Multi-objective evolutionary algorithm based on RBF network for solving the stochastic vehicle routing problem

Solving the multi-objective vehicle routing problem with stochastic demand (MO-VRPSD) is challenging due to its non-deterministic property and conflicting objectives. Most multi-objective evolutionary algorithm dealing with this problem update current population without any guidance from previous se...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 609; s. 387 - 410
Hlavní autoři: Niu, Yunyun, Shao, Jie, Xiao, Jianhua, Song, Wen, Cao, Zhiguang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.09.2022
Témata:
ISSN:0020-0255
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Solving the multi-objective vehicle routing problem with stochastic demand (MO-VRPSD) is challenging due to its non-deterministic property and conflicting objectives. Most multi-objective evolutionary algorithm dealing with this problem update current population without any guidance from previous searching experience. In this paper, a multi-objective evolutionary algorithm based on artificial neural networks is proposed to tackle the MO-VRPSD. Particularly, during the evolutionary process, a radial basis function network (RBFN) is exploited to learn the potential knowledge of individuals, generate hypothesis and instantiate hypothesis. The RBFN evaluates individuals with different scores and generates new individuals with higher quality while taking into account the non-dominated relationship between individuals. Moreover, integrated with a specific non-dominated sorting strategy, i.e., ENS-SS, along with several effective heuristic operations, the proposed algorithm performs favorably for solving the MO-VRPSD. The experimental results based on the modified Solomon benchmark instances verified the effectiveness of the respective components, and the superiority to other multi-objective evolutionary algorithms.
AbstractList Solving the multi-objective vehicle routing problem with stochastic demand (MO-VRPSD) is challenging due to its non-deterministic property and conflicting objectives. Most multi-objective evolutionary algorithm dealing with this problem update current population without any guidance from previous searching experience. In this paper, a multi-objective evolutionary algorithm based on artificial neural networks is proposed to tackle the MO-VRPSD. Particularly, during the evolutionary process, a radial basis function network (RBFN) is exploited to learn the potential knowledge of individuals, generate hypothesis and instantiate hypothesis. The RBFN evaluates individuals with different scores and generates new individuals with higher quality while taking into account the non-dominated relationship between individuals. Moreover, integrated with a specific non-dominated sorting strategy, i.e., ENS-SS, along with several effective heuristic operations, the proposed algorithm performs favorably for solving the MO-VRPSD. The experimental results based on the modified Solomon benchmark instances verified the effectiveness of the respective components, and the superiority to other multi-objective evolutionary algorithms.
Author Song, Wen
Shao, Jie
Cao, Zhiguang
Niu, Yunyun
Xiao, Jianhua
Author_xml – sequence: 1
  givenname: Yunyun
  surname: Niu
  fullname: Niu, Yunyun
  organization: School of Information Engineering, China University of Geosciences in Beijing, Beijing 100083, China
– sequence: 2
  givenname: Jie
  surname: Shao
  fullname: Shao, Jie
  organization: School of Information Engineering, China University of Geosciences in Beijing, Beijing 100083, China
– sequence: 3
  givenname: Jianhua
  surname: Xiao
  fullname: Xiao, Jianhua
  email: jhxiao@nankai.edu.cn
  organization: Research Center of Logistics, Nankai University, Tianjin 300071, China
– sequence: 4
  givenname: Wen
  surname: Song
  fullname: Song, Wen
  organization: Institute of Marine Science and Technology, Shandong University, Shandong 250100, China
– sequence: 5
  givenname: Zhiguang
  surname: Cao
  fullname: Cao, Zhiguang
  organization: Singapore Institute of Manufacturing Technology, Singapore 138634, Singapore
BookMark eNp9kEFLwzAYhnOY4Db9Ad7yB1qTtE02POlwKkwE2T2k6dc1tUtGklX892bMk4edvhc-nhfeZ4Ym1llA6I6SnBLK7_vc2JAzwlhORE4WYoKmhDCSEVZV12gWQk8IKQXnU2Tfj0M0mat70NGMgGF0wzEaZ5X_wWrYOW9it8e1CtBgZ_Hn0xpbiN_Of-HWeRzcMBq7w7EDHKLTnQrRaDxCZ_QA2LtUlt4H7-oB9jfoqlVDgNu_O0fb9fN29ZptPl7eVo-bTLOliJmqqeBE0argAlJoVF1UxRKoLhdNWzRqCSUtK835UglQbS14mQbqlnFWFryYI3Gu1d6F4KGV2kR1WhW9MoOkRJ5MyV4mU_JkShIhk6lE0n_kwZt9cnGReTgzkBaNBrwM2oDV0BifrMrGmQv0Lwu3iGE
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125411
crossref_primary_10_1016_j_scs_2024_105408
crossref_primary_10_1109_TITS_2023_3334976
crossref_primary_10_3390_electronics11213476
crossref_primary_10_1080_21650020_2023_2216768
crossref_primary_10_1016_j_ins_2023_119003
crossref_primary_10_1109_ACCESS_2024_3472282
crossref_primary_10_1016_j_jclepro_2025_145316
crossref_primary_10_1016_j_tre_2025_104278
crossref_primary_10_1016_j_heliyon_2024_e26516
crossref_primary_10_1109_TIM_2023_3334361
crossref_primary_10_1080_23302674_2024_2305817
crossref_primary_10_1016_j_eswa_2025_128141
crossref_primary_10_1080_13675567_2024_2436392
crossref_primary_10_1016_j_asoc_2024_111846
crossref_primary_10_3390_machines11090879
crossref_primary_10_1016_j_eswa_2025_128463
crossref_primary_10_1016_j_ins_2022_11_073
crossref_primary_10_1016_j_aei_2024_102707
crossref_primary_10_1109_ACCESS_2023_3306076
crossref_primary_10_1016_j_future_2023_11_037
crossref_primary_10_1016_j_ins_2023_119639
crossref_primary_10_1109_JIOT_2023_3286799
crossref_primary_10_1007_s10489_023_04881_1
crossref_primary_10_1016_j_cie_2025_111253
crossref_primary_10_1016_j_jfranklin_2025_107798
crossref_primary_10_1016_j_swevo_2022_101201
Cites_doi 10.3390/info9070167
10.1109/4235.996017
10.1007/s00500-019-04312-9
10.1287/opre.40.3.574
10.1023/A:1007677805582
10.1023/A:1022643204877
10.1142/S0219649214500221
10.1007/s10479-015-1949-7
10.1080/00401706.1971.10488811
10.1287/opre.35.2.254
10.1016/j.knosys.2021.107378
10.1007/978-3-319-93025-1_4
10.1109/TEVC.2014.2308305
10.1016/S0952-1976(02)00011-8
10.1016/j.neucom.2011.03.027
10.1016/j.procs.2014.09.077
10.1109/5.58326
10.1016/S0888-3270(03)00080-3
10.1016/j.ejor.2005.12.029
10.1007/s10710-005-6164-x
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.07.087
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EndPage 410
ExternalDocumentID 10_1016_j_ins_2022_07_087
S0020025522007769
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-ab1760a15367e60adab3539e1c48df3da9e4145c669a7eafb764020cf2624363
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848150900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 22:25:52 EST 2025
Sat Nov 29 07:30:03 EST 2025
Sun Apr 06 06:54:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Learnable evolution model
Radial basis function network
Multi-objective evolutionary algorithm
Vehicle routing problem
Stochastic demand
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-ab1760a15367e60adab3539e1c48df3da9e4145c669a7eafb764020cf2624363
PageCount 24
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2022_07_087
crossref_primary_10_1016_j_ins_2022_07_087
elsevier_sciencedirect_doi_10_1016_j_ins_2022_07_087
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Poggio, Girosi (b0145) 1990; 78
Van Veldhuizen, Lamont (b0210) 1998
Christofides, Mingozzi, Toth (b0040) 1979
Wojtusiak (b0215) 2012; 28
A. Hassanat, V. Prasath, M. Abbadi, S. Abu-Qdari, H. Faris, An Improved Genetic Algorithm with a New Initialization Mechanism Based on Regression Techniques, Information 9 (2018). URL
D. Bertsimas, A Vehicle Routing Problem with Stochastic Demand, Oper. Res. 40 (1992) 574–585.
Herrera, Pomares, Rojas, Guillén, Rubio, Urquiza (b0075) 2011; 74
Gee, Arokiasami, Jiang, Tan (b0070) 2016
Allen (b0015) 1971; 13
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–197.
K. Tan, L. Lee, K. Ou, Artificial intelligence heuristics in solving vehicle routing problems with time window constraints, Eng. Appl. Artif. Intell. 14 (2001) 825–837.
Riquelme, Von Lücken, Baran (b0130) 2015
S. Mirjalili, Genetic algorithm, Evol. Algorithms Neural Networks (2019) 43–55.
Solomon (b0175) 1987; 35
Sarasola, Doerner, Schmid, Alba (b0190) 2016; 236
Fasshauer (b0065) 2007
Moradi (b0100) 2020
Wuxing, Peter, Guicai, Tielin (b0225) 2004; 18
Tan, Cheong, Goh (b0205) 2007; 177
Broomhead, Lowe (b0025) 1988
F. Schwenker, H. Kestler, G. Palm, Contributed article Three (2000).
E. Berhan, B. Beshah, D. Kitaw, A. Abraham, Stochastic Vehicle Routing Problem: A Literature Survey, J. Inf. Knowl. Manage. 13 (2014).
J. Moody, C. Darken, Learning with localized receptive fields, Yale Univ., Department of Computer Science, 1988.
Y. Niu, D. Kong, R. Wen, Z. Cao, J. Xiao, An improved learnable evolution model for solving multi-objective vehicle routing problem with stochastic demand, Knowl.-Based Syst. 230 (2021) 107378.
C. Liong, I. Wan, O. Khairuddin, Vehicle Routing Problem: Models and Solutions, J. Quality Meas. Anal. (2008).
Curry, Dagli (b0055) 2014; 36
Coello, Cortés (b0045) 2005; 6
Michalski (b0105) 2000; 38
.
Lawrence, Tsoi, Back (b0095) 1996; 1621
Schott (b0195) 1995
Quinlan (b0150) 1986; 1
X. Zhang, Y. Tian, R. Cheng, Y. Jin, An Efficient Approach to Non-dominated Sorting for Evolutionary Multi-objective Optimization, IEEE Trans. Evol. Comput. 19 (2015) 201–213.
10.1016/j.ins.2022.07.087_b0080
Christofides (10.1016/j.ins.2022.07.087_b0040) 1979
Quinlan (10.1016/j.ins.2022.07.087_b0150) 1986; 1
Coello (10.1016/j.ins.2022.07.087_b0045) 2005; 6
10.1016/j.ins.2022.07.087_b0185
Herrera (10.1016/j.ins.2022.07.087_b0075) 2011; 74
10.1016/j.ins.2022.07.087_b0120
10.1016/j.ins.2022.07.087_b0200
10.1016/j.ins.2022.07.087_b0125
Riquelme (10.1016/j.ins.2022.07.087_b0130) 2015
Schott (10.1016/j.ins.2022.07.087_b0195) 1995
10.1016/j.ins.2022.07.087_b0245
Curry (10.1016/j.ins.2022.07.087_b0055) 2014; 36
Lawrence (10.1016/j.ins.2022.07.087_b0095) 1996; 1621
Allen (10.1016/j.ins.2022.07.087_b0015) 1971; 13
Sarasola (10.1016/j.ins.2022.07.087_b0190) 2016; 236
Broomhead (10.1016/j.ins.2022.07.087_b0025) 1988
Michalski (10.1016/j.ins.2022.07.087_b0105) 2000; 38
Poggio (10.1016/j.ins.2022.07.087_b0145) 1990; 78
10.1016/j.ins.2022.07.087_b0090
Fasshauer (10.1016/j.ins.2022.07.087_b0065) 2007
10.1016/j.ins.2022.07.087_b0050
10.1016/j.ins.2022.07.087_b0030
10.1016/j.ins.2022.07.087_b0035
Moradi (10.1016/j.ins.2022.07.087_b0100) 2020
10.1016/j.ins.2022.07.087_b0135
Wojtusiak (10.1016/j.ins.2022.07.087_b0215) 2012; 28
Wuxing (10.1016/j.ins.2022.07.087_b0225) 2004; 18
Solomon (10.1016/j.ins.2022.07.087_b0175) 1987; 35
Gee (10.1016/j.ins.2022.07.087_b0070) 2016
Tan (10.1016/j.ins.2022.07.087_b0205) 2007; 177
Van Veldhuizen (10.1016/j.ins.2022.07.087_b0210) 1998
References_xml – year: 2016
  ident: b0070
  article-title: Decomposition-based multi-objective evolutionary algorithm for vehicle routing problem with stochastic demands
– year: 1988
  ident: b0025
  article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks
  publication-title: Royal Signals
– volume: 38
  start-page: 9
  year: 2000
  end-page: 40
  ident: b0105
  article-title: Learnable Evolution Model: Evolutionary Processes Guided by Machine Learning
  publication-title: Mach. Learn.
– volume: 35
  start-page: 254
  year: 1987
  end-page: 265
  ident: b0175
  article-title: Algorithms for the vehicle routing and scheduling problems with time window constraints
  publication-title: Oper. Res.
– reference: K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–197.
– reference: C. Liong, I. Wan, O. Khairuddin, Vehicle Routing Problem: Models and Solutions, J. Quality Meas. Anal. (2008).
– reference: K. Tan, L. Lee, K. Ou, Artificial intelligence heuristics in solving vehicle routing problems with time window constraints, Eng. Appl. Artif. Intell. 14 (2001) 825–837.
– volume: 18
  start-page: 381
  year: 2004
  end-page: 389
  ident: b0225
  article-title: Classification of gear faults using cumulants and the radial basis function network
  publication-title: Mech. Syst. Signal Process.
– reference: E. Berhan, B. Beshah, D. Kitaw, A. Abraham, Stochastic Vehicle Routing Problem: A Literature Survey, J. Inf. Knowl. Manage. 13 (2014).
– reference: A. Hassanat, V. Prasath, M. Abbadi, S. Abu-Qdari, H. Faris, An Improved Genetic Algorithm with a New Initialization Mechanism Based on Regression Techniques, Information 9 (2018). URL:
– start-page: 221
  year: 1998
  end-page: 228
  ident: b0210
  article-title: Evolutionary computation and convergence to a pareto front
  publication-title: Late Breaking Papers At The Genetic Programming 1998 Conference
– volume: 78
  start-page: 1481
  year: 1990
  end-page: 1497
  ident: b0145
  article-title: Networks for approximation and learning
  publication-title: Proc. IEEE
– reference: Y. Niu, D. Kong, R. Wen, Z. Cao, J. Xiao, An improved learnable evolution model for solving multi-objective vehicle routing problem with stochastic demand, Knowl.-Based Syst. 230 (2021) 107378.
– reference: F. Schwenker, H. Kestler, G. Palm, Contributed article Three (2000).
– volume: 1621
  year: 1996
  ident: b0095
  article-title: Function approximation with neural networks and local methods: Bias, variance and smoothness
  publication-title: Australian Conference On Neural Networks
– year: 2020
  ident: b0100
  article-title: The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model
  publication-title: Soft. Comput.
– reference: X. Zhang, Y. Tian, R. Cheng, Y. Jin, An Efficient Approach to Non-dominated Sorting for Evolutionary Multi-objective Optimization, IEEE Trans. Evol. Comput. 19 (2015) 201–213.
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: b0150
  article-title: Induction of Decision Trees
  publication-title: Mach. Learn.
– year: 1995
  ident: b0195
  article-title: Fault tolerant design using single and multicriteria genetic algorithm optimization
  publication-title: Massachusetts Institute of Technology
– year: 1979
  ident: b0040
  article-title: The Vehicle Routing Problem
  publication-title: Traveling Salesman Problem
– start-page: 1
  year: 2015
  end-page: 11
  ident: b0130
  article-title: Performance metrics in multi-objective optimization
  publication-title: 2015 Latin American Computing Conference (CLEI)
– volume: 6
  start-page: 163
  year: 2005
  end-page: 190
  ident: b0045
  article-title: Solving multiobjective optimization problems using an artificial immune system
  publication-title: Genetic Programming Evolvable Mach.
– volume: 36
  start-page: 185
  year: 2014
  end-page: 191
  ident: b0055
  article-title: Computational complexity measures for many-objective optimization problems
  publication-title: Proc. Comput. Sci.
– reference: .
– volume: 177
  year: 2007
  ident: b0205
  article-title: Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation
  publication-title: Eur. J. Oper. Res.
– volume: 74
  start-page: 2594
  year: 2011
  end-page: 2602
  ident: b0075
  article-title: Global and local modelling in RBF networks
  publication-title: Neurocomputing
– year: 2007
  ident: b0065
  article-title: Meshfree approximation methods with MATLAB
– reference: D. Bertsimas, A Vehicle Routing Problem with Stochastic Demand, Oper. Res. 40 (1992) 574–585.
– volume: 236
  start-page: 425
  year: 2016
  end-page: 461
  ident: b0190
  article-title: Variable neighborhood search for the stochastic and dynamic vehicle routing problem
  publication-title: Ann. Oper. Res.
– volume: 28
  start-page: 225
  year: 2012
  end-page: 236
  ident: b0215
  article-title: The LEM3 System for Multitype Evolutionary Optimization
  publication-title: Comput. Informatics
– volume: 13
  start-page: 469
  year: 1971
  end-page: 475
  ident: b0015
  article-title: Mean square error of prediction as a criterion for selecting variables
  publication-title: Technometrics
– reference: J. Moody, C. Darken, Learning with localized receptive fields, Yale Univ., Department of Computer Science, 1988.
– reference: S. Mirjalili, Genetic algorithm, Evol. Algorithms Neural Networks (2019) 43–55.
– volume: 28
  start-page: 225
  year: 2012
  ident: 10.1016/j.ins.2022.07.087_b0215
  article-title: The LEM3 System for Multitype Evolutionary Optimization
  publication-title: Comput. Informatics
– ident: 10.1016/j.ins.2022.07.087_b0080
  doi: 10.3390/info9070167
– ident: 10.1016/j.ins.2022.07.087_b0050
  doi: 10.1109/4235.996017
– start-page: 1
  year: 2015
  ident: 10.1016/j.ins.2022.07.087_b0130
  article-title: Performance metrics in multi-objective optimization
  publication-title: 2015 Latin American Computing Conference (CLEI)
– year: 2020
  ident: 10.1016/j.ins.2022.07.087_b0100
  article-title: The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-019-04312-9
– year: 1979
  ident: 10.1016/j.ins.2022.07.087_b0040
  article-title: The Vehicle Routing Problem
  publication-title: Traveling Salesman Problem
– ident: 10.1016/j.ins.2022.07.087_b0035
  doi: 10.1287/opre.40.3.574
– volume: 38
  start-page: 9
  year: 2000
  ident: 10.1016/j.ins.2022.07.087_b0105
  article-title: Learnable Evolution Model: Evolutionary Processes Guided by Machine Learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007677805582
– volume: 1
  start-page: 81
  year: 1986
  ident: 10.1016/j.ins.2022.07.087_b0150
  article-title: Induction of Decision Trees
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022643204877
– ident: 10.1016/j.ins.2022.07.087_b0030
  doi: 10.1142/S0219649214500221
– volume: 236
  start-page: 425
  year: 2016
  ident: 10.1016/j.ins.2022.07.087_b0190
  article-title: Variable neighborhood search for the stochastic and dynamic vehicle routing problem
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-015-1949-7
– volume: 13
  start-page: 469
  year: 1971
  ident: 10.1016/j.ins.2022.07.087_b0015
  article-title: Mean square error of prediction as a criterion for selecting variables
  publication-title: Technometrics
  doi: 10.1080/00401706.1971.10488811
– volume: 35
  start-page: 254
  year: 1987
  ident: 10.1016/j.ins.2022.07.087_b0175
  article-title: Algorithms for the vehicle routing and scheduling problems with time window constraints
  publication-title: Oper. Res.
  doi: 10.1287/opre.35.2.254
– ident: 10.1016/j.ins.2022.07.087_b0135
  doi: 10.1016/j.knosys.2021.107378
– ident: 10.1016/j.ins.2022.07.087_b0090
– year: 1988
  ident: 10.1016/j.ins.2022.07.087_b0025
  article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks
  publication-title: Royal Signals
– ident: 10.1016/j.ins.2022.07.087_b0125
  doi: 10.1007/978-3-319-93025-1_4
– ident: 10.1016/j.ins.2022.07.087_b0245
  doi: 10.1109/TEVC.2014.2308305
– ident: 10.1016/j.ins.2022.07.087_b0200
  doi: 10.1016/S0952-1976(02)00011-8
– volume: 74
  start-page: 2594
  year: 2011
  ident: 10.1016/j.ins.2022.07.087_b0075
  article-title: Global and local modelling in RBF networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.027
– start-page: 221
  year: 1998
  ident: 10.1016/j.ins.2022.07.087_b0210
  article-title: Evolutionary computation and convergence to a pareto front
– volume: 36
  start-page: 185
  year: 2014
  ident: 10.1016/j.ins.2022.07.087_b0055
  article-title: Computational complexity measures for many-objective optimization problems
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2014.09.077
– year: 1995
  ident: 10.1016/j.ins.2022.07.087_b0195
  article-title: Fault tolerant design using single and multicriteria genetic algorithm optimization
  publication-title: Massachusetts Institute of Technology
– year: 2007
  ident: 10.1016/j.ins.2022.07.087_b0065
– volume: 78
  start-page: 1481
  year: 1990
  ident: 10.1016/j.ins.2022.07.087_b0145
  article-title: Networks for approximation and learning
  publication-title: Proc. IEEE
  doi: 10.1109/5.58326
– year: 2016
  ident: 10.1016/j.ins.2022.07.087_b0070
– ident: 10.1016/j.ins.2022.07.087_b0120
– volume: 18
  start-page: 381
  year: 2004
  ident: 10.1016/j.ins.2022.07.087_b0225
  article-title: Classification of gear faults using cumulants and the radial basis function network
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/S0888-3270(03)00080-3
– volume: 1621
  year: 1996
  ident: 10.1016/j.ins.2022.07.087_b0095
  article-title: Function approximation with neural networks and local methods: Bias, variance and smoothness
  publication-title: Australian Conference On Neural Networks
– volume: 177
  year: 2007
  ident: 10.1016/j.ins.2022.07.087_b0205
  article-title: Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.12.029
– ident: 10.1016/j.ins.2022.07.087_b0185
– volume: 6
  start-page: 163
  issue: 2
  year: 2005
  ident: 10.1016/j.ins.2022.07.087_b0045
  article-title: Solving multiobjective optimization problems using an artificial immune system
  publication-title: Genetic Programming Evolvable Mach.
  doi: 10.1007/s10710-005-6164-x
SSID ssj0004766
Score 2.5348196
Snippet Solving the multi-objective vehicle routing problem with stochastic demand (MO-VRPSD) is challenging due to its non-deterministic property and conflicting...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 387
SubjectTerms Learnable evolution model
Multi-objective evolutionary algorithm
Radial basis function network
Stochastic demand
Vehicle routing problem
Title Multi-objective evolutionary algorithm based on RBF network for solving the stochastic vehicle routing problem
URI https://dx.doi.org/10.1016/j.ins.2022.07.087
Volume 609
WOSCitedRecordID wos000848150900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004766
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEdEAwQA4Z8QByIIuXTjo8DbQKEKsQq0Vvk2C5JVdKpS6LxB-z_3nNsp1FhiB24RJFV20nfL-_Dfr9nhN4UkhAVyMSHeJb7CZOFz7Mw9BkpMnAfdD2QvmT-FzqdZvM5-zqZXDsuTLeidZ1dXbGL_ypqaANha-rsHcQ9DAoNcA9ChyuIHa7_JPieUuuvi6VRZZ7q7HQ6P46vfqw3VVP-9LT5knqr4Nv7M682yeB9ziE8Xec4VOAZipLrUs5ep0o9k7dZt41hsPcn0YydW0tt6hFlLevgsU-rttf2bf2rHfB4XnKz8VMN8JpXronXZTvYjHObOfzdMtfsOgWEuC4Ra8sbCHwdwYx1LwnYSHvG1vYaQ5yYfNffdLxZblhCYKLLrUdRX3zV9RzX096xc0P2oUtsW-YwRK6HyAOawxD30H5EUwbKcf_k0-n885ZgS82mt3sFtz3eJwruPMefHZyR0zJ7hB7aaAOfGJQ8RhNVH6KDUQ3KQ3RsmSv4LR7JD1ud_wTVO3jCYzzhAU-4xxOGnoAnbPGEYTxs8YQBT3iLJ2zxhC2esMXTUzQ7O519-OjbQzp8ETHa-LwIKQk4GE5CFdxIXsRpzFQokkwuYsmZSsIkFYQwThVfFJToJQuxiEiUxCR-hvbqda2eIxzHKQUHXNKC8iRjIsu4TAUPRaAiTgp5hAL3x-bCFrDX56is8lsFeoTeDV0uTPWWv_04cdLK7Udi3MockHd7txd3meMlerD9Nl6hvWbTqmN0X3RNdbl5bWF3A2ooqd8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+evolutionary+algorithm+based+on+RBF+network+for+solving+the+stochastic+vehicle+routing+problem&rft.jtitle=Information+sciences&rft.au=Niu%2C+Yunyun&rft.au=Shao%2C+Jie&rft.au=Xiao%2C+Jianhua&rft.au=Song%2C+Wen&rft.date=2022-09-01&rft.issn=0020-0255&rft.volume=609&rft.spage=387&rft.epage=410&rft_id=info:doi/10.1016%2Fj.ins.2022.07.087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_07_087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon