Dynamic multi-objective evolutionary algorithm based on knowledge transfer
Dynamic multi-objective optimization problems (DMOPs) are mainly reflected in objective changes with changes in the environment. To solve DMOPs, a transfer learning (TL) approach is used, which can continuously adapt to environmental changes and reuse valuable knowledge from the past. However, if al...
Saved in:
| Published in: | Information sciences Vol. 636; p. 118886 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.07.2023
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Dynamic multi-objective optimization problems (DMOPs) are mainly reflected in objective changes with changes in the environment. To solve DMOPs, a transfer learning (TL) approach is used, which can continuously adapt to environmental changes and reuse valuable knowledge from the past. However, if all individuals are transferred, they may experience negative transfers. Therefore, this paper proposes a novel knowledge transfer method for the dynamic multi-objective evolutionary algorithm (T-DMOEA) to solve DMOPs, which consists of a multi-time prediction model (MTPM) and a manifold TL algorithm. First, according to the movement trend of historical knee points, the MTPM model uses a weighted method to effectively track knee points after environmental changes. Then, the knowledge of the suboptimal solution is reused in the non-knee point set using the manifold TL technique, which yields more high-quality individuals and speeds up the convergence. In the dynamic evolutionary process, the knee points and high-quality solutions are combined to guide the generation of the initial population in the next environment, ensuring the diversity of the population while reducing the computational cost. The experimental results show that the proposed T-DMOEA algorithm can converge rapidly in solving DMOPs while obtaining better-quality solutions. |
|---|---|
| AbstractList | Dynamic multi-objective optimization problems (DMOPs) are mainly reflected in objective changes with changes in the environment. To solve DMOPs, a transfer learning (TL) approach is used, which can continuously adapt to environmental changes and reuse valuable knowledge from the past. However, if all individuals are transferred, they may experience negative transfers. Therefore, this paper proposes a novel knowledge transfer method for the dynamic multi-objective evolutionary algorithm (T-DMOEA) to solve DMOPs, which consists of a multi-time prediction model (MTPM) and a manifold TL algorithm. First, according to the movement trend of historical knee points, the MTPM model uses a weighted method to effectively track knee points after environmental changes. Then, the knowledge of the suboptimal solution is reused in the non-knee point set using the manifold TL technique, which yields more high-quality individuals and speeds up the convergence. In the dynamic evolutionary process, the knee points and high-quality solutions are combined to guide the generation of the initial population in the next environment, ensuring the diversity of the population while reducing the computational cost. The experimental results show that the proposed T-DMOEA algorithm can converge rapidly in solving DMOPs while obtaining better-quality solutions. |
| ArticleNumber | 118886 |
| Author | Zhao, Tianhao Xie, Liping Cai, Xingjuan Wu, Linjie Wu, Di |
| Author_xml | – sequence: 1 givenname: Linjie surname: Wu fullname: Wu, Linjie organization: School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China – sequence: 2 givenname: Di surname: Wu fullname: Wu, Di organization: Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China – sequence: 3 givenname: Tianhao surname: Zhao fullname: Zhao, Tianhao organization: School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China – sequence: 4 givenname: Xingjuan orcidid: 0000-0003-1300-779X surname: Cai fullname: Cai, Xingjuan email: xingjuancai@163.com organization: School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China – sequence: 5 givenname: Liping surname: Xie fullname: Xie, Liping email: xieliping@tyust.edu.cn organization: School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China |
| BookMark | eNp9kL1OwzAUhS1UJNrCA7DlBRKu7cROxITKvyqxwGw5zk1xSGxkp0V9e1KViaHTmb6jc74FmTnvkJBrChkFKm66zLqYMWA8A55RSs_InJaSpYJVdEbmAAxSYEVxQRYxdgCQSyHm5PV-7_RgTTJs-9Gmvu7QjHaHCe58vx2tdzrsE91vfLDj55DUOmKTeJd8Of_TY7PBZAzaxRbDJTlvdR_x6i-X5OPx4X31nK7fnl5Wd-vUsEqOqa5kBZLnUArkHEReSEGN5FXTlhUVTU0NFsgNF22Z04bpupGlrHNEUwMXOV8Seuw1wccYsFXfwQ7TTEVBHWSoTk0y1EGGAq4mGRMj_zHGjvpwb1pv-5Pk7ZHE6dLOYlDRWHQGGxsmVarx9gT9C_V2fJ8 |
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_119932 crossref_primary_10_1109_TSMC_2023_3322718 crossref_primary_10_1016_j_eswa_2024_125168 crossref_primary_10_1016_j_ins_2024_120913 crossref_primary_10_32604_cmes_2024_049044 crossref_primary_10_1016_j_entcom_2024_100875 crossref_primary_10_1016_j_asoc_2025_113573 crossref_primary_10_1016_j_asoc_2025_113113 crossref_primary_10_3390_electronics13122374 crossref_primary_10_1007_s10489_024_05557_0 crossref_primary_10_1016_j_swevo_2025_101918 crossref_primary_10_1109_TETCI_2024_3451309 crossref_primary_10_1016_j_ins_2024_121690 crossref_primary_10_1016_j_simpat_2023_102835 crossref_primary_10_1016_j_rineng_2025_104720 crossref_primary_10_1016_j_knosys_2023_111168 crossref_primary_10_1016_j_swevo_2024_101500 crossref_primary_10_1016_j_ins_2024_121611 crossref_primary_10_1007_s12065_025_01059_1 crossref_primary_10_1049_cit2_12335 crossref_primary_10_3390_biomimetics9050277 crossref_primary_10_1002_cpe_8208 crossref_primary_10_1016_j_swevo_2025_102006 crossref_primary_10_1016_j_swevo_2025_101981 |
| Cites_doi | 10.1016/j.ins.2020.05.067 10.1109/TCBB.2017.2685320 10.1109/TCYB.2020.2989465 10.1109/TPAMI.2007.70735 10.1109/TEVC.2019.2958075 10.1016/j.asoc.2017.08.004 10.1016/j.swevo.2019.03.015 10.1109/TEVC.2020.3004027 10.1109/TEVC.2017.2771451 10.1109/TEVC.2007.892759 10.1007/s00500-015-1820-4 10.1016/j.asoc.2021.107258 10.1016/j.swevo.2019.02.001 10.1016/j.eswa.2021.114594 10.1109/TII.2018.2836189 10.1109/TCYB.2018.2842158 10.1016/j.neucom.2008.12.041 10.1109/TEVC.2007.894202 10.1007/BF01195985 10.1109/TEVC.2019.2925358 10.1016/j.ins.2017.12.058 10.1016/j.ins.2020.01.018 10.1016/j.swevo.2011.02.002 10.1109/TSMC.2019.2930737 10.1016/j.ins.2020.08.101 10.1016/j.ins.2019.09.016 10.1109/TCYB.2020.3017017 10.1109/JSEN.2020.2971035 10.1109/TCYB.2020.3017049 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2023.03.111 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| ExternalDocumentID | 10_1016_j_ins_2023_03_111 S0020025523004346 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-a9790734086e330645761c739df8916db1ce5e3c36f841d2abd787b4eecb03643 |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981876700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 18 22:26:12 EST 2025 Sat Nov 29 07:26:15 EST 2025 Fri Feb 23 02:36:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic multi-objective optimization Knowledge transfer Predictive model Manifold transfer learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-a9790734086e330645761c739df8916db1ce5e3c36f841d2abd787b4eecb03643 |
| ORCID | 0000-0003-1300-779X |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2023_03_111 crossref_citationtrail_10_1016_j_ins_2023_03_111 elsevier_sciencedirect_doi_10_1016_j_ins_2023_03_111 |
| PublicationCentury | 2000 |
| PublicationDate | July 2023 2023-07-00 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Jiang, Wang, Hong, Yen (br0160) FEB 2021; 25 Chen, Wu, Pedrycz, Suganthan, Xing, Zhu (br0010) MAR 2021; 51 Peng, Zheng, Zou (br0270) 2014 Guo, Cheng, Luo, Gong (br0110) 2017; 15 Zou, Yen, Tang, Wang (br0080) 2021; 546 Zc, Jz, Di, Xc, Hui, Wz, Jc (br0040) 2020; 518 Jiao, Zeng, Li, Pedrycz (br0200) 06 2019 Camara, Ortega, de Toro (br0230) OCT 2009; 72 Cai, Hu, Chen (br0020) 2020 Zhang, Zhou, Jin (br0390) 2008; 12 Chen, Ding, Yang, Chai (br0210) AUG 2020; 24 Jiang, Wang, Guo, Gao, Tan (br0310) OCT 2021; 51 Gong, Shi, Sha, Grauman (br0380) 2012 Lin, Zha (br0120) 2008; 30 Wang, Li, Pedrycz (br0050) 2020; 20 Zou, Li, Yang, Bai, Zheng (br0130) DEC 2017; 61 Feng, Zhou, Liu, Ong, Tan (br0360) MAY 2022; 52 Li, Ma (br0150) 2019; 28 Azzouz, Bechikh, Ben Said (br0250) FEB 2017; 21 Guo, Yang, Chen, Cheng, Gong (br0280) AUG 2019; 48 Feng, Fl, Yl, Hui (br0090) 2021 Du, Zhong, Tang, Du, Jin (br0100) 2018; 15 Zou, Ji, Yang, Zhang, Zheng, Li (br0430) JUN 2019; 47 Das (br0190) 1999; 18 Rong, Gong, Zhang, Jin, Pedrycz (br0290) SEP 2019; 49 Guerrero-Pena, Araujo (br0320) AUG 2021; 107 Jiang, Qiu, Huang, Yen (br0370) APR 2018; 435 Cao, Xu, Goodman, Li (br0240) 2017 Zhang, Li (br0410) 2007; 11 Rong, Gong, Pedrycz, Wang (br0300) 2019; 24 Jiang, Huang, Qiu, Huang, Yen (br0140) AUG 2018; 22 Jiang, Wang, Qiu, Guo, Gao, Tan (br0260) 2020; 51 Liang, Zou, Zheng, Yang, Zhu (br0340) JUN 15 2021; 172 Zou, Yen, Tang (br0330) JAN 2020; 509 Chen, Tian, Pedrycz, Wu, Wang, Wang (br0070) 2019 Jiang, Yang, Yao, Tan, Kaiser, Krasnogor (br0400) 2018 Derrac, Garcia, Molina, Herrera (br0420) MAR 2011; 1 Branke, Deb, Dierolf, Osswald (br0170) 2004 Chen, Cheng, Pedrycz, Jin (br0060) 2019; 51 Zc, Peng, Zh, Xc, Wz, Jc (br0030) 2021 Kalyanmoy, Udaya, Karthik (br0220) 05 2007 Wang (10.1016/j.ins.2023.03.111_br0050) 2020; 20 Lin (10.1016/j.ins.2023.03.111_br0120) 2008; 30 Zou (10.1016/j.ins.2023.03.111_br0330) 2020; 509 Jiang (10.1016/j.ins.2023.03.111_br0400) 2018 Chen (10.1016/j.ins.2023.03.111_br0010) 2021; 51 Chen (10.1016/j.ins.2023.03.111_br0060) 2019; 51 Guerrero-Pena (10.1016/j.ins.2023.03.111_br0320) 2021; 107 Jiang (10.1016/j.ins.2023.03.111_br0370) 2018; 435 Branke (10.1016/j.ins.2023.03.111_br0170) 2004 Peng (10.1016/j.ins.2023.03.111_br0270) 2014 Derrac (10.1016/j.ins.2023.03.111_br0420) 2011; 1 Jiao (10.1016/j.ins.2023.03.111_br0200) 2019 Feng (10.1016/j.ins.2023.03.111_br0360) 2022; 52 Das (10.1016/j.ins.2023.03.111_br0190) 1999; 18 Azzouz (10.1016/j.ins.2023.03.111_br0250) 2017; 21 Zhang (10.1016/j.ins.2023.03.111_br0410) 2007; 11 Rong (10.1016/j.ins.2023.03.111_br0290) 2019; 49 Guo (10.1016/j.ins.2023.03.111_br0280) 2019; 48 Zc (10.1016/j.ins.2023.03.111_br0040) 2020; 518 Jiang (10.1016/j.ins.2023.03.111_br0310) 2021; 51 Li (10.1016/j.ins.2023.03.111_br0150) 2019; 28 Jiang (10.1016/j.ins.2023.03.111_br0260) 2020; 51 Guo (10.1016/j.ins.2023.03.111_br0110) 2017; 15 Gong (10.1016/j.ins.2023.03.111_br0380) 2012 Jiang (10.1016/j.ins.2023.03.111_br0160) 2021; 25 Zou (10.1016/j.ins.2023.03.111_br0080) 2021; 546 Zou (10.1016/j.ins.2023.03.111_br0130) 2017; 61 Zhang (10.1016/j.ins.2023.03.111_br0390) 2008; 12 Chen (10.1016/j.ins.2023.03.111_br0210) 2020; 24 Feng (10.1016/j.ins.2023.03.111_br0090) 2021 Cai (10.1016/j.ins.2023.03.111_br0020) 2020 Rong (10.1016/j.ins.2023.03.111_br0300) 2019; 24 Zc (10.1016/j.ins.2023.03.111_br0030) 2021 Camara (10.1016/j.ins.2023.03.111_br0230) 2009; 72 Du (10.1016/j.ins.2023.03.111_br0100) 2018; 15 Cao (10.1016/j.ins.2023.03.111_br0240) 2017 Liang (10.1016/j.ins.2023.03.111_br0340) 2021; 172 Chen (10.1016/j.ins.2023.03.111_br0070) 2019 Jiang (10.1016/j.ins.2023.03.111_br0140) 2018; 22 Zou (10.1016/j.ins.2023.03.111_br0430) 2019; 47 Kalyanmoy (10.1016/j.ins.2023.03.111_br0220) 2007 |
| References_xml | – year: 2018 ident: br0400 article-title: Benchmark functions for the cec'2018 competition on dynamic multiobjective optimization – volume: 49 start-page: 3362 year: SEP 2019 end-page: 3374 ident: br0290 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Trans. Cybern. – year: 2004 ident: br0170 article-title: Finding knees in multi-objective optimization publication-title: DBLP – volume: 15 start-page: 1891 year: 2017 end-page: 1903 ident: br0110 article-title: Robust dynamic multi-objective vehicle routing optimization method publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – volume: 51 start-page: 3417 year: 2020 end-page: 3428 ident: br0260 article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning publication-title: IEEE Trans. Cybern. – volume: 1 start-page: 3 year: MAR 2011 end-page: 18 ident: br0420 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – year: 2020 ident: br0020 article-title: A many-objective optimization recommendation algorithm based on knowledge mining publication-title: Inf. Sci. – volume: 107 year: AUG 2021 ident: br0320 article-title: Dynamic multi-objective evolutionary algorithm with objective space prediction strategy publication-title: Appl. Soft Comput. – volume: 22 start-page: 501 year: AUG 2018 end-page: 514 ident: br0140 article-title: Transfer learning-based dynamic multiobjective optimization algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 24 start-page: 792 year: AUG 2020 end-page: 806 ident: br0210 article-title: A novel evolutionary algorithm for dynamic constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 28 start-page: 2509 year: 2019 end-page: 2519 ident: br0150 article-title: Dynamic multi-objective optimization algorithm based on transfer learning for environmental protection publication-title: Ekoloji – volume: 15 start-page: 293 year: 2018 end-page: 304 ident: br0100 article-title: High-dimensional robust multi-objective optimization for order scheduling: A decision variable classification approach publication-title: IEEE Trans. Ind. Inform. – start-page: 2066 year: 2012 end-page: 2073 ident: br0380 article-title: Geodesic flow kernel for unsupervised domain adaptation publication-title: 2012 IEEE conference on computer vision and pattern recognition – volume: 18 start-page: 107 year: 1999 ident: br0190 article-title: On characterizing the “knee” of the pareto curve based on normal-boundary intersection publication-title: Struct. Optim. – volume: 47 start-page: 33 year: JUN 2019 end-page: 43 ident: br0430 article-title: A knee-point-based evolutionary algorithm using weighted subpopulation for many-objective optimization publication-title: Swarm Evol. Comput. – volume: 51 start-page: 3552 year: 2019 end-page: 3564 ident: br0060 article-title: Solving many-objective optimization problems via multistage evolutionary search publication-title: IEEE Trans. Syst. Man Cybern. Syst. – year: 05 2007 ident: br0220 article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling – volume: 12 start-page: 41 year: 2008 end-page: 63 ident: br0390 article-title: Rm-meda: A regularity model-based multiobjective estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. – volume: 48 start-page: 156 year: AUG 2019 end-page: 171 ident: br0280 article-title: Ensemble prediction-based dynamic robust multi-objective optimization methods publication-title: Swarm Evol. Comput. – volume: 21 start-page: 885 year: FEB 2017 end-page: 906 ident: br0250 article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy publication-title: Soft Comput. – start-page: 1 year: 2019 end-page: 14 ident: br0070 article-title: Hyperplane assisted evolutionary algorithm for many-objective optimization problems publication-title: IEEE Trans. Cybern. – year: 06 2019 ident: br0200 article-title: Evolutionary constrained multi-objective optimization using NSGA-II with dynamic constraint handling – volume: 24 start-page: 290 year: 2019 end-page: 304 ident: br0300 article-title: A multimodel prediction method for dynamic multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 20 start-page: 5634 year: 2020 end-page: 5649 ident: br0050 article-title: An elite hybrid metaheuristic optimization algorithm for maximizing wireless sensor networks lifetime with a sink node publication-title: IEEE Sens. J. – volume: 72 start-page: 3570 year: OCT 2009 end-page: 3579 ident: br0230 article-title: A single front genetic algorithm for parallel multi-objective optimization in dynamic environments publication-title: Neurocomputing – volume: 30 start-page: 796 year: 2008 ident: br0120 article-title: Riemannian manifold learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 518 start-page: 256 year: 2020 end-page: 271 ident: br0040 article-title: Hybrid many-objective particle swarm optimization algorithm for green coal production problem publication-title: Inf. Sci. – start-page: 644 year: 2017 end-page: 655 ident: br0240 article-title: A first-order difference model-based evolutionary dynamic multiobjective optimization publication-title: Simulated Evolution and Learning: 11th International Conference – volume: 51 start-page: 1507 year: MAR 2021 end-page: 1522 ident: br0010 article-title: An adaptive resource allocation strategy for objective space partition-based multiobjective optimization publication-title: IEEE Trans. Syst. Man Cybern. Syst. – year: 2021 ident: br0030 article-title: An improved matrix factorization based model for many-objective optimization recommendation publication-title: Inf. Sci. – volume: 172 year: JUN 15 2021 ident: br0340 article-title: A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization publication-title: Expert Syst. Appl. – volume: 25 start-page: 117 year: FEB 2021 end-page: 129 ident: br0160 article-title: Knee point-based imbalanced transfer learning for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 51 start-page: 4968 year: OCT 2021 end-page: 4981 ident: br0310 article-title: Individual-based transfer learning for dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 546 start-page: 815 year: 2021 end-page: 834 ident: br0080 article-title: A reinforcement learning approach for dynamic multi-objective optimization publication-title: Inf. Sci. – volume: 435 start-page: 203 year: APR 2018 end-page: 223 ident: br0370 article-title: Dynamic multi-objective estimation of distribution algorithm based on domain adaptation and nonparametric estimation publication-title: Inf. Sci. – year: 2021 ident: br0090 article-title: A new prediction strategy for dynamic multi-objective optimization using gaussian mixture model publication-title: Inf. Sci. – start-page: 274 year: 2014 end-page: 281 ident: br0270 article-title: A population diversity maintaining strategy based on dynamic environment evolutionary model for dynamic multiobjective optimization publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC) – volume: 509 start-page: 193 year: JAN 2020 end-page: 209 ident: br0330 article-title: A knee-guided prediction approach for dynamic multi-objective optimization publication-title: Inf. Sci. – volume: 61 start-page: 806 year: DEC 2017 end-page: 818 ident: br0130 article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization publication-title: Appl. Soft Comput. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: br0410 article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 52 start-page: 2649 year: MAY 2022 end-page: 2662 ident: br0360 article-title: Solving dynamic multiobjective problem via autoencoding evolutionary search publication-title: IEEE Trans. Cybern. – year: 2020 ident: 10.1016/j.ins.2023.03.111_br0020 article-title: A many-objective optimization recommendation algorithm based on knowledge mining publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.05.067 – volume: 15 start-page: 1891 issue: 6 year: 2017 ident: 10.1016/j.ins.2023.03.111_br0110 article-title: Robust dynamic multi-objective vehicle routing optimization method publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2017.2685320 – volume: 51 start-page: 3417 issue: 7 year: 2020 ident: 10.1016/j.ins.2023.03.111_br0260 article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2989465 – volume: 30 start-page: 796 issue: 5 year: 2008 ident: 10.1016/j.ins.2023.03.111_br0120 article-title: Riemannian manifold learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.70735 – volume: 24 start-page: 792 issue: 4 year: 2020 ident: 10.1016/j.ins.2023.03.111_br0210 article-title: A novel evolutionary algorithm for dynamic constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2958075 – year: 2007 ident: 10.1016/j.ins.2023.03.111_br0220 – volume: 61 start-page: 806 year: 2017 ident: 10.1016/j.ins.2023.03.111_br0130 article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.004 – volume: 48 start-page: 156 year: 2019 ident: 10.1016/j.ins.2023.03.111_br0280 article-title: Ensemble prediction-based dynamic robust multi-objective optimization methods publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.03.015 – volume: 25 start-page: 117 issue: 1 year: 2021 ident: 10.1016/j.ins.2023.03.111_br0160 article-title: Knee point-based imbalanced transfer learning for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.3004027 – volume: 22 start-page: 501 issue: 4 year: 2018 ident: 10.1016/j.ins.2023.03.111_br0140 article-title: Transfer learning-based dynamic multiobjective optimization algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2771451 – year: 2021 ident: 10.1016/j.ins.2023.03.111_br0030 article-title: An improved matrix factorization based model for many-objective optimization recommendation publication-title: Inf. Sci. – year: 2018 ident: 10.1016/j.ins.2023.03.111_br0400 – year: 2019 ident: 10.1016/j.ins.2023.03.111_br0200 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.ins.2023.03.111_br0410 article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – start-page: 644 year: 2017 ident: 10.1016/j.ins.2023.03.111_br0240 article-title: A first-order difference model-based evolutionary dynamic multiobjective optimization – volume: 21 start-page: 885 issue: 4 year: 2017 ident: 10.1016/j.ins.2023.03.111_br0250 article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy publication-title: Soft Comput. doi: 10.1007/s00500-015-1820-4 – volume: 107 year: 2021 ident: 10.1016/j.ins.2023.03.111_br0320 article-title: Dynamic multi-objective evolutionary algorithm with objective space prediction strategy publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107258 – start-page: 2066 year: 2012 ident: 10.1016/j.ins.2023.03.111_br0380 article-title: Geodesic flow kernel for unsupervised domain adaptation – volume: 47 start-page: 33 issue: SI year: 2019 ident: 10.1016/j.ins.2023.03.111_br0430 article-title: A knee-point-based evolutionary algorithm using weighted subpopulation for many-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.02.001 – volume: 172 year: 2021 ident: 10.1016/j.ins.2023.03.111_br0340 article-title: A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114594 – volume: 51 start-page: 1507 issue: 3 year: 2021 ident: 10.1016/j.ins.2023.03.111_br0010 article-title: An adaptive resource allocation strategy for objective space partition-based multiobjective optimization publication-title: IEEE Trans. Syst. Man Cybern. Syst. – year: 2021 ident: 10.1016/j.ins.2023.03.111_br0090 article-title: A new prediction strategy for dynamic multi-objective optimization using gaussian mixture model publication-title: Inf. Sci. – volume: 28 start-page: 2509 issue: 107 year: 2019 ident: 10.1016/j.ins.2023.03.111_br0150 article-title: Dynamic multi-objective optimization algorithm based on transfer learning for environmental protection publication-title: Ekoloji – volume: 15 start-page: 293 issue: 1 year: 2018 ident: 10.1016/j.ins.2023.03.111_br0100 article-title: High-dimensional robust multi-objective optimization for order scheduling: A decision variable classification approach publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2836189 – volume: 49 start-page: 3362 issue: 9 year: 2019 ident: 10.1016/j.ins.2023.03.111_br0290 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2842158 – volume: 72 start-page: 3570 issue: 16–18, SI year: 2009 ident: 10.1016/j.ins.2023.03.111_br0230 article-title: A single front genetic algorithm for parallel multi-objective optimization in dynamic environments publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.12.041 – volume: 12 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.ins.2023.03.111_br0390 article-title: Rm-meda: A regularity model-based multiobjective estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.894202 – volume: 18 start-page: 107 year: 1999 ident: 10.1016/j.ins.2023.03.111_br0190 article-title: On characterizing the “knee” of the pareto curve based on normal-boundary intersection publication-title: Struct. Optim. doi: 10.1007/BF01195985 – volume: 24 start-page: 290 issue: 2 year: 2019 ident: 10.1016/j.ins.2023.03.111_br0300 article-title: A multimodel prediction method for dynamic multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2925358 – volume: 435 start-page: 203 year: 2018 ident: 10.1016/j.ins.2023.03.111_br0370 article-title: Dynamic multi-objective estimation of distribution algorithm based on domain adaptation and nonparametric estimation publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.12.058 – volume: 518 start-page: 256 year: 2020 ident: 10.1016/j.ins.2023.03.111_br0040 article-title: Hybrid many-objective particle swarm optimization algorithm for green coal production problem publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.01.018 – start-page: 274 year: 2014 ident: 10.1016/j.ins.2023.03.111_br0270 article-title: A population diversity maintaining strategy based on dynamic environment evolutionary model for dynamic multiobjective optimization – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.ins.2023.03.111_br0420 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 51 start-page: 3552 issue: 6 year: 2019 ident: 10.1016/j.ins.2023.03.111_br0060 article-title: Solving many-objective optimization problems via multistage evolutionary search publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2019.2930737 – volume: 546 start-page: 815 issue: 4 year: 2021 ident: 10.1016/j.ins.2023.03.111_br0080 article-title: A reinforcement learning approach for dynamic multi-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.08.101 – volume: 509 start-page: 193 year: 2020 ident: 10.1016/j.ins.2023.03.111_br0330 article-title: A knee-guided prediction approach for dynamic multi-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.09.016 – volume: 52 start-page: 2649 issue: 5 year: 2022 ident: 10.1016/j.ins.2023.03.111_br0360 article-title: Solving dynamic multiobjective problem via autoencoding evolutionary search publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3017017 – volume: 20 start-page: 5634 issue: 10 year: 2020 ident: 10.1016/j.ins.2023.03.111_br0050 article-title: An elite hybrid metaheuristic optimization algorithm for maximizing wireless sensor networks lifetime with a sink node publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2971035 – year: 2004 ident: 10.1016/j.ins.2023.03.111_br0170 article-title: Finding knees in multi-objective optimization – volume: 51 start-page: 4968 issue: 10 year: 2021 ident: 10.1016/j.ins.2023.03.111_br0310 article-title: Individual-based transfer learning for dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3017049 – start-page: 1 year: 2019 ident: 10.1016/j.ins.2023.03.111_br0070 article-title: Hyperplane assisted evolutionary algorithm for many-objective optimization problems publication-title: IEEE Trans. Cybern. |
| SSID | ssj0004766 |
| Score | 2.5389957 |
| Snippet | Dynamic multi-objective optimization problems (DMOPs) are mainly reflected in objective changes with changes in the environment. To solve DMOPs, a transfer... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 118886 |
| SubjectTerms | Dynamic multi-objective optimization Knowledge transfer Manifold transfer learning Predictive model |
| Title | Dynamic multi-objective evolutionary algorithm based on knowledge transfer |
| URI | https://dx.doi.org/10.1016/j.ins.2023.03.111 |
| Volume | 636 |
| WOSCitedRecordID | wos000981876700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLaAMsCAOMVV5AExUEVqY7eOR8QhQKhiKNAtcmwXGkGKSov4-TzHjhvKIRhYoshKnCjvy_P7_C6E9llDRIpJEQgmkwBWaB4kihL48QRY86zFWd6t4faKtdtRt8uvXcb1S95OgGVZ9PbGn_9V1DAGwjaps38Qt58UBuAchA5HEDscfyX4E9tj3oYKBoMktSqtpl_dY02cnHi8Hwz7o4enmlnGlHEZ-N010zYCjFkXtpsWoe4-zbHmVk1vjd-NHbtP-_rj2Em_tDE9sNgQGZxOXB95NEEXFtB07IDq9iBC4uNVJzkB9cCwk7JebZGyZgQiE9mi15-Utt0_SIFpmPrpITFVZwsV_KFA9tTC5cMJi0i1NIYpYjNFXCeG28yiSsiaHLRd5ejitHs5yZhl1otdvHfh784j_6be42uLpWSFdJbRkqMP-MiKfQXN6GwVLZaKSq6iqktFwQe4JDTslPgaunQAwVMAwWWAYA8QnAMEwwweILgAyDq6OTvtHJ8HrqNGIEPORoHgjINOp8BjNTHcE9hmQzLCVS8CnqCShtRNTSRp9SLaUKFIFCj0hGotE-OwJhtoLhtkehNhIOJNEda50lTSsCe4pFoSGpGopWDCZAvVi68WS1du3nQ9eYy_ldYWOvS3PNtaKz9dTAtRxA721giMAVbf37b9l2fsoIUJ2nfR3Gg41lU0L19H_ZfhnsPUO5I_ijE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+multi-objective+evolutionary+algorithm+based+on+knowledge+transfer&rft.jtitle=Information+sciences&rft.au=Wu%2C+Linjie&rft.au=Wu%2C+Di&rft.au=Zhao%2C+Tianhao&rft.au=Cai%2C+Xingjuan&rft.date=2023-07-01&rft.issn=0020-0255&rft.volume=636&rft.spage=118886&rft_id=info:doi/10.1016%2Fj.ins.2023.03.111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2023_03_111 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |