Complexity and algorithms for matching cut problems in graphs without long induced paths and cycles

In a graph, a (perfect) matching cut is an edge cut that is a (perfect) matching. matching cut (mc), respectively, perfect matching cut (pmc), is the problem of deciding whether a given graph has a matching cut, respectively, a perfect matching cut. The disconnected perfect matching problem (dpm) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences Jg. 156; S. 103723
Hauptverfasser: Le, Hoang-Oanh, Le, Van Bang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.03.2026
Schlagworte:
ISSN:0022-0000
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In a graph, a (perfect) matching cut is an edge cut that is a (perfect) matching. matching cut (mc), respectively, perfect matching cut (pmc), is the problem of deciding whether a given graph has a matching cut, respectively, a perfect matching cut. The disconnected perfect matching problem (dpm) is to decide if a graph has a perfect matching that contains a matching cut. Solving an open problem posed in [Lucke, Paulusma, Ries (ISAAC 2022, Algorithmica 2023)], we show that pmc is NP-complete in graphs without induced 14-vertex path P14. Our reduction also works simultaneously for mc and dpm, improving the previous hardness results of mc on P15-free graphs and of dpm on P19-free graphs to P14-free graphs for both problems. Actually, we prove a slightly stronger result: within P14-free 8-chordal graphs (graphs without chordless cycles of length at least 9), it is hard to distinguish between those without matching cuts (respectively, perfect matching cuts, disconnected perfect matchings) and those in which every matching cut is a perfect matching cut. Moreover, assuming the Exponential Time Hypothesis, none of these problems can be solved in 2o(n) time for n-vertex P14-free 8-chordal graphs. On the positive side, we show that, as for mc [Moshi (JGT 1989)], dpm and pmc are polynomially solvable when restricted to 4-chordal graphs. Together with the negative results, this partly answers an open question on the complexity of pmc in k-chordal graphs asked in [Le, Telle (WG 2021, TCS 2022) & Lucke, Paulusma, Ries (MFCS 2023, TCS 2024)].
AbstractList In a graph, a (perfect) matching cut is an edge cut that is a (perfect) matching. matching cut (mc), respectively, perfect matching cut (pmc), is the problem of deciding whether a given graph has a matching cut, respectively, a perfect matching cut. The disconnected perfect matching problem (dpm) is to decide if a graph has a perfect matching that contains a matching cut. Solving an open problem posed in [Lucke, Paulusma, Ries (ISAAC 2022, Algorithmica 2023)], we show that pmc is NP-complete in graphs without induced 14-vertex path P14. Our reduction also works simultaneously for mc and dpm, improving the previous hardness results of mc on P15-free graphs and of dpm on P19-free graphs to P14-free graphs for both problems. Actually, we prove a slightly stronger result: within P14-free 8-chordal graphs (graphs without chordless cycles of length at least 9), it is hard to distinguish between those without matching cuts (respectively, perfect matching cuts, disconnected perfect matchings) and those in which every matching cut is a perfect matching cut. Moreover, assuming the Exponential Time Hypothesis, none of these problems can be solved in 2o(n) time for n-vertex P14-free 8-chordal graphs. On the positive side, we show that, as for mc [Moshi (JGT 1989)], dpm and pmc are polynomially solvable when restricted to 4-chordal graphs. Together with the negative results, this partly answers an open question on the complexity of pmc in k-chordal graphs asked in [Le, Telle (WG 2021, TCS 2022) & Lucke, Paulusma, Ries (MFCS 2023, TCS 2024)].
ArticleNumber 103723
Author Le, Hoang-Oanh
Le, Van Bang
Author_xml – sequence: 1
  givenname: Hoang-Oanh
  surname: Le
  fullname: Le, Hoang-Oanh
  email: hoangoanhle@outlook.com
  organization: Independent Researcher, Berlin, Germany
– sequence: 2
  givenname: Van Bang
  orcidid: 0000-0002-3303-8326
  surname: Le
  fullname: Le, Van Bang
  email: van-bang.le@uni-rostock.de
  organization: Institut für Informatik, Universität Rostock, Rostock, Germany
BookMark eNp9kM9OAyEQxjnUxLb6Ap54ga3AdtmSeDGN_5ImXvRMKAwtm13YAFX79rKpZ-cyyXzfN5n5LdDMBw8I3VGyooTy-27V6ZRWjLCmDOqW1TM0J4SxipS6RouUOkIobXg9R3obhrGHH5fPWHmDVX8I0eXjkLANEQ8q66PzB6xPGY8x7HsoivP4ENV4TPi7WEOR-lA8zpuTBoNHlYs0bdNn3UO6QVdW9Qlu__oSfT4_fWxfq937y9v2cVdpJtpcqc2mFWsQFoyhnLK6AQtiL9ZtowWFlgliLd1zqxoqNkSRmlLDieANAFfW1EvELnt1DClFsHKMblDxLCmRExrZyQmNnNDIC5oSeriEoFz25SDKpB348oeLoLM0wf0X_wXpbnKv
Cites_doi 10.1002/jgt.3190130502
10.1007/s00453-020-00782-8
10.1016/j.tcs.2024.114795
10.1002/jgt.3190080106
10.1006/jcss.2001.1774
10.1007/s00453-023-01137-9
10.1016/j.tcs.2018.10.029
10.1002/jgt.20390
10.1016/j.tcs.2022.09.014
10.1016/j.tcs.2015.10.016
10.1287/moor.2020.0388
10.1016/j.ipl.2022.106294
10.1111/j.1749-6632.1970.tb56468.x
10.1016/0020-0190(79)90002-4
10.1006/jcss.2000.1727
10.1016/j.jcss.2021.07.005
10.1002/jgt.23167
10.1016/j.tcs.2024.114701
10.1007/s00453-025-01318-8
10.1016/j.tcs.2022.07.035
10.1016/j.tcs.2025.115429
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jcss.2025.103723
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
ExternalDocumentID 10_1016_j_jcss_2025_103723
S0022000025001059
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYJJ
AAYWO
ABBOA
ABDPE
ABEFU
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AETEA
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
LG9
LY7
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
TWZ
UPT
WH7
WUQ
XOL
XPP
YQT
ZCG
ZMT
ZU3
ZY4
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c297t-a88794e9fedd161235efe9b9475c91e7290ff1b6fa51980a0311d60965ee6afd3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001599082800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0000
IngestDate Sat Nov 29 07:09:42 EST 2025
Sat Nov 15 16:51:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords H-free graph
Matching cut
Disconnected perfect matching
k-chordal graph
Perfect matching cut
Computational complexity
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-a88794e9fedd161235efe9b9475c91e7290ff1b6fa51980a0311d60965ee6afd3
ORCID 0000-0002-3303-8326
OpenAccessLink https://dx.doi.org/10.1016/j.jcss.2025.103723
ParticipantIDs crossref_primary_10_1016_j_jcss_2025_103723
elsevier_sciencedirect_doi_10_1016_j_jcss_2025_103723
PublicationCentury 2000
PublicationDate March 2026
2026-03-00
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: March 2026
PublicationDecade 2020
PublicationTitle Journal of computer and system sciences
PublicationYear 2026
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bouquet, Picouleau (br0040) 2025; 108
Vazirani (br0280) 2024; 49
Goldreich (br0100) 2010
Bonnet, Chakraborty, Duron (br0020) 2024; 1010
Heggernes, Telle (br0130) 1998; 5
Schaefer (br0270) 1978
Aspvall, Plass, Tarjan (br0010) 1979; 8
Impagliazzo, Paturi, Zane (br0150) 2001; 63
Moret (br0250) 1998
Le, Telle (br0190) 2022; 931
Lucke, Paulusma, Ries (br0220) 2023; 85
Le, Le (br0180) 2023; vol. 14093
Graham (br0120) 1970; 175
Feghali (br0070) 2023; 179
Lucke (br0200) 2025; 1052
Vasek (br0060) 1984; 8
Le, Le (br0170) 2019; 770
Impagliazzo, Paturi (br0140) 2001; 62
Lucke, Paulusma, Ries (br0230) 2024; 1017
Chen, Hsieh, Le, Le, Peng (br0050) 2021; 83
Bonsma (br0030) 2009; 62
Golovach, Komusiewicz, Kratsch, Le (br0110) 2022; 123
Kratsch, Le (br0160) 2016; 609
Lucke, Paulusma, Ries (br0210) 2022; 936
Goldreich (br0090) 2006; vol. 3895
Feghali, Lucke, Paulusma, Ries (br0080) 2025; 87
Moshi (br0260) 1989; 13
Micali, Vazirani (br0240) 1980
Lucke (10.1016/j.jcss.2025.103723_br0210) 2022; 936
Vasek (10.1016/j.jcss.2025.103723_br0060) 1984; 8
Feghali (10.1016/j.jcss.2025.103723_br0080) 2025; 87
Goldreich (10.1016/j.jcss.2025.103723_br0100) 2010
Chen (10.1016/j.jcss.2025.103723_br0050) 2021; 83
Lucke (10.1016/j.jcss.2025.103723_br0230) 2024; 1017
Le (10.1016/j.jcss.2025.103723_br0170) 2019; 770
Feghali (10.1016/j.jcss.2025.103723_br0070) 2023; 179
Lucke (10.1016/j.jcss.2025.103723_br0200) 2025; 1052
Graham (10.1016/j.jcss.2025.103723_br0120) 1970; 175
Aspvall (10.1016/j.jcss.2025.103723_br0010) 1979; 8
Impagliazzo (10.1016/j.jcss.2025.103723_br0140) 2001; 62
Vazirani (10.1016/j.jcss.2025.103723_br0280) 2024; 49
Bonnet (10.1016/j.jcss.2025.103723_br0020) 2024; 1010
Le (10.1016/j.jcss.2025.103723_br0180) 2023; vol. 14093
Bonsma (10.1016/j.jcss.2025.103723_br0030) 2009; 62
Schaefer (10.1016/j.jcss.2025.103723_br0270) 1978
Bouquet (10.1016/j.jcss.2025.103723_br0040) 2025; 108
Moshi (10.1016/j.jcss.2025.103723_br0260) 1989; 13
Micali (10.1016/j.jcss.2025.103723_br0240) 1980
Impagliazzo (10.1016/j.jcss.2025.103723_br0150) 2001; 63
Lucke (10.1016/j.jcss.2025.103723_br0220) 2023; 85
Goldreich (10.1016/j.jcss.2025.103723_br0090) 2006; vol. 3895
Heggernes (10.1016/j.jcss.2025.103723_br0130) 1998; 5
Kratsch (10.1016/j.jcss.2025.103723_br0160) 2016; 609
Moret (10.1016/j.jcss.2025.103723_br0250) 1998
Golovach (10.1016/j.jcss.2025.103723_br0110) 2022; 123
Le (10.1016/j.jcss.2025.103723_br0190) 2022; 931
References_xml – volume: 609
  start-page: 328
  year: 2016
  end-page: 335
  ident: br0160
  article-title: Algorithms solving the matching cut problem
  publication-title: Theor. Comput. Sci.
– volume: 49
  start-page: 2009
  year: 2024
  end-page: 2047
  ident: br0280
  article-title: A theory of alternating paths and blossoms from the perspective of minimum length
  publication-title: Math. Oper. Res.
– volume: 8
  start-page: 51
  year: 1984
  end-page: 53
  ident: br0060
  article-title: Recognizing decomposable graphs
  publication-title: J. Graph Theory
– volume: 85
  start-page: 3290
  year: 2023
  end-page: 3322
  ident: br0220
  article-title: Finding matching cuts in
  publication-title: Algorithmica
– volume: 770
  start-page: 69
  year: 2019
  end-page: 78
  ident: br0170
  article-title: A complexity dichotomy for matching cut in (bipartite) graphs of fixed diameter
  publication-title: Theor. Comput. Sci.
– start-page: 216
  year: 1978
  end-page: 226
  ident: br0270
  article-title: The complexity of satisfiability problems
  publication-title: Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC1978)
– year: 2010
  ident: br0100
  article-title: P, NP, and NP-Completeness: The Basics of Complexity Theory
– volume: 936
  start-page: 33
  year: 2022
  end-page: 42
  ident: br0210
  article-title: On the complexity of matching cut for graphs of bounded radius and
  publication-title: Theor. Comput. Sci.
– volume: 1017
  year: 2024
  ident: br0230
  article-title: Dichotomies for maximum matching cut:
  publication-title: Theor. Comput. Sci.
– start-page: 17
  year: 1980
  end-page: 27
  ident: br0240
  article-title: An
  publication-title: 21st Annual Symposium on Foundations of Computer Science
– volume: 5
  start-page: 128
  year: 1998
  end-page: 142
  ident: br0130
  article-title: Partitioning graphs into generalized dominating sets
  publication-title: Nord. J. Comput.
– volume: 83
  start-page: 1238
  year: 2021
  end-page: 1255
  ident: br0050
  article-title: Matching cut in graphs with large minimum degree
  publication-title: Algorithmica
– volume: 179
  year: 2023
  ident: br0070
  article-title: A note on matching-cut in
  publication-title: Inf. Process. Lett.
– volume: 8
  start-page: 121
  year: 1979
  end-page: 123
  ident: br0010
  article-title: A linear-time algorithm for testing the truth of certain quantified Boolean formulas
  publication-title: Inf. Process. Lett.
– volume: 108
  start-page: 432
  year: 2025
  end-page: 462
  ident: br0040
  article-title: The complexity of the perfect matching-cut problem
  publication-title: J. Graph Theory
– volume: 1010
  year: 2024
  ident: br0020
  article-title: Cutting Barnette graphs perfectly is hard
  publication-title: Theor. Comput. Sci.
– volume: 1052
  year: 2025
  ident: br0200
  article-title: Matching cut and variants on bipartite graphs of bounded radius and diameter
  publication-title: Theor. Comput. Sci.
– year: 1998
  ident: br0250
  article-title: Theory of Computation
– volume: vol. 3895
  start-page: 254
  year: 2006
  end-page: 290
  ident: br0090
  article-title: On promise problems: a survey
  publication-title: Theoretical Computer Science, Essays in Memory of Shimon Even
– volume: 123
  start-page: 76
  year: 2022
  end-page: 102
  ident: br0110
  article-title: Refined notions of parameterized enumeration kernels with applications to matching cut enumeration
  publication-title: J. Comput. Syst. Sci.
– volume: 62
  start-page: 109
  year: 2009
  end-page: 126
  ident: br0030
  article-title: The complexity of the matching-cut problem for planar graphs and other graph classes
  publication-title: J. Graph Theory
– volume: 63
  start-page: 512
  year: 2001
  end-page: 530
  ident: br0150
  article-title: Which problems have strongly exponential complexity?
  publication-title: J. Comput. Syst. Sci.
– volume: 87
  start-page: 1199
  year: 2025
  end-page: 1221
  ident: br0080
  article-title: Matching cuts in graphs of high girth and
  publication-title: Algorithmica
– volume: 175
  start-page: 170
  year: 1970
  end-page: 186
  ident: br0120
  article-title: On primitive graphs and optimal vertex assignments
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 13
  start-page: 527
  year: 1989
  end-page: 536
  ident: br0260
  article-title: Matching cutsets in graphs
  publication-title: J. Graph Theory
– volume: 62
  start-page: 367
  year: 2001
  end-page: 375
  ident: br0140
  article-title: On the complexity of
  publication-title: J. Comput. Syst. Sci.
– volume: vol. 14093
  start-page: 417
  year: 2023
  end-page: 431
  ident: br0180
  article-title: Complexity results for matching cut problems in graphs without long induced paths
  publication-title: Graph-Theoretic Concepts in Computer Science - 49th International Workshop, WG 2023
– volume: 931
  start-page: 117
  year: 2022
  end-page: 130
  ident: br0190
  article-title: The perfect matching cut problem revisited
  publication-title: Theor. Comput. Sci.
– volume: vol. 14093
  start-page: 417
  year: 2023
  ident: 10.1016/j.jcss.2025.103723_br0180
  article-title: Complexity results for matching cut problems in graphs without long induced paths
– volume: 13
  start-page: 527
  issue: 5
  year: 1989
  ident: 10.1016/j.jcss.2025.103723_br0260
  article-title: Matching cutsets in graphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.3190130502
– volume: 83
  start-page: 1238
  issue: 5
  year: 2021
  ident: 10.1016/j.jcss.2025.103723_br0050
  article-title: Matching cut in graphs with large minimum degree
  publication-title: Algorithmica
  doi: 10.1007/s00453-020-00782-8
– volume: 1017
  year: 2024
  ident: 10.1016/j.jcss.2025.103723_br0230
  article-title: Dichotomies for maximum matching cut: H-freeness, bounded diameter, bounded radius
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2024.114795
– volume: 8
  start-page: 51
  issue: 1
  year: 1984
  ident: 10.1016/j.jcss.2025.103723_br0060
  article-title: Recognizing decomposable graphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.3190080106
– start-page: 17
  year: 1980
  ident: 10.1016/j.jcss.2025.103723_br0240
  article-title: An O(|V|⋅|E|) algorithm for finding maximum matching in general graphs
– volume: 63
  start-page: 512
  issue: 4
  year: 2001
  ident: 10.1016/j.jcss.2025.103723_br0150
  article-title: Which problems have strongly exponential complexity?
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2001.1774
– volume: 85
  start-page: 3290
  issue: 10
  year: 2023
  ident: 10.1016/j.jcss.2025.103723_br0220
  article-title: Finding matching cuts in H-free graphs
  publication-title: Algorithmica
  doi: 10.1007/s00453-023-01137-9
– volume: 770
  start-page: 69
  year: 2019
  ident: 10.1016/j.jcss.2025.103723_br0170
  article-title: A complexity dichotomy for matching cut in (bipartite) graphs of fixed diameter
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2018.10.029
– volume: 62
  start-page: 109
  issue: 2
  year: 2009
  ident: 10.1016/j.jcss.2025.103723_br0030
  article-title: The complexity of the matching-cut problem for planar graphs and other graph classes
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20390
– volume: 5
  start-page: 128
  issue: 2
  year: 1998
  ident: 10.1016/j.jcss.2025.103723_br0130
  article-title: Partitioning graphs into generalized dominating sets
  publication-title: Nord. J. Comput.
– year: 1998
  ident: 10.1016/j.jcss.2025.103723_br0250
– volume: 936
  start-page: 33
  year: 2022
  ident: 10.1016/j.jcss.2025.103723_br0210
  article-title: On the complexity of matching cut for graphs of bounded radius and H-free graphs
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2022.09.014
– year: 2010
  ident: 10.1016/j.jcss.2025.103723_br0100
– volume: 609
  start-page: 328
  year: 2016
  ident: 10.1016/j.jcss.2025.103723_br0160
  article-title: Algorithms solving the matching cut problem
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2015.10.016
– volume: 49
  start-page: 2009
  issue: 3
  year: 2024
  ident: 10.1016/j.jcss.2025.103723_br0280
  article-title: A theory of alternating paths and blossoms from the perspective of minimum length
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2020.0388
– volume: 179
  year: 2023
  ident: 10.1016/j.jcss.2025.103723_br0070
  article-title: A note on matching-cut in Pt-free graphs
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2022.106294
– volume: 175
  start-page: 170
  issue: 1
  year: 1970
  ident: 10.1016/j.jcss.2025.103723_br0120
  article-title: On primitive graphs and optimal vertex assignments
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1970.tb56468.x
– volume: 8
  start-page: 121
  issue: 3
  year: 1979
  ident: 10.1016/j.jcss.2025.103723_br0010
  article-title: A linear-time algorithm for testing the truth of certain quantified Boolean formulas
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(79)90002-4
– volume: 62
  start-page: 367
  issue: 2
  year: 2001
  ident: 10.1016/j.jcss.2025.103723_br0140
  article-title: On the complexity of k-SAT
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2000.1727
– start-page: 216
  year: 1978
  ident: 10.1016/j.jcss.2025.103723_br0270
  article-title: The complexity of satisfiability problems
– volume: vol. 3895
  start-page: 254
  year: 2006
  ident: 10.1016/j.jcss.2025.103723_br0090
  article-title: On promise problems: a survey
– volume: 123
  start-page: 76
  year: 2022
  ident: 10.1016/j.jcss.2025.103723_br0110
  article-title: Refined notions of parameterized enumeration kernels with applications to matching cut enumeration
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2021.07.005
– volume: 108
  start-page: 432
  issue: 3
  year: 2025
  ident: 10.1016/j.jcss.2025.103723_br0040
  article-title: The complexity of the perfect matching-cut problem
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.23167
– volume: 1010
  year: 2024
  ident: 10.1016/j.jcss.2025.103723_br0020
  article-title: Cutting Barnette graphs perfectly is hard
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2024.114701
– volume: 87
  start-page: 1199
  year: 2025
  ident: 10.1016/j.jcss.2025.103723_br0080
  article-title: Matching cuts in graphs of high girth and H-free graphs
  publication-title: Algorithmica
  doi: 10.1007/s00453-025-01318-8
– volume: 931
  start-page: 117
  year: 2022
  ident: 10.1016/j.jcss.2025.103723_br0190
  article-title: The perfect matching cut problem revisited
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2022.07.035
– volume: 1052
  year: 2025
  ident: 10.1016/j.jcss.2025.103723_br0200
  article-title: Matching cut and variants on bipartite graphs of bounded radius and diameter
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2025.115429
SSID ssj0011563
Score 2.445594
Snippet In a graph, a (perfect) matching cut is an edge cut that is a (perfect) matching. matching cut (mc), respectively, perfect matching cut (pmc), is the problem...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 103723
SubjectTerms Computational complexity
Disconnected perfect matching
H-free graph
k-chordal graph
Matching cut
Perfect matching cut
Title Complexity and algorithms for matching cut problems in graphs without long induced paths and cycles
URI https://dx.doi.org/10.1016/j.jcss.2025.103723
Volume 156
WOSCitedRecordID wos001599082800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0022-0000
  databaseCode: AIEXJ
  dateStart: 20211213
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0011563
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB7BlgMceBQqyks-cFsFbZyXfSyoqCBUOBS0t8hrO-2uqmy1m0Xl3zPjcXa75SFA4hJFVpxI830ZT5yZbwBeytRrhzgnEn1dkjfOJcamCIg0eJ5nWVm40GyiOj5W47H-FLttLkM7gapt1eWlvvivUOMYgk2ls38B9_qmOIDnCDoeEXY8_hHw9IaTymXHykrm_HS-mHZnLLwwxACVsyftqhvGbjIhJTYoV3OtG6Uqn89DrYtbUX4AtS1mLWf7jbLofhHR2tghIlzJEtHDuMKuI_cPYQP1aG7a0-Sjac-2x7-gt3lt4mIa9yJkuUnG4g2yvkhmK4czFAzQurjldFlO_AcHznsJs1czuyQxdVkEVQAuSb4mjE3_manQiKI46vOpb8KOrAqtBrBz8O5w_H79NwkflvWq8TQhFk9xnt_1J_08QLkSdJzch7vRtuKAUX4AN3y7C_f6ThwiOuZduHNFVvIh2A0FBEIhNhQQSAHRU0AgBURPATFtBVNARAoIooCIFBCBAuFuTIFH8Pnt4cmboyQ200is1FWXGFxNdO51451LSXOn8I3XE51XhdWpx2-sUdOkk7IxGNOrkUFnn7qStIG8L_G9zfZg0M5b_xiEU85LZaVy2SQfVVoZhXGgbLJmkmpbuX0Y9hasL1gzpe6TCWc12bsme9ds730oeiPXkZMczdXIid_Me_KP857C7Q11n8GgW6z8c7hlv3bT5eJFpM53leR_ig
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+and+algorithms+for+matching+cut+problems+in+graphs+without+long+induced+paths+and+cycles&rft.jtitle=Journal+of+computer+and+system+sciences&rft.au=Le%2C+Hoang-Oanh&rft.au=Le%2C+Van+Bang&rft.date=2026-03-01&rft.pub=Elsevier+Inc&rft.issn=0022-0000&rft.volume=156&rft_id=info:doi/10.1016%2Fj.jcss.2025.103723&rft.externalDocID=S0022000025001059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0000&client=summon