Dynamic multi-objective evolutionary algorithm based on knowledge transfer

Dynamic multi-objective optimization problems (DMOPs) are mainly reflected in objective changes with changes in the environment. To solve DMOPs, a transfer learning (TL) approach is used, which can continuously adapt to environmental changes and reuse valuable knowledge from the past. However, if al...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 636; s. 118886
Hlavní autori: Wu, Linjie, Wu, Di, Zhao, Tianhao, Cai, Xingjuan, Xie, Liping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.07.2023
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Dynamic multi-objective optimization problems (DMOPs) are mainly reflected in objective changes with changes in the environment. To solve DMOPs, a transfer learning (TL) approach is used, which can continuously adapt to environmental changes and reuse valuable knowledge from the past. However, if all individuals are transferred, they may experience negative transfers. Therefore, this paper proposes a novel knowledge transfer method for the dynamic multi-objective evolutionary algorithm (T-DMOEA) to solve DMOPs, which consists of a multi-time prediction model (MTPM) and a manifold TL algorithm. First, according to the movement trend of historical knee points, the MTPM model uses a weighted method to effectively track knee points after environmental changes. Then, the knowledge of the suboptimal solution is reused in the non-knee point set using the manifold TL technique, which yields more high-quality individuals and speeds up the convergence. In the dynamic evolutionary process, the knee points and high-quality solutions are combined to guide the generation of the initial population in the next environment, ensuring the diversity of the population while reducing the computational cost. The experimental results show that the proposed T-DMOEA algorithm can converge rapidly in solving DMOPs while obtaining better-quality solutions.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2023.03.111