Multi-view representation model based on graph autoencoder

Graph representation learning is a hot topic in non-Euclidean data in various domains, such as social networks, biological networks, etc. When some data labels are missing, graph autoencoder and graph variational autoencoder can perform outstanding abilities on node clustering or link prediction tas...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 632; s. 439 - 453
Hlavní autoři: Li, Jingci, Lu, Guangquan, Wu, Zhengtian, Ling, Fuqing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.06.2023
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Graph representation learning is a hot topic in non-Euclidean data in various domains, such as social networks, biological networks, etc. When some data labels are missing, graph autoencoder and graph variational autoencoder can perform outstanding abilities on node clustering or link prediction tasks. However, most existing graph representation learning ignores data's multi-modal features and takes the node features and graph structure features as one view. Besides, most graph autoencoders only reconstruct the node feature matrix or adjacency matrix, which does not fully use the hidden representation information. In this paper, we propose a multi-view representation model based on graph autoencoder, which can employ the global structure topology, latent local topology, and feature relative information. Meanwhile, we add another decoder to reconstruct the node feature matrix as an auxiliary task. In this way, the proposed framework can utilize the learned representation sufficiently. We validate the effectiveness of our framework on four datasets, and the experimental results demonstrate superior performance compared with other advanced frameworks.
AbstractList Graph representation learning is a hot topic in non-Euclidean data in various domains, such as social networks, biological networks, etc. When some data labels are missing, graph autoencoder and graph variational autoencoder can perform outstanding abilities on node clustering or link prediction tasks. However, most existing graph representation learning ignores data's multi-modal features and takes the node features and graph structure features as one view. Besides, most graph autoencoders only reconstruct the node feature matrix or adjacency matrix, which does not fully use the hidden representation information. In this paper, we propose a multi-view representation model based on graph autoencoder, which can employ the global structure topology, latent local topology, and feature relative information. Meanwhile, we add another decoder to reconstruct the node feature matrix as an auxiliary task. In this way, the proposed framework can utilize the learned representation sufficiently. We validate the effectiveness of our framework on four datasets, and the experimental results demonstrate superior performance compared with other advanced frameworks.
Author Lu, Guangquan
Wu, Zhengtian
Li, Jingci
Ling, Fuqing
Author_xml – sequence: 1
  givenname: Jingci
  surname: Li
  fullname: Li, Jingci
  email: dadadacc527@163.com
  organization: Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China
– sequence: 2
  givenname: Guangquan
  orcidid: 0000-0001-6908-6269
  surname: Lu
  fullname: Lu, Guangquan
  email: lugq@mailbox.gxnu.edu.cn
  organization: Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China
– sequence: 3
  givenname: Zhengtian
  orcidid: 0000-0001-7702-5730
  surname: Wu
  fullname: Wu, Zhengtian
  email: wzht8@mail.usts.edu.cn
  organization: Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
– sequence: 4
  givenname: Fuqing
  surname: Ling
  fullname: Ling, Fuqing
  email: LingFQ123@163.com
  organization: Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China
BookMark eNp9kMFOwzAMhiM0JLrBA3DrC7Q46ZI0cEITDKQhLnCOssSFTF07JRmItyfTOHHYxZb167P1eUomwzggIdcUagpU3GxqP8SaAWtqYDUodkYK2kpWCabohBQADCpgnF-QaYwbAJhLIQpy-7Lvk6--PH6XAXcBIw7JJD8O5XZ02JdrE9GVefwIZvdZmn0acbA5CpfkvDN9xKu_PiPvjw9vi6dq9bp8XtyvKsuUTJURijHkrbPMrFWn8uFG8IYb2mLHhZVKOkmpm7cCROMaKXNxds6pbYUD08wIPe61YYwxYKd3wW9N-NEU9EFeb3SW1wd5DUxn-czIf4z1R60UjO9PkndHErNSfkvQ0fpsjM4HtEm70Z-gfwFrA3YJ
CitedBy_id crossref_primary_10_1007_s10115_023_01979_3
crossref_primary_10_1016_j_ins_2024_121705
crossref_primary_10_1016_j_ins_2024_120739
crossref_primary_10_1021_acsomega_5c03029
crossref_primary_10_1007_s10115_025_02494_3
crossref_primary_10_1145_3663364
crossref_primary_10_1007_s10044_025_01517_7
crossref_primary_10_26599_TST_2023_9010142
crossref_primary_10_1109_ACCESS_2024_3447233
crossref_primary_10_1016_j_neunet_2025_107418
crossref_primary_10_1016_j_knosys_2025_113675
crossref_primary_10_1016_j_ins_2024_120780
crossref_primary_10_1145_3733604
crossref_primary_10_1016_j_ins_2024_120210
crossref_primary_10_1109_TCE_2024_3352186
crossref_primary_10_1016_j_ins_2025_122448
crossref_primary_10_1016_j_neucom_2025_131378
crossref_primary_10_1109_JBHI_2024_3424848
crossref_primary_10_1016_j_neucom_2024_127390
crossref_primary_10_1016_j_ipm_2024_103932
crossref_primary_10_1016_j_knosys_2023_111132
Cites_doi 10.1016/j.inffus.2021.07.013
10.1007/s00521-018-3934-y
10.1109/TKDE.2019.2903810
10.1093/comjnl/bxab104
10.1016/j.ipm.2022.102953
10.1016/j.neunet.2020.08.021
10.1109/TNSE.2021.3115104
10.1109/TKDE.2019.2957755
10.1007/s10618-010-0210-x
10.1109/ACCESS.2020.3018033
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2023.02.092
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 453
ExternalDocumentID 10_1016_j_ins_2023_02_092
S0020025523002852
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-a6922e58dc2ab9f904736535a18ef56c797d711d486063d3773d3dc451c86d0a3
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000954456000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:57:12 EST 2025
Sat Nov 29 06:56:36 EST 2025
Fri Feb 23 02:38:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph representation learning
Graph autoencoder
Unsupervised learning
Multi-view learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-a6922e58dc2ab9f904736535a18ef56c797d711d486063d3773d3dc451c86d0a3
ORCID 0000-0001-6908-6269
0000-0001-7702-5730
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_ins_2023_02_092
crossref_citationtrail_10_1016_j_ins_2023_02_092
elsevier_sciencedirect_doi_10_1016_j_ins_2023_02_092
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tang, Liu (br0500) 2011; 23
Lu, Huang (br0070) 2021; 64
Kipf, Welling (br0200) 2016
Wu, Souza, Zhang, Fifty, Yu, Weinberger (br0250) 2019
Jin, Derr, Wang, Ma, Liu, Tang (br0290) 2021
Gonzalez, Gong, Laponogov, Veselkov, Bronstein (br0340) 2020
Veličković, Cucurull, Casanova, Romero, Liò, Bengio (br0110) 2018
Yang, Qiu, Song, Tao, Wang (br0160) 2020
Weng, Zhang, Dou (br0320) 2020; 8
Wang, Pan, Long, Zhu, Jiang (br0230) 2017
Glorot, Bengio (br0490) 2010
Li, Han, Wu (br0240) 2018
Lu, Li, Wei (br0060) 2022; 59
Ahn, Kim (br0450) 2021
Page, Brin, Motwani, Winograd (br0300) 1999
Xuan, Wang, Zhao, Yuan, Fu, Ruan, Chen (br0360) 2019; 33
Ma, Xiao, Zhou, Wang (br0350) 2018
Wang, Chen, Ma, Zhou, Ruan, Chen, Xuan (br0370) 2021; 8
Zaremba, Sutskever, Vinyals (br0030) 2014
Fan, Wang, Shi, Lu, Lin, Wang (br0390) 2020
Salha, Limnios, Hennequin, Tran, Vazirgiannis (br0330) 2019
Hasanzadeh, Hajiramezanali, Narayanan, Duffield, Zhou, Qian (br0440) 2019
Peng, Hu, Kong, Gan, Mo, Shi, Zhu (br0040) 2022
Kipf, Welling (br0100) 2017
Salha, Hennequin, Vazirgiannis (br0310) 2019
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (br0210) 2014; 3
Pan, Hu, Long, Jiang, Yao, Zhang (br0190) 2018
Park, Lee, Chang, Lee, Choi (br0220) 2019
Yang, Wang, Song, Yuan, Tao (br0180) 2019
Perozzi, Al-Rfou, Skiena (br0420) 2014
Wang, Yang, Liu (br0380) 2019; 32
Defferrard, Bresson, Vandergheynst (br0090) 2016; 29
Xie, Zhang, Gong, Tang, Han (br0400) 2020; 132
Wang, Zhu, Bo, Cui, Shi, Pei (br0150) 2020
Gilmer, Schoenholz, Riley, Vinyals, Dahl (br0130) 2017
Lu, Gan, Yin, Luo, Li, Zhao (br0010) 2020; 32
Bruna, Zaremba, Szlam, LeCun (br0050) 2014
Li, Muller, Thabet, Ghanem (br0260) 2019
Xu, Ruan, Körpeoglu, Kumar, Achan (br0120) ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020
Shi, Fan, Kwok (br0430) 2020; vol. 34
Pan, Shi, Dokmanic (br0460) 2021
Xia, Pan, Du, Yin (br0470) 2014; vol. 28
Kingma, Ba (br0480) 2014
Luan, Zhao, Chang, Precup (br0270) 2019
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (br0410) 2016
Hassani, Khasahmadi (br0280) 2020
Gan, Hu, Mo, Kang, Peng, Zhu, Zhu (br0140) 2022
Yang, Feng, Song, Wang (br0170) 2020
Albawi, Mohammed, Al-Zawi (br0020) 2017
Zhu, Ma, Yuan, Zhu (br0080) 2022; 77
Salha (10.1016/j.ins.2023.02.092_br0330) 2019
Glorot (10.1016/j.ins.2023.02.092_br0490) 2010
Gonzalez (10.1016/j.ins.2023.02.092_br0340)
Defferrard (10.1016/j.ins.2023.02.092_br0090) 2016; 29
Wang (10.1016/j.ins.2023.02.092_br0150) 2020
Wang (10.1016/j.ins.2023.02.092_br0380) 2019; 32
Tang (10.1016/j.ins.2023.02.092_br0500) 2011; 23
Park (10.1016/j.ins.2023.02.092_br0220) 2019
Kingma (10.1016/j.ins.2023.02.092_br0480) 2014
Jin (10.1016/j.ins.2023.02.092_br0290) 2021
Wang (10.1016/j.ins.2023.02.092_br0370) 2021; 8
Pan (10.1016/j.ins.2023.02.092_br0460)
Yang (10.1016/j.ins.2023.02.092_br0180) 2019
Hassani (10.1016/j.ins.2023.02.092_br0280) 2020
Xuan (10.1016/j.ins.2023.02.092_br0360) 2019; 33
Lu (10.1016/j.ins.2023.02.092_br0060) 2022; 59
Hasanzadeh (10.1016/j.ins.2023.02.092_br0440) 2019
Fan (10.1016/j.ins.2023.02.092_br0390) 2020
Xia (10.1016/j.ins.2023.02.092_br0470) 2014; vol. 28
Goodfellow (10.1016/j.ins.2023.02.092_br0210) 2014; 3
Kipf (10.1016/j.ins.2023.02.092_br0200) 2016
Luan (10.1016/j.ins.2023.02.092_br0270) 2019
Yang (10.1016/j.ins.2023.02.092_br0160) 2020
Lu (10.1016/j.ins.2023.02.092_br0070) 2021; 64
Pan (10.1016/j.ins.2023.02.092_br0190) 2018
Wang (10.1016/j.ins.2023.02.092_br0230) 2017
Zhu (10.1016/j.ins.2023.02.092_br0080) 2022; 77
Shi (10.1016/j.ins.2023.02.092_br0430) 2020; vol. 34
Ahn (10.1016/j.ins.2023.02.092_br0450) 2021
Bruna (10.1016/j.ins.2023.02.092_br0050) 2014
Peng (10.1016/j.ins.2023.02.092_br0040) 2022
Zaremba (10.1016/j.ins.2023.02.092_br0030)
Lu (10.1016/j.ins.2023.02.092_br0010) 2020; 32
Page (10.1016/j.ins.2023.02.092_br0300) 1999
Albawi (10.1016/j.ins.2023.02.092_br0020) 2017
Xu (10.1016/j.ins.2023.02.092_br0120) 2020
Perozzi (10.1016/j.ins.2023.02.092_br0420) 2014
Xie (10.1016/j.ins.2023.02.092_br0400) 2020; 132
Yang (10.1016/j.ins.2023.02.092_br0170) 2020
Abadi (10.1016/j.ins.2023.02.092_br0410) 2016
Kipf (10.1016/j.ins.2023.02.092_br0100) 2017
Weng (10.1016/j.ins.2023.02.092_br0320) 2020; 8
Veličković (10.1016/j.ins.2023.02.092_br0110) 2018
Wu (10.1016/j.ins.2023.02.092_br0250) 2019
Gan (10.1016/j.ins.2023.02.092_br0140) 2022
Salha (10.1016/j.ins.2023.02.092_br0310) 2019
Li (10.1016/j.ins.2023.02.092_br0260) 2019
Gilmer (10.1016/j.ins.2023.02.092_br0130) 2017
Li (10.1016/j.ins.2023.02.092_br0240) 2018
Ma (10.1016/j.ins.2023.02.092_br0350) 2018
References_xml – volume: 33
  start-page: 2776
  year: 2019
  end-page: 2789
  ident: br0360
  article-title: Subgraph networks with application to structural feature space expansion
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 4116
  year: 2020
  end-page: 4126
  ident: br0280
  article-title: Contrastive multi-view representation learning on graphs
  publication-title: International Conference on Machine Learning
– volume: 132
  start-page: 180
  year: 2020
  end-page: 189
  ident: br0400
  article-title: Mgat: multi-view graph attention networks
  publication-title: Neural Netw.
– start-page: 10711
  year: 2019
  end-page: 10722
  ident: br0440
  article-title: Semi-implicit graph variational auto-encoders
  publication-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019
– start-page: 6519
  year: 2019
  end-page: 6528
  ident: br0220
  article-title: Symmetric graph convolutional autoencoder for unsupervised graph representation learning
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2019
  ident: br0310
  article-title: Keep it simple: graph autoencoders without graph convolutional networks
  publication-title: Workshop on Graph Representation Learning, 33rd Conference on Neural Information Processing Systems
– start-page: 10943
  year: 2019
  end-page: 10953
  ident: br0270
  article-title: Break the ceiling: stronger multi-scale deep graph convolutional networks
  publication-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019
– start-page: 3070
  year: 2020
  end-page: 3076
  ident: br0390
  article-title: One2multi graph autoencoder for multi-view graph clustering
  publication-title: Proceedings of the Web Conference 2020
– start-page: 249
  year: 2010
  end-page: 256
  ident: br0490
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings
– start-page: 4099
  year: 2019
  end-page: 4105
  ident: br0180
  article-title: SPAGAN: shortest path graph attention network
  publication-title: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
– start-page: 148
  year: 2021
  end-page: 156
  ident: br0290
  article-title: Node similarity preserving graph convolutional networks
  publication-title: Proceedings of the 14th ACM International Conference on Web Search and Data Mining
– volume: 8
  start-page: 3478
  year: 2021
  end-page: 3490
  ident: br0370
  article-title: Sampling subgraph network with application to graph classification
  publication-title: IEEE Trans. Netw. Sci. Eng.
– start-page: 889
  year: 2017
  end-page: 898
  ident: br0230
  article-title: Mgae: marginalized graph autoencoder for graph clustering
  publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
– volume: 77
  start-page: 53
  year: 2022
  end-page: 61
  ident: br0080
  article-title: Interpretable learning based dynamic graph convolutional networks for Alzheimer's disease analysis
  publication-title: Inf. Fusion
– start-page: 3477
  year: 2018
  end-page: 3483
  ident: br0350
  article-title: Drug similarity integration through attentive multi-view graph auto-encoders
  publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence Organization
– year: 2018
  ident: br0240
  article-title: Deeper insights into graph convolutional networks for semi-supervised learning
  publication-title: Thirty-Second AAAI Conference on Artificial Intelligence
– start-page: 589
  year: 2019
  end-page: 598
  ident: br0330
  article-title: Gravity-inspired graph autoencoders for directed link prediction
  publication-title: Proceedings of the 28th ACM International Conference on Information and Knowledge Management
– year: 2022
  ident: br0140
  article-title: Multigraph fusion for dynamic graph convolutional network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1243
  year: 2020
  end-page: 1253
  ident: br0150
  article-title: Am-gcn: adaptive multi-channel graph convolutional networks
  publication-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– volume: vol. 34
  start-page: 906
  year: 2020
  end-page: 913
  ident: br0430
  article-title: Effective decoding in graph auto-encoder using triadic closure
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 32
  start-page: 1116
  year: 2019
  end-page: 1129
  ident: br0380
  article-title: Gmc: graph-based multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2022
  ident: br0040
  article-title: Reverse graph learning for graph neural network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 23
  start-page: 447
  year: 2011
  end-page: 478
  ident: br0500
  article-title: Leveraging social media networks for classification
  publication-title: Data Min. Knowl. Discov.
– year: 2014
  ident: br0030
  article-title: Recurrent neural network regularization
– start-page: 2827
  year: 2021
  end-page: 2831
  ident: br0450
  article-title: Variational graph normalized autoencoders
  publication-title: Proceedings of the 30th ACM International Conference on Information & Knowledge Management
– volume: 8
  start-page: 152637
  year: 2020
  end-page: 152645
  ident: br0320
  article-title: Adversarial attention-based variational graph autoencoder
  publication-title: IEEE Access
– start-page: 701
  year: 2014
  end-page: 710
  ident: br0420
  article-title: Deepwalk: online learning of social representations
  publication-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 265
  year: 2016
  end-page: 283
  ident: br0410
  article-title: Tensorflow: a system for large-scale machine learning
  publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)
– year: 2018
  ident: br0110
  article-title: Graph attention networks
  publication-title: International Conference on Learning Representations
– year: 2014
  ident: br0050
  article-title: Spectral networks and locally connected networks on graphs
  publication-title: 2nd International Conference on Learning Representations
– volume: 32
  start-page: 6467
  year: 2020
  end-page: 6480
  ident: br0010
  article-title: Multi-task learning using a hybrid representation for text classification
  publication-title: Neural Comput. Appl.
– volume: 64
  start-page: 1069
  year: 2021
  end-page: 1079
  ident: br0070
  article-title: Learning representation from concurrence-words graph for aspect sentiment classification
  publication-title: Comput. J.
– start-page: 6861
  year: 2019
  end-page: 6871
  ident: br0250
  article-title: Simplifying graph convolutional networks
  publication-title: International Conference on Machine Learning
– start-page: 1263
  year: 2017
  end-page: 1272
  ident: br0130
  article-title: Neural message passing for quantum chemistry
  publication-title: International Conference on Machine Learning
– volume: vol. 28
  year: 2014
  ident: br0470
  article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 1999
  ident: br0300
  article-title: The pagerank citation ranking: Bringing order to the web
– year: 2020
  ident: br0340
  article-title: Graph attentional autoencoder for anticancer hyperfood prediction
– year: 2021
  ident: br0460
  article-title: Neural link prediction with walk pooling
– volume: 59
  year: 2022
  ident: br0060
  article-title: Aspect sentiment analysis with heterogeneous graph neural networks
  publication-title: Inf. Process. Manag.
– year: 2017
  ident: br0100
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 3
  year: 2014
  ident: br0210
  article-title: Generative adversarial networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 9267
  year: 2019
  end-page: 9276
  ident: br0260
  article-title: Deepgcns: can gcns go as deep as cnns?
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2014
  ident: br0480
  article-title: Adam: a method for stochastic optimization
  publication-title: Comput. Sci.
– start-page: 20286
  year: 2020
  end-page: 20296
  ident: br0170
  article-title: Factorizable graph convolutional networks
  publication-title: Advances in Neural Information Processing Systems, vol. 33
– start-page: 2609
  year: 2018
  end-page: 2615
  ident: br0190
  article-title: Adversarially regularized graph autoencoder for graph embedding
  publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
– start-page: 1
  year: 2017
  end-page: 6
  ident: br0020
  article-title: Understanding of a convolutional neural network
  publication-title: 2017 International Conference on Engineering and Technology (ICET)
– year: 2020
  ident: br0160
  article-title: Distilling knowledge from graph convolutional networks
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 29
  start-page: 3844
  year: 2016
  end-page: 3852
  ident: br0090
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– year: ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020
  ident: br0120
  article-title: Inductive representation learning on temporal graphs
  publication-title: 8th International Conference on Learning Representations
– year: 2016
  ident: br0200
  article-title: Variational graph auto-encoders
  publication-title: NIPS Workshop on Bayesian Deep Learning
– year: 2020
  ident: 10.1016/j.ins.2023.02.092_br0120
  article-title: Inductive representation learning on temporal graphs
– year: 2022
  ident: 10.1016/j.ins.2023.02.092_br0040
  article-title: Reverse graph learning for graph neural network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 20286
  year: 2020
  ident: 10.1016/j.ins.2023.02.092_br0170
  article-title: Factorizable graph convolutional networks
– start-page: 6519
  year: 2019
  ident: 10.1016/j.ins.2023.02.092_br0220
  article-title: Symmetric graph convolutional autoencoder for unsupervised graph representation learning
– start-page: 148
  year: 2021
  ident: 10.1016/j.ins.2023.02.092_br0290
  article-title: Node similarity preserving graph convolutional networks
– volume: 77
  start-page: 53
  year: 2022
  ident: 10.1016/j.ins.2023.02.092_br0080
  article-title: Interpretable learning based dynamic graph convolutional networks for Alzheimer's disease analysis
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.07.013
– start-page: 9267
  year: 2019
  ident: 10.1016/j.ins.2023.02.092_br0260
  article-title: Deepgcns: can gcns go as deep as cnns?
– volume: 32
  start-page: 6467
  year: 2020
  ident: 10.1016/j.ins.2023.02.092_br0010
  article-title: Multi-task learning using a hybrid representation for text classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3934-y
– start-page: 2827
  year: 2021
  ident: 10.1016/j.ins.2023.02.092_br0450
  article-title: Variational graph normalized autoencoders
– ident: 10.1016/j.ins.2023.02.092_br0340
– volume: 32
  start-page: 1116
  issue: 6
  year: 2019
  ident: 10.1016/j.ins.2023.02.092_br0380
  article-title: Gmc: graph-based multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2903810
– volume: 64
  start-page: 1069
  issue: 7
  year: 2021
  ident: 10.1016/j.ins.2023.02.092_br0070
  article-title: Learning representation from concurrence-words graph for aspect sentiment classification
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxab104
– ident: 10.1016/j.ins.2023.02.092_br0460
– year: 2017
  ident: 10.1016/j.ins.2023.02.092_br0100
  article-title: Semi-supervised classification with graph convolutional networks
– year: 1999
  ident: 10.1016/j.ins.2023.02.092_br0300
– volume: 59
  issue: 4
  year: 2022
  ident: 10.1016/j.ins.2023.02.092_br0060
  article-title: Aspect sentiment analysis with heterogeneous graph neural networks
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2022.102953
– start-page: 2609
  year: 2018
  ident: 10.1016/j.ins.2023.02.092_br0190
  article-title: Adversarially regularized graph autoencoder for graph embedding
– year: 2018
  ident: 10.1016/j.ins.2023.02.092_br0240
  article-title: Deeper insights into graph convolutional networks for semi-supervised learning
– volume: 132
  start-page: 180
  year: 2020
  ident: 10.1016/j.ins.2023.02.092_br0400
  article-title: Mgat: multi-view graph attention networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.08.021
– start-page: 265
  year: 2016
  ident: 10.1016/j.ins.2023.02.092_br0410
  article-title: Tensorflow: a system for large-scale machine learning
– start-page: 1
  year: 2017
  ident: 10.1016/j.ins.2023.02.092_br0020
  article-title: Understanding of a convolutional neural network
– start-page: 1263
  year: 2017
  ident: 10.1016/j.ins.2023.02.092_br0130
  article-title: Neural message passing for quantum chemistry
– volume: 3
  issue: 06
  year: 2014
  ident: 10.1016/j.ins.2023.02.092_br0210
  article-title: Generative adversarial networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 589
  year: 2019
  ident: 10.1016/j.ins.2023.02.092_br0330
  article-title: Gravity-inspired graph autoencoders for directed link prediction
– volume: 8
  start-page: 3478
  issue: 4
  year: 2021
  ident: 10.1016/j.ins.2023.02.092_br0370
  article-title: Sampling subgraph network with application to graph classification
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2021.3115104
– year: 2014
  ident: 10.1016/j.ins.2023.02.092_br0480
  article-title: Adam: a method for stochastic optimization
  publication-title: Comput. Sci.
– start-page: 701
  year: 2014
  ident: 10.1016/j.ins.2023.02.092_br0420
  article-title: Deepwalk: online learning of social representations
– year: 2016
  ident: 10.1016/j.ins.2023.02.092_br0200
  article-title: Variational graph auto-encoders
– volume: 33
  start-page: 2776
  issue: 6
  year: 2019
  ident: 10.1016/j.ins.2023.02.092_br0360
  article-title: Subgraph networks with application to structural feature space expansion
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2957755
– ident: 10.1016/j.ins.2023.02.092_br0030
– start-page: 3477
  year: 2018
  ident: 10.1016/j.ins.2023.02.092_br0350
  article-title: Drug similarity integration through attentive multi-view graph auto-encoders
– year: 2019
  ident: 10.1016/j.ins.2023.02.092_br0310
  article-title: Keep it simple: graph autoencoders without graph convolutional networks
– volume: vol. 34
  start-page: 906
  year: 2020
  ident: 10.1016/j.ins.2023.02.092_br0430
  article-title: Effective decoding in graph auto-encoder using triadic closure
– start-page: 249
  year: 2010
  ident: 10.1016/j.ins.2023.02.092_br0490
  article-title: Understanding the difficulty of training deep feedforward neural networks
– start-page: 10943
  year: 2019
  ident: 10.1016/j.ins.2023.02.092_br0270
  article-title: Break the ceiling: stronger multi-scale deep graph convolutional networks
– volume: 29
  start-page: 3844
  year: 2016
  ident: 10.1016/j.ins.2023.02.092_br0090
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 3070
  year: 2020
  ident: 10.1016/j.ins.2023.02.092_br0390
  article-title: One2multi graph autoencoder for multi-view graph clustering
– year: 2014
  ident: 10.1016/j.ins.2023.02.092_br0050
  article-title: Spectral networks and locally connected networks on graphs
– start-page: 4116
  year: 2020
  ident: 10.1016/j.ins.2023.02.092_br0280
  article-title: Contrastive multi-view representation learning on graphs
– year: 2018
  ident: 10.1016/j.ins.2023.02.092_br0110
  article-title: Graph attention networks
– start-page: 1243
  year: 2020
  ident: 10.1016/j.ins.2023.02.092_br0150
  article-title: Am-gcn: adaptive multi-channel graph convolutional networks
– start-page: 889
  year: 2017
  ident: 10.1016/j.ins.2023.02.092_br0230
  article-title: Mgae: marginalized graph autoencoder for graph clustering
– volume: vol. 28
  year: 2014
  ident: 10.1016/j.ins.2023.02.092_br0470
  article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition
– year: 2020
  ident: 10.1016/j.ins.2023.02.092_br0160
  article-title: Distilling knowledge from graph convolutional networks
– start-page: 4099
  year: 2019
  ident: 10.1016/j.ins.2023.02.092_br0180
  article-title: SPAGAN: shortest path graph attention network
– volume: 23
  start-page: 447
  issue: 3
  year: 2011
  ident: 10.1016/j.ins.2023.02.092_br0500
  article-title: Leveraging social media networks for classification
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-010-0210-x
– year: 2022
  ident: 10.1016/j.ins.2023.02.092_br0140
  article-title: Multigraph fusion for dynamic graph convolutional network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 10711
  year: 2019
  ident: 10.1016/j.ins.2023.02.092_br0440
  article-title: Semi-implicit graph variational auto-encoders
– start-page: 6861
  year: 2019
  ident: 10.1016/j.ins.2023.02.092_br0250
  article-title: Simplifying graph convolutional networks
– volume: 8
  start-page: 152637
  year: 2020
  ident: 10.1016/j.ins.2023.02.092_br0320
  article-title: Adversarial attention-based variational graph autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3018033
SSID ssj0004766
Score 2.5585968
Snippet Graph representation learning is a hot topic in non-Euclidean data in various domains, such as social networks, biological networks, etc. When some data labels...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 439
SubjectTerms Graph autoencoder
Graph representation learning
Multi-view learning
Unsupervised learning
Title Multi-view representation model based on graph autoencoder
URI https://dx.doi.org/10.1016/j.ins.2023.02.092
Volume 632
WOSCitedRecordID wos000954456000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbQlgMcKiggSinyAXFgFSlxHDvmVqFWUK0qDkWsuESO7ZSuUPpKqv78jl9JWmgFSFysXWu9j5lvPTP2zDcIvSWqFoQZG-TUTUJVzZKaU5WQRuqmSYUm0rHrL_jBQblcii8h3fbCtRPgbVteXYnT_6pqmANl29LZv1D38KYwAY9B6TCC2mH8I8W7ktrEFaQ4xspYXdT6rjdza7e0vSNwXNVz2XcnlsxShzTdVUxtH8oa58FKDt73wmUA7IPRU8fDXO9O2HvZHp31I-K-uenvP0x71E2AuAidVPb6s2g6w8kDyccMKX8cFktibmRsWv8zsYGKNzB-Vy05SRjxbbnitsvCuabfOKmnNAo2mHoC4V-2d3_SsIKYxDKtk9zRrfpeerdYs-0ltIuXIMQCF6oAK71GeCHKGVrb-by73B-LZ7m_0I7fO159uyTAWx_0e-dl4pAcPkHrIZLAOx4BT9ED026gxxN-yQ20HapS8Ds80ScO-_kz9GHECr6JFeywgh1WMDx1WMETrDxHX_d2Dz9-SkIzjUQRwbtEMkGIKUqtiKxFI-B356zIC5mVpimY4oJrnmXaNiVjuc45h0ErWmSqZDqV-Qs0a09a8xLhnPHMcM5UpjWlTSlJYSDMNixVilLZbKI0SqlSgWneNjz5WcWUwlUFgq2sYKuUVCDYTfR-WHLqaVbuezGNoq_CP8D7fxXg5O5lr_5t2RZ6NIL_NZp1573ZRg_VZXd8cf4moOkaENWLKw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-view+representation+model+based+on+graph+autoencoder&rft.jtitle=Information+sciences&rft.au=Li%2C+Jingci&rft.au=Lu%2C+Guangquan&rft.au=Wu%2C+Zhengtian&rft.au=Ling%2C+Fuqing&rft.date=2023-06-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=632&rft.spage=439&rft.epage=453&rft_id=info:doi/10.1016%2Fj.ins.2023.02.092&rft.externalDocID=S0020025523002852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon