Constrained multi-objective optimization of short-term crude oil scheduling with dual pipelines and charging tank maintenance requirement
For the short-term crude oil scheduling problem, it is difficult to guarantee the feasibility of a schedule due to complicated constraints. Meanwhile, uncertainty is a very important concern in refineries, such as unexpected breakdown of charging tanks. Therefore, it is a great challenge to make a s...
Uloženo v:
| Vydáno v: | Information sciences Ročník 588; s. 381 - 404 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.04.2022
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For the short-term crude oil scheduling problem, it is difficult to guarantee the feasibility of a schedule due to complicated constraints. Meanwhile, uncertainty is a very important concern in refineries, such as unexpected breakdown of charging tanks. Therefore, it is a great challenge to make a schedule feasible. Most existing works on multi-objective optimization of short-term crude oil scheduling are developed for refineries processing low-fusion-point oil (L-oil) only and little is done for the case with dual pipelines for processing both L-oil and high-fusion-point oil (H-oil). With five objectives and many constraints, it is challenging for a metaheuristic algorithm to find a feasible schedule. To solve this problem, in this work, constraint violation is used to describe the degree of constraint violation. Thus, an adaptive enhanced selection pressure algorithm based on NSGA-II-CDP (NSGA-II-APE) is proposed to efficiently solve the problem for processing both L-oil and H-oil. This algorithm can effectively enhance the selection pressure in the later iterations. Industrial case problems are used to test the proposed method and compare its performance with 11 state-of-the-art constrained multi-objective evolution algorithms (CMOEAs). Results show its superiority over the existing ones in terms of convergence, solution diversity, and time efficiency. |
|---|---|
| ISSN: | 0020-0255 1872-6291 |
| DOI: | 10.1016/j.ins.2021.12.067 |