJKQCObVmN8aBWkkBc4VFapfMB2aryZPcZRiUYZaZIcKRt-FiOVyyvIlSpKSAzE--zAqyQr2gLy1MdknvlIwfMMtZiRFjOnxX32vJuydNVTfjd47PWctfTP0boMjeLX0x7-27RH7EZvzY_ZDj488IRdLzbrs4vV09Z0vgGEuH6e
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+star+auxetic+honeycomb+with+enhanced+in-plane+crushing+strength&rft.jtitle=Thin-walled+structures&rft.au=Wei%2C+Lulu&rft.au=Zhao%2C+Xuan&rft.au=Yu%2C+Qiang&rft.au=Zhu%2C+Guohua&rft.date=2020-04-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=149&rft_id=info:doi/10.1016%2Fj.tws.2020.106623&rft.externalDocID=S0263823119315423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon