A machine learning and genetic algorithm-based method for predicting width deviation of hot-rolled strip in steel production systems

Width deviation is an important metric for evaluating the quality of a hot-rolled strip in steel production systems. This paper considers a width deviation prediction problem and proposes a Machine-learning and Genetic-algorithm-based Hybrid method named MGH to obtain a prediction model. Existing wo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 589; s. 360 - 375
Hlavní autoři: Ji, Yingjun, Liu, Shixin, Zhou, Mengchu, Zhao, Ziyan, Guo, Xiwang, Qi, Liang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.04.2022
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Width deviation is an important metric for evaluating the quality of a hot-rolled strip in steel production systems. This paper considers a width deviation prediction problem and proposes a Machine-learning and Genetic-algorithm-based Hybrid method named MGH to obtain a prediction model. Existing work mainly focuses on high prediction accuracy, while ignoring interpretability. This work aims to build a prediction model that can make a good trade-off between two industry-required criteria, i.e., prediction accuracy and interpretability. It first collects some process variables in a hot rolling process and includes them as well as some constructed variables in a feature pool. Then we propose MGH to find representative variables from it and build a prediction model. MGH results from the integration of hierarchical clustering, genetic algorithm, and generalized linear regression. In detail, hierarchical clustering is applied to divide variables into clusters. Genetic algorithm and generalized linear regression are innovatively combined to select a representative variable from each cluster and develop a prediction model. The computational experiments conducted on both industrial and public datasets show that the proposed method can effectively balance prediction accuracy and interpretability of its resulting model. It has better overall performance than the compared state-of-the-art models.
AbstractList Width deviation is an important metric for evaluating the quality of a hot-rolled strip in steel production systems. This paper considers a width deviation prediction problem and proposes a Machine-learning and Genetic-algorithm-based Hybrid method named MGH to obtain a prediction model. Existing work mainly focuses on high prediction accuracy, while ignoring interpretability. This work aims to build a prediction model that can make a good trade-off between two industry-required criteria, i.e., prediction accuracy and interpretability. It first collects some process variables in a hot rolling process and includes them as well as some constructed variables in a feature pool. Then we propose MGH to find representative variables from it and build a prediction model. MGH results from the integration of hierarchical clustering, genetic algorithm, and generalized linear regression. In detail, hierarchical clustering is applied to divide variables into clusters. Genetic algorithm and generalized linear regression are innovatively combined to select a representative variable from each cluster and develop a prediction model. The computational experiments conducted on both industrial and public datasets show that the proposed method can effectively balance prediction accuracy and interpretability of its resulting model. It has better overall performance than the compared state-of-the-art models.
Author Zhou, Mengchu
Liu, Shixin
Guo, Xiwang
Ji, Yingjun
Qi, Liang
Zhao, Ziyan
Author_xml – sequence: 1
  givenname: Yingjun
  surname: Ji
  fullname: Ji, Yingjun
  email: jalonso@stumail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, and College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 2
  givenname: Shixin
  surname: Liu
  fullname: Liu, Shixin
  email: sxliu@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, and College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 3
  givenname: Mengchu
  surname: Zhou
  fullname: Zhou, Mengchu
  email: zhou@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
– sequence: 4
  givenname: Ziyan
  surname: Zhao
  fullname: Zhao, Ziyan
  email: zhaoziyan@ise.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, and College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 5
  givenname: Xiwang
  surname: Guo
  fullname: Guo, Xiwang
  email: x.w.guo@163.com
  organization: College of Computer and Communication Engineering, Liaoning Shihua University, Fushun 113001, China
– sequence: 6
  givenname: Liang
  surname: Qi
  fullname: Qi, Liang
  email: qiliangsdkd@163.com
  organization: Department of Computer Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
BookMark eNp9kE1LAzEQhoMoWKs_wFv-wK5JtvuFpyJ-QcGLnkOaTLpTdpOSxIp3f7hp9eTB0wzDPDO8zwU5dd4BIdeclZzx5mZbooulYIKXXJSsqU7IjHetKBrR81MyY0ywgom6PicXMW4ZY4u2aWbka0knpQd0QEdQwaHbUOUM3YCDhJqqceMDpmEq1iqCoROkwRtqfaC7AAZ1OhAfaNJADexRJfSOeksHn4rgxzEzMQXcUXS5ARgz5827Pu7Fzzya4iU5s2qMcPVb5-Tt4f717qlYvTw-3y1XhRZ9mwrVqb7nOVsLvLKdtX3bCGtrVtedbkUFtVJ8LXi36HVnO9bUC9t2a1uxhVVcm2pO-M9dHXyMAazcBZxU-JScyYNGuZVZozxolFzI_Coz7R9GYzqmTEHh-C95-0NCjrRHCDJqBKeztQA6SePxH_ob_iiSIQ
CitedBy_id crossref_primary_10_1016_j_mtcomm_2025_112562
crossref_primary_10_1109_TASE_2023_3307588
crossref_primary_10_1007_s42243_023_01084_3
crossref_primary_10_1134_S0031918X23600653
crossref_primary_10_1016_j_jmsy_2022_08_014
crossref_primary_10_2355_isijinternational_ISIJINT_2024_359
crossref_primary_10_3390_math13162696
crossref_primary_10_1088_2631_8695_ad5417
crossref_primary_10_1016_j_heliyon_2024_e32901
crossref_primary_10_1016_j_jmapro_2024_09_012
crossref_primary_10_1016_j_compbiomed_2022_106239
crossref_primary_10_1177_03019233251359803
crossref_primary_10_1016_j_knosys_2023_111194
crossref_primary_10_3233_JCM_226719
crossref_primary_10_1016_j_engappai_2024_108477
crossref_primary_10_1016_j_eswa_2023_121710
crossref_primary_10_1109_JAS_2022_106097
crossref_primary_10_1016_j_eswa_2023_120265
crossref_primary_10_1016_j_mtcomm_2025_112134
crossref_primary_10_1002_cpe_8108
crossref_primary_10_1155_2022_4842139
crossref_primary_10_1002_mgea_10
crossref_primary_10_1007_s42835_025_02384_2
crossref_primary_10_1007_s40031_024_01083_2
crossref_primary_10_1016_j_measurement_2023_112857
crossref_primary_10_3390_electronics13163129
crossref_primary_10_1016_j_knosys_2025_113123
crossref_primary_10_1088_1361_6501_ad9e25
crossref_primary_10_1109_TASE_2024_3360476
crossref_primary_10_1109_ACCESS_2023_3316251
crossref_primary_10_1016_j_amc_2023_128407
crossref_primary_10_1093_jcde_qwae049
crossref_primary_10_1016_j_ins_2024_120735
crossref_primary_10_1016_j_eswa_2023_120083
crossref_primary_10_1007_s00500_024_09850_5
crossref_primary_10_1007_s42243_023_01085_2
crossref_primary_10_1007_s11666_024_01756_w
crossref_primary_10_3390_ma15197019
crossref_primary_10_3390_math11061557
crossref_primary_10_1016_j_engappai_2023_107434
crossref_primary_10_1016_j_jmapro_2025_03_091
crossref_primary_10_1109_TCSS_2023_3238965
crossref_primary_10_1080_00207543_2024_2407919
crossref_primary_10_2355_isijinternational_ISIJINT_2024_371
crossref_primary_10_3233_JIFS_234876
crossref_primary_10_1007_s11663_025_03631_7
crossref_primary_10_3389_fenrg_2024_1502053
crossref_primary_10_3390_math12060836
crossref_primary_10_1016_j_ins_2023_119062
crossref_primary_10_1016_j_mtcomm_2024_108594
crossref_primary_10_3390_machines10080599
crossref_primary_10_1109_TASE_2023_3285253
crossref_primary_10_1016_j_ijmecsci_2025_110433
crossref_primary_10_1002_srin_202400942
crossref_primary_10_1016_j_ins_2023_03_031
crossref_primary_10_3390_app12199892
crossref_primary_10_3390_axioms12100980
crossref_primary_10_1016_j_ins_2022_07_117
crossref_primary_10_1016_j_jmapro_2024_12_073
crossref_primary_10_1109_TASE_2024_3418370
crossref_primary_10_3390_coatings13122011
crossref_primary_10_1177_03019233251357039
crossref_primary_10_1016_j_neucom_2023_127226
crossref_primary_10_1016_j_asoc_2023_110547
crossref_primary_10_1016_j_eswa_2023_122312
crossref_primary_10_1016_j_ins_2023_01_048
crossref_primary_10_1016_j_ins_2024_120997
crossref_primary_10_1016_j_jmatprotec_2022_117736
Cites_doi 10.1016/j.chemolab.2017.09.021
10.1109/TASE.2018.2857206
10.1109/TASE.2019.2935314
10.18637/jss.v033.i01
10.1109/JAS.2020.1003177
10.1109/TIE.2014.2301773
10.1515/revce-2015-0022
10.1016/j.eswa.2015.01.030
10.1109/WOCC48579.2020.9114917
10.1109/TASE.2020.2992220
10.1016/S1006-706X(10)60107-0
10.1109/TASE.2017.2731981
10.1109/TCYB.2019.2901834
10.1109/TASE.2020.3027532
10.1109/TII.2020.2979465
10.1214/12-STS392
10.2355/isijinternational.ISIJINT-2018-846
10.1080/10426914.2010.523914
10.1109/TCYB.2015.2478486
10.2355/isijinternational.52.1862
10.1016/j.ins.2011.12.031
10.1016/j.ins.2016.04.024
10.1016/S1006-706X(13)60119-3
10.1111/j.2517-6161.1996.tb02080.x
10.1016/S0924-0136(01)00499-X
10.1007/s10664-018-9638-1
10.1109/TITS.2018.2836800
10.1109/JAS.2020.1003539
10.1016/j.asoc.2015.06.012
10.1016/j.ress.2011.12.022
10.1109/TASE.2016.2629505
10.1016/j.asoc.2019.02.030
10.1007/s00170-017-0711-5
10.1007/s00357-014-9161-z
10.1109/JAS.2018.7511138
10.1109/TNNLS.2021.3055761
10.1109/TII.2020.3015003
10.1007/978-3-642-13818-8_34
10.1109/TIA.2010.2072978
10.1016/j.jmatprotec.2006.04.089
10.1016/j.csda.2020.107063
10.1016/j.jmatprotec.2007.05.014
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.12.063
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 375
ExternalDocumentID 10_1016_j_ins_2021_12_063
S0020025521012846
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-a8a9910637e13f8ff9762ff50558c723e5aa1b21849c8f80654f78bf304fa1cd3
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000807272800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 19:49:11 EST 2025
Sat Nov 29 07:26:05 EST 2025
Fri Feb 23 02:41:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Width deviation prediction
Hot-rolled strip
Feature construction
Generalized linear regression
Hierarchical clustering
Genetic algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-a8a9910637e13f8ff9762ff50558c723e5aa1b21849c8f80654f78bf304fa1cd3
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_ins_2021_12_063
crossref_citationtrail_10_1016_j_ins_2021_12_063
elsevier_sciencedirect_doi_10_1016_j_ins_2021_12_063
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Tang, Liu (b0005) 2020; 17
Brezocnik, Buchmeister, Gusel (b0115) 2011; 26
Choi, Kim, Lee (b0070) 2021; 17
Du, Yang, Lu, Wang, Kiet (b0055) 2010; 17
Huang, Breheny, Ma (b0170) 2012; 27
Wang, Gong, Li, Li, Zhang (b0020) 2017; 93
Tibshirani (b0160) 1996; 58
Liu, Liu, Wang, Zhao, Leung (b0010) 2012; 193
Z. Zhao, X. Yong, S. Liu, and M. Zhou, Data-driven surplus material prediction in steel coil production, 2020 29th Wireless and Optical Communications Conference (WOCC), Newark, NJ, USA, 2020, pp. 1–6.
Ge (b0095) 2017; 171
Guo (b0185) 2018; 15
Hu, Wu, Zhang, Pedrycz (b0075) 2020; 16
Laha, Ren, Suganthan (b0080) 2015; 42
James, Witten, Hastie, Tibshirani (b0125) 2013
Friedman, Hastie, Tibshirani (b0175) 2010; 33
Zeng, Yang, Breheny (b0165) 2021; 153
Chun, Yi, Moon (b0065) 2001; 111
Zhao, Sheng, Wang, Pedrycz, Liu (b0015) 2017; 14
Xie, Jiang, Liu, Wang, Tieu (b0050) 2006; 177
Yuan, Bi, Zhou (b0245) 2019; 16
Zhao (b0215) 2022; 19
Guo (b0180) 2016; 46
Yin, Ding, Xie, Luo (b0100) 2014; 61
Zhao, Weng, Peng, Tang, Liu (b0035) 2013; 20
Zhao (b0195) 2018; 5
Guo (b0225) 2021; 18
Guo (b0190) 2020; 50
Bi (b0235) 2016; 360
Wang, Zhang, Gong, Peng (b0025) 2019; 59
Zhao, Liu, Zhou (b0110) 2020; 17
Debón, Garcia-Diaz (b0145) 2012; 100
Z. Peng, R. Luo, J. Hu, et al., Optimal Tracking Control of Nonlinear Multiagent Systems Using Internal Reinforce Q-Learning, IEEE Trans. Neural Netw. Learn. Syst., doi: 10.1109/TNNLS.2021.3055761.
Dobson, Barnett (b0140) 2018
Sanz-Garcia, Fernandez-Ceniceros, Antonanzas-Torres, Pernia-Espinoza, Martinez-de-Pison (b0090) 2015; 35
Mori, Uchihira (b0105) 2019; 24
M. Redmond, UCI machine learning repository, 2009. https://archive-beta.ics.uci.edu/ml/datasets/communities+and+crime.
Zhao (b0220) 2021; 8
Yuan, Zhou, Liu, Abusorrah (b0240) 2020; 7
Wang (b0230) 2020
Peng, Hu, Shi (b0210) 2020; 369
Pittner, Simaan (b0060) 2010; 46
Ghahramani, Zhou, Hon (b0120) 2019; 20
Agarwal, Shivpuri (b0030) 2012; 52
Deng, Sun, Peng, Hu, Zhang (b0045) 2019; 78
M.E. Houle et al., Can shared-neighbor distances defeat the curse of dimensionality?, Proc. 22nd Int. Conf. Sci. Statistical DatabaseManag., Heidelberg, Germany, 2010, pp. 482–500.
John, Sikdar, Swamy, Das, Maity (b0040) 2008; 195
Murtagh, Legendre (b0135) 2014; 31
Bi (b0200) 2021; 8
Xu (b0155) 2015; 31
10.1016/j.ins.2021.12.063_b0085
James (10.1016/j.ins.2021.12.063_b0125) 2013
Pittner (10.1016/j.ins.2021.12.063_b0060) 2010; 46
Yin (10.1016/j.ins.2021.12.063_b0100) 2014; 61
10.1016/j.ins.2021.12.063_b0205
Zhao (10.1016/j.ins.2021.12.063_b0035) 2013; 20
Hu (10.1016/j.ins.2021.12.063_b0075) 2020; 16
Zeng (10.1016/j.ins.2021.12.063_b0165) 2021; 153
Zhao (10.1016/j.ins.2021.12.063_b0215) 2022; 19
Bi (10.1016/j.ins.2021.12.063_b0235) 2016; 360
10.1016/j.ins.2021.12.063_b0150
Mori (10.1016/j.ins.2021.12.063_b0105) 2019; 24
Brezocnik (10.1016/j.ins.2021.12.063_b0115) 2011; 26
Wang (10.1016/j.ins.2021.12.063_b0025) 2019; 59
Xie (10.1016/j.ins.2021.12.063_b0050) 2006; 177
Friedman (10.1016/j.ins.2021.12.063_b0175) 2010; 33
Huang (10.1016/j.ins.2021.12.063_b0170) 2012; 27
Tibshirani (10.1016/j.ins.2021.12.063_b0160) 1996; 58
Bi (10.1016/j.ins.2021.12.063_b0200) 2021; 8
Zhao (10.1016/j.ins.2021.12.063_b0110) 2020; 17
Sanz-Garcia (10.1016/j.ins.2021.12.063_b0090) 2015; 35
Guo (10.1016/j.ins.2021.12.063_b0180) 2016; 46
Dobson (10.1016/j.ins.2021.12.063_b0140) 2018
Xu (10.1016/j.ins.2021.12.063_b0155) 2015; 31
Yuan (10.1016/j.ins.2021.12.063_b0240) 2020; 7
Peng (10.1016/j.ins.2021.12.063_b0210) 2020; 369
Guo (10.1016/j.ins.2021.12.063_b0190) 2020; 50
Liu (10.1016/j.ins.2021.12.063_b0010) 2012; 193
Agarwal (10.1016/j.ins.2021.12.063_b0030) 2012; 52
Du (10.1016/j.ins.2021.12.063_b0055) 2010; 17
Guo (10.1016/j.ins.2021.12.063_b0225) 2021; 18
Ghahramani (10.1016/j.ins.2021.12.063_b0120) 2019; 20
Ge (10.1016/j.ins.2021.12.063_b0095) 2017; 171
Zhao (10.1016/j.ins.2021.12.063_b0220) 2021; 8
John (10.1016/j.ins.2021.12.063_b0040) 2008; 195
Deng (10.1016/j.ins.2021.12.063_b0045) 2019; 78
Chun (10.1016/j.ins.2021.12.063_b0065) 2001; 111
Murtagh (10.1016/j.ins.2021.12.063_b0135) 2014; 31
10.1016/j.ins.2021.12.063_b0130
Wang (10.1016/j.ins.2021.12.063_b0230) 2020
Wang (10.1016/j.ins.2021.12.063_b0020) 2017; 93
Zhao (10.1016/j.ins.2021.12.063_b0195) 2018; 5
Zhao (10.1016/j.ins.2021.12.063_b0015) 2017; 14
Liu (10.1016/j.ins.2021.12.063_b0005) 2020; 17
Guo (10.1016/j.ins.2021.12.063_b0185) 2018; 15
Yuan (10.1016/j.ins.2021.12.063_b0245) 2019; 16
Choi (10.1016/j.ins.2021.12.063_b0070) 2021; 17
Laha (10.1016/j.ins.2021.12.063_b0080) 2015; 42
Debón (10.1016/j.ins.2021.12.063_b0145) 2012; 100
References_xml – volume: 52
  start-page: 1862
  year: 2012
  end-page: 1871
  ident: b0030
  article-title: An on-line hierarchical decomposition based Bayesian model for quality prediction during hot strip rolling
  publication-title: ISIJ Int.
– volume: 16
  start-page: 7602
  year: 2020
  end-page: 7612
  ident: b0075
  article-title: Prediction performance improvement via anomaly detection and correction of actual production data in iron ore sintering process
  publication-title: IEEE Trans. Ind. Inf.
– volume: 24
  start-page: 779
  year: 2019
  end-page: 825
  ident: b0105
  article-title: Balancing the trade-off between accuracy and interpretability in software defect prediction
  publication-title: Empir. Softw. Eng.
– year: 2013
  ident: b0125
  article-title: An Introduction to Statistical Learning
– volume: 27
  start-page: 481
  year: 2012
  end-page: 499
  ident: b0170
  article-title: A selective review of group selection in high-dimensional models
  publication-title: Statistical science
– volume: 369
  year: 2020
  ident: b0210
  article-title: A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning
  publication-title: Appl. Math. Comput.
– volume: 61
  start-page: 6418
  year: 2014
  end-page: 6428
  ident: b0100
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans. Ind. Electron.
– volume: 15
  start-page: 1091
  year: 2018
  end-page: 1103
  ident: b0185
  article-title: Dual-objective program and scatter search for the optimization of disassembly sequences subject to multiresource constraints
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 42
  start-page: 4687
  year: 2015
  end-page: 4696
  ident: b0080
  article-title: Modeling of steelmaking process with effective machine learning techniques
  publication-title: Expert Syst. Appl.
– volume: 100
  start-page: 102
  year: 2012
  end-page: 114
  ident: b0145
  article-title: Fault diagnosis and comparing risk for the steel coil manufacturing process using statistical models for binary data
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 20
  start-page: 9
  year: 2013
  end-page: 15
  ident: b0035
  article-title: Prediction of mechanical properties of hot rolled strip by using semi-parametric single-index model
  publication-title: J. Iron Steel Res. Int.
– volume: 177
  start-page: 121
  year: 2006
  end-page: 125
  ident: b0050
  article-title: Prediction of coiling temperature on run-out table of hot strip mill using data mining
  publication-title: J. Mater. Process. Technol.
– volume: 17
  start-page: 1376
  year: 2020
  end-page: 1387
  ident: b0110
  article-title: Decomposition method for new single-machine scheduling problems from steel production systems
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 360
  start-page: 57
  year: 2016
  end-page: 72
  ident: b0235
  article-title: TRS: Temporal Request Scheduling with bounded delay assurance in a green cloud data center
  publication-title: Inf. Sci.
– reference: M. Redmond, UCI machine learning repository, 2009. https://archive-beta.ics.uci.edu/ml/datasets/communities+and+crime.
– volume: 8
  start-page: 1199
  year: 2021
  end-page: 1209
  ident: b0220
  article-title: Dual-objective mixed integer linear program and memetic algorithm for an industrial group scheduling problem
  publication-title: IEEE/CAA J. Autom. Sin.
– reference: Z. Zhao, X. Yong, S. Liu, and M. Zhou, Data-driven surplus material prediction in steel coil production, 2020 29th Wireless and Optical Communications Conference (WOCC), Newark, NJ, USA, 2020, pp. 1–6.
– volume: 16
  start-page: 729
  year: 2019
  end-page: 740
  ident: b0245
  article-title: Spatial task scheduling for cost minimization in distributed green cloud data centers
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 46
  start-page: 2251
  year: 2010
  end-page: 2258
  ident: b0060
  article-title: A useful control model for tandem hot metal strip rolling
  publication-title: IEEE Trans. Ind. Appl.
– volume: 31
  start-page: 274
  year: 2014
  end-page: 295
  ident: b0135
  article-title: Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion?
  publication-title: J. Classif.
– reference: Z. Peng, R. Luo, J. Hu, et al., Optimal Tracking Control of Nonlinear Multiagent Systems Using Internal Reinforce Q-Learning, IEEE Trans. Neural Netw. Learn. Syst., doi: 10.1109/TNNLS.2021.3055761.
– volume: 195
  start-page: 314
  year: 2008
  end-page: 320
  ident: b0040
  article-title: Hybrid neural–GA model to predict and minimise flatness value of hot rolled strips
  publication-title: J. Mater. Process. Technol.
– volume: 78
  start-page: 119
  year: 2019
  end-page: 131
  ident: b0045
  article-title: Application of neural networks for predicting hot-rolled strip crown
  publication-title: Appl. Soft Comput.
– volume: 193
  start-page: 104
  year: 2012
  end-page: 114
  ident: b0010
  article-title: Data-driven based model for flow prediction of steam system in steel industry
  publication-title: Inf. Sci.
– volume: 17
  start-page: 550
  year: 2020
  end-page: 561
  ident: b0005
  article-title: A stacked autoencoder with sparse Bayesian regression for end-point prediction problems in steelmaking process
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 5
  start-page: 794
  year: 2018
  end-page: 806
  ident: b0195
  article-title: Modified cuckoo search algorithm to solve economic power dispatch optimization problems
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 31
  start-page: 453
  year: 2015
  end-page: 490
  ident: b0155
  article-title: Data cleaning in the process industries
  publication-title: Rev. Chem. Eng.
– volume: 8
  start-page: 3774
  year: 2021
  end-page: 3785
  ident: b0200
  article-title: Energy-optimized partial computation offloading in mobile edge computing with genetic simulated-annealing-based particle swarm optimization
  publication-title: IEEE IoT J.
– volume: 59
  start-page: 1604
  year: 2019
  end-page: 1613
  ident: b0025
  article-title: A new data-driven roll force and roll torque model based on FEM and hybrid PSO-ELM for hot strip rolling
  publication-title: ISIJ Int.
– reference: M.E. Houle et al., Can shared-neighbor distances defeat the curse of dimensionality?, Proc. 22nd Int. Conf. Sci. Statistical DatabaseManag., Heidelberg, Germany, 2010, pp. 482–500.
– volume: 7
  start-page: 1380
  year: 2020
  end-page: 1393
  ident: b0240
  article-title: Fine-Grained Resource Provisioning and Task Scheduling for Heterogeneous Applications in Distributed Green Clouds
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 153
  year: 2021
  ident: b0165
  article-title: Hybrid safe–strong rules for efficient optimization in lasso-type problems
  publication-title: Computat. Statist. Data Anal.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: b0175
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Soft.
– volume: 50
  start-page: 3307
  year: 2020
  end-page: 3317
  ident: b0190
  article-title: Lexicographic multiobjective scatter search for the optimization of sequence-dependent selective disassembly subject to multiresource constraints
  publication-title: IEEE Trans. Cybern.
– year: 2020
  ident: b0230
  article-title: A branch and price algorithm for crane assignment and scheduling in slab yard
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 171
  start-page: 16
  year: 2017
  end-page: 25
  ident: b0095
  article-title: Review on data-driven modeling and monitoring for plant-wide industrial processes
  publication-title: Chemomet. Intellig. Laborat. Syst.
– volume: 14
  start-page: 1761
  year: 2017
  end-page: 1770
  ident: b0015
  article-title: Data-based predictive optimization for byproduct gas system in steel industry
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 20
  start-page: 1031
  year: 2019
  end-page: 1041
  ident: b0120
  article-title: Extracting significant mobile phone interaction patterns based on community structures
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 17
  start-page: 3890
  year: 2021
  end-page: 3900
  ident: b0070
  article-title: Attentional residual network for necking predictions in hot strip mills
  publication-title: IEEE Trans. Ind. Inf.
– volume: 111
  start-page: 146
  year: 2001
  end-page: 149
  ident: b0065
  article-title: Application of neural networks to predict the width variation in a plate mill
  publication-title: J. Mater. Process. Technol.
– year: 2018
  ident: b0140
  article-title: An Introduction to Generalized Linear Models
– volume: 19
  start-page: 251
  year: 2022
  end-page: 261
  ident: b0215
  article-title: Heuristic scheduling of batch production processes based on Petri nets and iterated greedy algorithms
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 18
  start-page: 804
  year: 2021
  end-page: 816
  ident: b0225
  article-title: Multiresource-constrained selective disassembly with maximal profit and minimal energy consumption
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 26
  start-page: 501
  year: 2011
  end-page: 507
  ident: b0115
  article-title: Evolutionary algorithm approaches to modeling of flow stress
  publication-title: Materials and Manufacturing Processes
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0160
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. Roy. Statist. Soc.: Series B (Methodological)
– volume: 93
  start-page: 3325
  year: 2017
  end-page: 3338
  ident: b0020
  article-title: Prediction of bending force in the hot strip rolling process using artificial neural network and genetic algorithm (ANN-GA)
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 46
  start-page: 2435
  year: 2016
  end-page: 2446
  ident: b0180
  article-title: Disassembly sequence optimization for large-scale products with multiresource constraints using scatter search and Petri nets
  publication-title: IEEE Trans. Cybern.
– volume: 17
  start-page: 16
  year: 2010
  end-page: 20
  ident: b0055
  article-title: Optimization of short stroke control preset for automatic width control of hot rolling mill
  publication-title: J. Iron. Steel Res. Int.
– volume: 35
  start-page: 13
  year: 2015
  end-page: 28
  ident: b0090
  article-title: GA-PARSIMONY: A GA-SVR approach with feature selection and parameter optimization to obtain parsimonious solutions for predicting temperature settings in a continuous annealing furnace
  publication-title: Appl. Soft Comput.
– volume: 171
  start-page: 16
  year: 2017
  ident: 10.1016/j.ins.2021.12.063_b0095
  article-title: Review on data-driven modeling and monitoring for plant-wide industrial processes
  publication-title: Chemomet. Intellig. Laborat. Syst.
  doi: 10.1016/j.chemolab.2017.09.021
– volume: 16
  start-page: 729
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2021.12.063_b0245
  article-title: Spatial task scheduling for cost minimization in distributed green cloud data centers
  publication-title: IEEE Trans. Automat. Sci. Eng.
  doi: 10.1109/TASE.2018.2857206
– volume: 17
  start-page: 550
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2021.12.063_b0005
  article-title: A stacked autoencoder with sparse Bayesian regression for end-point prediction problems in steelmaking process
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2935314
– ident: 10.1016/j.ins.2021.12.063_b0150
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.ins.2021.12.063_b0175
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Soft.
  doi: 10.18637/jss.v033.i01
– volume: 7
  start-page: 1380
  issue: 5
  year: 2020
  ident: 10.1016/j.ins.2021.12.063_b0240
  article-title: Fine-Grained Resource Provisioning and Task Scheduling for Heterogeneous Applications in Distributed Green Clouds
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003177
– volume: 61
  start-page: 6418
  issue: 11
  year: 2014
  ident: 10.1016/j.ins.2021.12.063_b0100
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2301773
– volume: 31
  start-page: 453
  issue: 5
  year: 2015
  ident: 10.1016/j.ins.2021.12.063_b0155
  article-title: Data cleaning in the process industries
  publication-title: Rev. Chem. Eng.
  doi: 10.1515/revce-2015-0022
– volume: 42
  start-page: 4687
  issue: 10
  year: 2015
  ident: 10.1016/j.ins.2021.12.063_b0080
  article-title: Modeling of steelmaking process with effective machine learning techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.01.030
– ident: 10.1016/j.ins.2021.12.063_b0085
  doi: 10.1109/WOCC48579.2020.9114917
– year: 2018
  ident: 10.1016/j.ins.2021.12.063_b0140
– volume: 18
  start-page: 804
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2021.12.063_b0225
  article-title: Multiresource-constrained selective disassembly with maximal profit and minimal energy consumption
  publication-title: IEEE Trans. Automat. Sci. Eng.
  doi: 10.1109/TASE.2020.2992220
– volume: 17
  start-page: 16
  issue: 6
  year: 2010
  ident: 10.1016/j.ins.2021.12.063_b0055
  article-title: Optimization of short stroke control preset for automatic width control of hot rolling mill
  publication-title: J. Iron. Steel Res. Int.
  doi: 10.1016/S1006-706X(10)60107-0
– volume: 15
  start-page: 1091
  issue: 3
  year: 2018
  ident: 10.1016/j.ins.2021.12.063_b0185
  article-title: Dual-objective program and scatter search for the optimization of disassembly sequences subject to multiresource constraints
  publication-title: IEEE Trans. Automat. Sci. Eng.
  doi: 10.1109/TASE.2017.2731981
– volume: 17
  start-page: 1376
  issue: 3
  year: 2020
  ident: 10.1016/j.ins.2021.12.063_b0110
  article-title: Decomposition method for new single-machine scheduling problems from steel production systems
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 50
  start-page: 3307
  issue: 7
  year: 2020
  ident: 10.1016/j.ins.2021.12.063_b0190
  article-title: Lexicographic multiobjective scatter search for the optimization of sequence-dependent selective disassembly subject to multiresource constraints
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2901834
– volume: 19
  start-page: 251
  issue: 1
  year: 2022
  ident: 10.1016/j.ins.2021.12.063_b0215
  article-title: Heuristic scheduling of batch production processes based on Petri nets and iterated greedy algorithms
  publication-title: IEEE Trans. Automat. Sci. Eng.
  doi: 10.1109/TASE.2020.3027532
– volume: 16
  start-page: 7602
  issue: 12
  year: 2020
  ident: 10.1016/j.ins.2021.12.063_b0075
  article-title: Prediction performance improvement via anomaly detection and correction of actual production data in iron ore sintering process
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.2979465
– volume: 8
  start-page: 3774
  issue: 5
  year: 2021
  ident: 10.1016/j.ins.2021.12.063_b0200
  article-title: Energy-optimized partial computation offloading in mobile edge computing with genetic simulated-annealing-based particle swarm optimization
  publication-title: IEEE IoT J.
– volume: 27
  start-page: 481
  issue: 4
  year: 2012
  ident: 10.1016/j.ins.2021.12.063_b0170
  article-title: A selective review of group selection in high-dimensional models
  publication-title: Statistical science
  doi: 10.1214/12-STS392
– volume: 59
  start-page: 1604
  issue: 9
  year: 2019
  ident: 10.1016/j.ins.2021.12.063_b0025
  article-title: A new data-driven roll force and roll torque model based on FEM and hybrid PSO-ELM for hot strip rolling
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2018-846
– volume: 26
  start-page: 501
  issue: 3
  year: 2011
  ident: 10.1016/j.ins.2021.12.063_b0115
  article-title: Evolutionary algorithm approaches to modeling of flow stress
  publication-title: Materials and Manufacturing Processes
  doi: 10.1080/10426914.2010.523914
– volume: 369
  year: 2020
  ident: 10.1016/j.ins.2021.12.063_b0210
  article-title: A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning
  publication-title: Appl. Math. Comput.
– volume: 46
  start-page: 2435
  issue: 11
  year: 2016
  ident: 10.1016/j.ins.2021.12.063_b0180
  article-title: Disassembly sequence optimization for large-scale products with multiresource constraints using scatter search and Petri nets
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2478486
– volume: 52
  start-page: 1862
  issue: 10
  year: 2012
  ident: 10.1016/j.ins.2021.12.063_b0030
  article-title: An on-line hierarchical decomposition based Bayesian model for quality prediction during hot strip rolling
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.52.1862
– volume: 193
  start-page: 104
  year: 2012
  ident: 10.1016/j.ins.2021.12.063_b0010
  article-title: Data-driven based model for flow prediction of steam system in steel industry
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.12.031
– volume: 360
  start-page: 57
  year: 2016
  ident: 10.1016/j.ins.2021.12.063_b0235
  article-title: TRS: Temporal Request Scheduling with bounded delay assurance in a green cloud data center
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.04.024
– volume: 20
  start-page: 9
  issue: 7
  year: 2013
  ident: 10.1016/j.ins.2021.12.063_b0035
  article-title: Prediction of mechanical properties of hot rolled strip by using semi-parametric single-index model
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(13)60119-3
– year: 2020
  ident: 10.1016/j.ins.2021.12.063_b0230
  article-title: A branch and price algorithm for crane assignment and scheduling in slab yard
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.ins.2021.12.063_b0160
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. Roy. Statist. Soc.: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 111
  start-page: 146
  issue: 1-3
  year: 2001
  ident: 10.1016/j.ins.2021.12.063_b0065
  article-title: Application of neural networks to predict the width variation in a plate mill
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(01)00499-X
– volume: 24
  start-page: 779
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2021.12.063_b0105
  article-title: Balancing the trade-off between accuracy and interpretability in software defect prediction
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-018-9638-1
– volume: 20
  start-page: 1031
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2021.12.063_b0120
  article-title: Extracting significant mobile phone interaction patterns based on community structures
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2018.2836800
– volume: 8
  start-page: 1199
  issue: 6
  year: 2021
  ident: 10.1016/j.ins.2021.12.063_b0220
  article-title: Dual-objective mixed integer linear program and memetic algorithm for an industrial group scheduling problem
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003539
– volume: 35
  start-page: 13
  year: 2015
  ident: 10.1016/j.ins.2021.12.063_b0090
  article-title: GA-PARSIMONY: A GA-SVR approach with feature selection and parameter optimization to obtain parsimonious solutions for predicting temperature settings in a continuous annealing furnace
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.012
– volume: 100
  start-page: 102
  year: 2012
  ident: 10.1016/j.ins.2021.12.063_b0145
  article-title: Fault diagnosis and comparing risk for the steel coil manufacturing process using statistical models for binary data
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2011.12.022
– volume: 14
  start-page: 1761
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2021.12.063_b0015
  article-title: Data-based predictive optimization for byproduct gas system in steel industry
  publication-title: IEEE Trans. Automat. Sci. Eng.
  doi: 10.1109/TASE.2016.2629505
– volume: 78
  start-page: 119
  year: 2019
  ident: 10.1016/j.ins.2021.12.063_b0045
  article-title: Application of neural networks for predicting hot-rolled strip crown
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.02.030
– volume: 93
  start-page: 3325
  issue: 9-12
  year: 2017
  ident: 10.1016/j.ins.2021.12.063_b0020
  article-title: Prediction of bending force in the hot strip rolling process using artificial neural network and genetic algorithm (ANN-GA)
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0711-5
– volume: 31
  start-page: 274
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2021.12.063_b0135
  article-title: Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion?
  publication-title: J. Classif.
  doi: 10.1007/s00357-014-9161-z
– year: 2013
  ident: 10.1016/j.ins.2021.12.063_b0125
– volume: 5
  start-page: 794
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2021.12.063_b0195
  article-title: Modified cuckoo search algorithm to solve economic power dispatch optimization problems
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2018.7511138
– ident: 10.1016/j.ins.2021.12.063_b0205
  doi: 10.1109/TNNLS.2021.3055761
– volume: 17
  start-page: 3890
  issue: 6
  year: 2021
  ident: 10.1016/j.ins.2021.12.063_b0070
  article-title: Attentional residual network for necking predictions in hot strip mills
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.3015003
– ident: 10.1016/j.ins.2021.12.063_b0130
  doi: 10.1007/978-3-642-13818-8_34
– volume: 46
  start-page: 2251
  issue: 6
  year: 2010
  ident: 10.1016/j.ins.2021.12.063_b0060
  article-title: A useful control model for tandem hot metal strip rolling
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2010.2072978
– volume: 177
  start-page: 121
  issue: 1-3
  year: 2006
  ident: 10.1016/j.ins.2021.12.063_b0050
  article-title: Prediction of coiling temperature on run-out table of hot strip mill using data mining
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2006.04.089
– volume: 153
  year: 2021
  ident: 10.1016/j.ins.2021.12.063_b0165
  article-title: Hybrid safe–strong rules for efficient optimization in lasso-type problems
  publication-title: Computat. Statist. Data Anal.
  doi: 10.1016/j.csda.2020.107063
– volume: 195
  start-page: 314
  issue: 1-3
  year: 2008
  ident: 10.1016/j.ins.2021.12.063_b0040
  article-title: Hybrid neural–GA model to predict and minimise flatness value of hot rolled strips
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.05.014
SSID ssj0004766
Score 2.6546752
Snippet Width deviation is an important metric for evaluating the quality of a hot-rolled strip in steel production systems. This paper considers a width deviation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 360
SubjectTerms Feature construction
Generalized linear regression
Genetic algorithm
Hierarchical clustering
Hot-rolled strip
Width deviation prediction
Title A machine learning and genetic algorithm-based method for predicting width deviation of hot-rolled strip in steel production systems
URI https://dx.doi.org/10.1016/j.ins.2021.12.063
Volume 589
WOSCitedRecordID wos000807272800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEBQQBYrmgDiAVqqfax8jVAQIVRwKCr1Y9j6Io9SOXKcKd_4M_5LZV-yWhwCJixOtn_J83nnsNzOEPGV5WqF7nFAmRELjkqc0l3lEZSzwR-sUU_Hm4zt2fJzNZvn7yeSbz4W5WLKmyTabfPVfRY1jKGydOvsX4t5eFAfwPwodtyh23P6R4KcvzgxBUvqOEDYJEY-Xpjjr8nPb1f38jGoFJlwLacM2XHV61aa34VnRz3VGVT2YlG1POx1mEDrBpF7pSAlCRC41x0vYIrSuMPT52OR1CU92t51JBtqi4RJ8wjsu1gM3qF6bmOy83tTbwdN5a0Y1C5fP16N4t4n1ntZfHMxdBAOd34H4YsJqPrXmEvNT27FUOzxWUdnZOWMhTUPb3stP34ltQeQm4Mh2J3C6PLJdWX5QEzZisUDfRldsDwMTEXYT7eXq23ox2_hdYWBUeXqN7IYsyXEC3Z2-OZq9HZJwmV0Y98_tl9ANmfDKjX5uBI0Mm5Pb5JbzSGBqkXSHTGSzR26O6lTukQOX3QLPYCRNcHrhLvk6BYc58JgDxBw4zMEVzIHFHOCVYMAcGMzBFnPQKhgwBwZzUDdgMAcD5sBh7h758Oro5OVr6tp7UB7mrKdlVqJzgm-DySBSmVJoGYdKoUmeZJyFkUzKMqh0CCLnmdIEgFixrFLRYazKgIvoPtlp2kY-IIB2tagkCkmkKpZcZOg38rRSWc5zmcbBPjn077vgrva9bsGyLDzJcVGgiAotoiIIC3yoffJ8e8rKFn753cGxF2LhviRrkRaIuF-f9vDfTntEbgyf0WOy03dreUCu84u-Pu-eOFx-BzWCwd8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+and+genetic+algorithm-based+method+for+predicting+width+deviation+of+hot-rolled+strip+in+steel+production+systems&rft.jtitle=Information+sciences&rft.au=Ji%2C+Yingjun&rft.au=Liu%2C+Shixin&rft.au=Zhou%2C+Mengchu&rft.au=Zhao%2C+Ziyan&rft.date=2022-04-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=589&rft.spage=360&rft.epage=375&rft_id=info:doi/10.1016%2Fj.ins.2021.12.063&rft.externalDocID=S0020025521012846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon