A modified PRP-type conjugate gradient algorithm with complexity analysis and its application to image restoration problems

In this paper, a modified conjugate gradient method is proposed for nonconvex optimization. This method possesses the sufficient descent property independent of any line search. The global convergence property of the algorithm is established under the Wolfe line search strategy or the Armijo line se...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 427; s. 115105
Hlavní autori: Chen, Yu, Kuang, Kai, Yan, Xueling
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.08.2023
Predmet:
ISSN:0377-0427
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, a modified conjugate gradient method is proposed for nonconvex optimization. This method possesses the sufficient descent property independent of any line search. The global convergence property of the algorithm is established under the Wolfe line search strategy or the Armijo line search condition, respectively. Additionally, the complexity analysis of the proposed algorithm is investigated. To reach the point with the norm of the gradient below ɛ, the worst-case complexity bound matches that of the gradient method. Moreover, the obtained numerical results demonstrate that the modified method is effective for large-scale optimization problems and image restoration problems.
AbstractList In this paper, a modified conjugate gradient method is proposed for nonconvex optimization. This method possesses the sufficient descent property independent of any line search. The global convergence property of the algorithm is established under the Wolfe line search strategy or the Armijo line search condition, respectively. Additionally, the complexity analysis of the proposed algorithm is investigated. To reach the point with the norm of the gradient below ɛ, the worst-case complexity bound matches that of the gradient method. Moreover, the obtained numerical results demonstrate that the modified method is effective for large-scale optimization problems and image restoration problems.
ArticleNumber 115105
Author Chen, Yu
Kuang, Kai
Yan, Xueling
Author_xml – sequence: 1
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  email: chenyu4660@163.com.cn
– sequence: 2
  givenname: Kai
  surname: Kuang
  fullname: Kuang, Kai
– sequence: 3
  givenname: Xueling
  surname: Yan
  fullname: Yan, Xueling
BookMark eNp9kMtOwzAQRb0oEm3hA9j5B1LGebkRq6riJVWiQrC2XHtSHCVxZJtHxc_jElYs6sWMNfIZXZ8ZmfS2R0KuGCwYsPK6WSjZLVJIswVjBYNiQqaQcZ5AnvJzMvO-AYCyYvmUfK9oZ7WpDWq6fd4m4TAgVbZv3vcyIN07qQ32gcp2b50Jbx39jDW-6IYWv0w4UNnL9uCNjxdNTYh9GFqjZDC2p8FS08k9Uoc-WDcOB2d3LXb-gpzVsvV4-dfn5PXu9mX9kGye7h_Xq02i0oqHRJac6bLaKcgKkFpCJUGW6VLpXDMO6a7OOU-XOQNV5VhnnKmixhTjKXIJdTYnbNyrnPXeYS0GF1O5g2AgjsZEI6IxcTQmRmOR4f8YZcJv_OCkaU-SNyOJ8UsfBp3wKipUqI1DFYS25gT9AzI4jOk
CitedBy_id crossref_primary_10_1002_mma_10653
crossref_primary_10_11948_20240564
crossref_primary_10_1016_j_apnum_2024_06_020
crossref_primary_10_1080_10556788_2025_2475402
crossref_primary_10_7717_peerj_cs_2783
crossref_primary_10_1007_s40314_024_03008_7
crossref_primary_10_1016_j_apnum_2024_07_014
crossref_primary_10_1080_0305215X_2024_2420743
crossref_primary_10_1007_s10957_024_02571_7
crossref_primary_10_1007_s11075_025_02032_w
crossref_primary_10_1007_s11075_025_02091_z
crossref_primary_10_1007_s12190_025_02648_0
Cites_doi 10.1093/comjnl/7.2.149
10.1016/0041-5553(69)90035-4
10.1137/090774100
10.1007/BF00940464
10.1093/imanum/drl016
10.1007/s10851-007-0027-4
10.1016/j.apnum.2021.11.001
10.1007/s101070100263
10.1016/j.apnum.2019.12.002
10.1007/s10107-006-0706-8
10.1007/s00245-017-9417-1
10.1007/s11590-014-0845-4
10.1137/17M1114296
10.1137/080740167
10.1007/s10589-014-9662-z
10.1137/0802003
10.6028/jres.049.044
10.1007/s11071-012-0694-6
10.1016/j.cam.2015.03.014
10.3934/jimo.2018025
10.1007/s002450010019
10.1007/s10092-020-00378-2
10.1016/j.ejco.2022.100044
10.1137/080743573
10.1016/j.aml.2010.01.010
10.1007/s11590-008-0086-5
10.1007/s11071-014-1303-7
10.1137/S1052623497318992
10.1137/19M130563X
10.1007/s10915-021-01440-z
10.1002/nla.2358
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2023.115105
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_cam_2023_115105
S0377042723000493
GrantInformation_xml – fundername: NNSF, PR China
  grantid: 11761014
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Guangxi Natural Science Foundation, China
  grantid: 2017GXNSFAA198243
  funderid: http://dx.doi.org/10.13039/501100004607
– fundername: Science and technology project of Guangxi, PR China
  grantid: Guike AD21220114
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AAOAW
AAQFI
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
9DU
AAFWJ
AALRI
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
NHB
R2-
SEW
SSZ
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-a671d69bc0350ada09a0a628cd4d1702bf47728410c94ef371c5fe2eeee54a0f3
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000964583500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Tue Nov 18 21:51:12 EST 2025
Sat Nov 29 07:19:45 EST 2025
Tue Dec 03 03:44:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sufficient descent condition
Global convergence
Complexity analysis
49J52
90C33
Nonconvex unconstrained optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-a671d69bc0350ada09a0a628cd4d1702bf47728410c94ef371c5fe2eeee54a0f3
ParticipantIDs crossref_primary_10_1016_j_cam_2023_115105
crossref_citationtrail_10_1016_j_cam_2023_115105
elsevier_sciencedirect_doi_10_1016_j_cam_2023_115105
PublicationCentury 2000
PublicationDate 2023-08-01
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Li (b29) 2015; 9
Andrei (b51) 2008; 10
Zhang (b23) 2009; 215
Dai, Wen (b18) 2012; 218
Hager, Zhang (b25) 2006; 2
Yuan (b15) 2009; 3
Karimi, Vavasis (b46) 2017
Karimi, Vavasis (b47) 2021
Jiang, Jian, Ma (b12) 2014; 57
Cao, Wu (b9) 2020; 152
Zoutendijk (b50) 1970
Wu, Wang, Alcantara, Chen (b21) 2021; 87
Nesterov (b40) 2012; 88
Gilbert, Nocedal (b33) 1992; 2
Curtis, Robinson, Royer, Wright (b48) 2021; 31
Dong (b11) 2020; 57
Jiang, Jian (b6) 2014; 77
Zhang, Zhou, Li (b10) 2006; 26
Jiang, Jian (b7) 2013; 72
Cartis, Gould, Toint (b43) 2010; 20
Dai, Wen (b35) 2018; 14
Yuan, Zhang (b14) 2015; 286
Polak, Ribiére (b30) 1969; 3
Fletcher, Reeves (b2) 1964; 7
Al-baali, Narushima, Yabe (b31) 2015; 60
Fletcher (b34) 1987
Chan-Renous-Legoubin, Royer (b49) 2022; 10
Hestenes, Stiefel (b1) 1952; 49
Nemirovski, Yudin (b44) 1983
Dai, Yuan (b24) 2000
Wan, Hu, Yang (b36) 2011; 16
Wei, Yao, Liu (b17) 2006; 183
Polak (b3) 1969; 9
Cai, Chan, Fiore (b27) 2007; 29
Nesterov (b39) 2004
Dai, Yuan (b4) 1999; 10
Dai, Liao (b26) 2001; 43
Cai, Chan, Morini (b28) 2007
Liu, Cao, Zhao, Zhang (b19) 2021; 28
Narushima, Yabe, Ford (b32) 2011; 21
Liu, Storey (b5) 1991; 69
Nesterov, Polyak (b42) 2006; 108
Aminifard, Babaie-Kafaki (b8) 2019
Hu, Zhang, Chen (b16) 2022; 173
Yao, Wei, Huang (b38) 2007; 191
Zhao, Ng, Li, Yao (b37) 2018; 78
Dolan, Moré (b22) 2002; 91
Carmon, Duchi, Hinder, Sidford (b41) 2018; 28
Yu, Huang, Zhou (b13) 2010; 23
Karimi, Vavasis (b45) 2016
Chen, Zhou (b20) 2010; 4
Chan-Renous-Legoubin (10.1016/j.cam.2023.115105_b49) 2022; 10
Dai (10.1016/j.cam.2023.115105_b26) 2001; 43
Nesterov (10.1016/j.cam.2023.115105_b39) 2004
Yuan (10.1016/j.cam.2023.115105_b15) 2009; 3
Jiang (10.1016/j.cam.2023.115105_b6) 2014; 77
Karimi (10.1016/j.cam.2023.115105_b47) 2021
Dong (10.1016/j.cam.2023.115105_b11) 2020; 57
Wei (10.1016/j.cam.2023.115105_b17) 2006; 183
Cartis (10.1016/j.cam.2023.115105_b43) 2010; 20
Fletcher (10.1016/j.cam.2023.115105_b2) 1964; 7
Curtis (10.1016/j.cam.2023.115105_b48) 2021; 31
Dolan (10.1016/j.cam.2023.115105_b22) 2002; 91
Wu (10.1016/j.cam.2023.115105_b21) 2021; 87
Gilbert (10.1016/j.cam.2023.115105_b33) 1992; 2
Cai (10.1016/j.cam.2023.115105_b27) 2007; 29
Andrei (10.1016/j.cam.2023.115105_b51) 2008; 10
Jiang (10.1016/j.cam.2023.115105_b12) 2014; 57
Hu (10.1016/j.cam.2023.115105_b16) 2022; 173
Fletcher (10.1016/j.cam.2023.115105_b34) 1987
Dai (10.1016/j.cam.2023.115105_b24) 2000
Narushima (10.1016/j.cam.2023.115105_b32) 2011; 21
Zoutendijk (10.1016/j.cam.2023.115105_b50) 1970
Polak (10.1016/j.cam.2023.115105_b3) 1969; 9
Liu (10.1016/j.cam.2023.115105_b5) 1991; 69
Karimi (10.1016/j.cam.2023.115105_b45) 2016
Dai (10.1016/j.cam.2023.115105_b4) 1999; 10
Hager (10.1016/j.cam.2023.115105_b25) 2006; 2
Yu (10.1016/j.cam.2023.115105_b13) 2010; 23
Al-baali (10.1016/j.cam.2023.115105_b31) 2015; 60
Zhang (10.1016/j.cam.2023.115105_b23) 2009; 215
Liu (10.1016/j.cam.2023.115105_b19) 2021; 28
Zhao (10.1016/j.cam.2023.115105_b37) 2018; 78
Chen (10.1016/j.cam.2023.115105_b20) 2010; 4
Zhang (10.1016/j.cam.2023.115105_b10) 2006; 26
Jiang (10.1016/j.cam.2023.115105_b7) 2013; 72
Cai (10.1016/j.cam.2023.115105_b28) 2007
Aminifard (10.1016/j.cam.2023.115105_b8) 2019
Hestenes (10.1016/j.cam.2023.115105_b1) 1952; 49
Polak (10.1016/j.cam.2023.115105_b30) 1969; 3
Dai (10.1016/j.cam.2023.115105_b18) 2012; 218
Karimi (10.1016/j.cam.2023.115105_b46) 2017
Yuan (10.1016/j.cam.2023.115105_b14) 2015; 286
Wan (10.1016/j.cam.2023.115105_b36) 2011; 16
Nemirovski (10.1016/j.cam.2023.115105_b44) 1983
Yao (10.1016/j.cam.2023.115105_b38) 2007; 191
Liu (10.1016/j.cam.2023.115105_b29) 2015; 9
Cao (10.1016/j.cam.2023.115105_b9) 2020; 152
Carmon (10.1016/j.cam.2023.115105_b41) 2018; 28
Nesterov (10.1016/j.cam.2023.115105_b40) 2012; 88
Dai (10.1016/j.cam.2023.115105_b35) 2018; 14
Nesterov (10.1016/j.cam.2023.115105_b42) 2006; 108
References_xml – volume: 23
  start-page: 555
  year: 2010
  end-page: 560
  ident: b13
  article-title: A descent spectral conjugate gradient method for impulse noise removal
  publication-title: Appl. Math. Lett.
– volume: 31
  year: 2021
  ident: b48
  article-title: Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization
  publication-title: SIAM J. Optim.
– volume: 9
  start-page: 1341
  year: 2015
  end-page: 1351
  ident: b29
  article-title: Spectral gradient method for impulse noise removal
  publication-title: Optim. Lett.
– volume: 14
  start-page: 1651
  year: 2018
  end-page: 1666
  ident: b35
  article-title: A generalized approach to sparse and stable portfolio optimization problem
  publication-title: J. Ind. Manag. Optim.
– volume: 10
  year: 2022
  ident: b49
  article-title: A nonlinear conjugate gradient method with complexity guarantees and its application to nonconvex regression
  publication-title: EURO J. Comput. Optim
– volume: 57
  start-page: 365
  year: 2014
  end-page: 372
  ident: b12
  article-title: Two conjugate gradient methods with the sufficient descent property
  publication-title: Acta Math. Sinica. (Chin. Ser.)
– volume: 78
  start-page: 613
  year: 2018
  end-page: 641
  ident: b37
  article-title: Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems
  publication-title: Appl. Math. Optim.
– volume: 183
  start-page: 1341
  year: 2006
  end-page: 1350
  ident: b17
  article-title: The convergence properties of some new conjugate gradient methods
  publication-title: Appl. Math. Comput.
– year: 1987
  ident: b34
  article-title: Practical Methods of Optimization, Unconstrained Optimization
– year: 2000
  ident: b24
  article-title: Nonlinear Conjugate Gradient Methods
– year: 2017
  ident: b46
  article-title: A single potential governing convergence of conjugate gradient, accelerated gradient and geometric descent
– volume: 28
  start-page: 1751
  year: 2018
  end-page: 1772
  ident: b41
  article-title: Accelerated methods for nonconvex optimization
  publication-title: SIAM J. Optim.
– volume: 87
  start-page: 1
  year: 2021
  end-page: 18
  ident: b21
  article-title: Smoothing strategy along with conjugate gradient algorithm for signal reconstruction
  publication-title: J. Sci. Comput.
– volume: 4
  start-page: 765
  year: 2010
  end-page: 790
  ident: b20
  article-title: Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization
  publication-title: SIAM J. Imaging Sci.
– volume: 91
  start-page: 201
  year: 2002
  end-page: 213
  ident: b22
  article-title: Benchmarking optimization software with performance profiles
  publication-title: Math. Program.
– volume: 77
  start-page: 387
  year: 2014
  end-page: 397
  ident: b6
  article-title: Two modified nonlinear conjugate gradient methods with disturbance factors for unconstrained optimization
  publication-title: Nonlinear Dynam.
– volume: 3
  start-page: 11
  year: 2009
  end-page: 21
  ident: b15
  article-title: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems
  publication-title: Optim. Lett.
– volume: 2
  start-page: 21
  year: 1992
  end-page: 42
  ident: b33
  article-title: Global convergence properties of conjugate gradient methods for optimization
  publication-title: SIAM J. Optim.
– volume: 20
  start-page: 2833
  year: 2010
  end-page: 2852
  ident: b43
  article-title: On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization problems
  publication-title: SIAM J. Optim.
– volume: 10
  start-page: 177
  year: 1999
  end-page: 182
  ident: b4
  article-title: A nonlinear conjugate gradients method with a strong global convergence property
  publication-title: SIAM J. Optim.
– volume: 16
  start-page: 1157
  year: 2011
  end-page: 1169
  ident: b36
  article-title: A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 21
  start-page: 212
  year: 2011
  end-page: 230
  ident: b32
  article-title: A three-term conjugate gradient method with sufficient descent property for unconstrained optimization
  publication-title: SIAM J. Optim.
– volume: 49
  start-page: 409
  year: 1952
  end-page: 436
  ident: b1
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. Nat. Bur. Stand.
– volume: 191
  start-page: 381
  year: 2007
  end-page: 388
  ident: b38
  article-title: A note about WYL’s conjugate gradient method and its applications
  publication-title: Appl. Math. Comput.
– year: 2021
  ident: b47
  article-title: Nonlinear conjugate gradient for smooth convex functions
– volume: 2
  start-page: 35
  year: 2006
  end-page: 58
  ident: b25
  article-title: A survey of nonlinear conjugate gradient methods
  publication-title: Pac. J. Optim.
– volume: 10
  start-page: 147
  year: 2008
  end-page: 161
  ident: b51
  article-title: An unconstrained optimization test functions collection
  publication-title: Adv. Model. Optim.
– volume: 28
  year: 2021
  ident: b19
  article-title: A gradient-type iterative method for impulse noise removal
  publication-title: Numer. Linear Algebra Appl.
– volume: 218
  start-page: 7421
  year: 2012
  end-page: 7430
  ident: b18
  article-title: Another improved Wei-Yao-Liu nonlinear conjugate gradient method with sufficient descent property
  publication-title: Appl. Math. Comput.
– volume: 215
  start-page: 2269
  year: 2009
  end-page: 2274
  ident: b23
  article-title: An improved Wei-Yao-Liu nonlinear conjugate gradient method for optimization computation
  publication-title: Appl. Math. Comput.
– volume: 72
  start-page: 101
  year: 2013
  end-page: 112
  ident: b7
  article-title: A sufficient descent Dai-Yuan type nonlinear conjugate gradient method for unconstrained optimization problems
  publication-title: Nonlinear Dynam.
– year: 2016
  ident: b45
  article-title: A unified convergence bound for conjugate gradient and accelerated gradient
– year: 2019
  ident: b8
  article-title: A modified descent Polak-Ribière-Polyak conjugate gradient method with global convergence property for nonconvex functions
  publication-title: Calcolo
– volume: 286
  start-page: 186
  year: 2015
  end-page: 195
  ident: b14
  article-title: A three-terms Polak-Ribière-Polyak conjugate gradient algorithm for large-scale nonlinear equations
  publication-title: J. Comput. Appl. Math.
– volume: 173
  start-page: 38
  year: 2022
  end-page: 50
  ident: b16
  article-title: Global convergence of a descent PRP type conjugate gradient method for nonconvex optimization
  publication-title: Appl. Numer. Math.
– volume: 26
  start-page: 629
  year: 2006
  end-page: 640
  ident: b10
  article-title: A descent modified Polak-Ribière-Polyakk conjugate gradient method and its global convergence
  publication-title: IMA J. Numer. Anal.
– volume: 69
  start-page: 129
  year: 1991
  end-page: 137
  ident: b5
  article-title: Efficient generalized conjugate gradients algorithms, Part 1: Theory
  publication-title: J. Optim. Theory Appl.
– volume: 57
  start-page: 1
  year: 2020
  end-page: 14
  ident: b11
  article-title: A modified nonlinear Polak-Ribière-Polyak conjugate gradient method with sufficient descent property
  publication-title: Calcolo
– volume: 152
  start-page: 243
  year: 2020
  end-page: 252
  ident: b9
  article-title: A conjugate gradient algorithm and its applications in image restoration
  publication-title: Appl. Numer. Math.
– volume: 3
  start-page: 35
  year: 1969
  end-page: 43
  ident: b30
  article-title: Note sur la convergence de méthodes de directions conjuguées
  publication-title: Rev. Fr. Inform. Rech. Oper.
– volume: 60
  start-page: 89
  year: 2015
  end-page: 110
  ident: b31
  article-title: A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization
  publication-title: Comput. Optim. Appl.
– year: 1983
  ident: b44
  article-title: Problem Complexity and Method Efficiency in Optimization
– year: 2007
  ident: b28
  article-title: Minimization of an edge-preserving regularization functional by conjugate gradient types methods
  publication-title: Image Processing Based on Partial Differential Equations
– volume: 43
  start-page: 87
  year: 2001
  end-page: 101
  ident: b26
  article-title: New conjugacy conditions and related nonlinear conjugate gradient methods
  publication-title: Appl. Math. Optim.
– volume: 29
  start-page: 79
  year: 2007
  end-page: 91
  ident: b27
  article-title: Minimization of a detail-preserving regularization functional for impulse noise removal
  publication-title: J. Math. Imaging Vision.
– year: 2004
  ident: b39
  article-title: Introductory Lectures on Convex Optimization: A Basic Course
– volume: 7
  start-page: 149
  year: 1964
  end-page: 154
  ident: b2
  article-title: Function minimization by conjugate gradients
  publication-title: Comput. J.
– volume: 9
  start-page: 94
  year: 1969
  end-page: 112
  ident: b3
  article-title: The conjugate gradients method in extreme problems
  publication-title: USSR Comput. Math. Math. Phys.
– year: 1970
  ident: b50
  article-title: Nonlinear programming, computational methods
  publication-title: Integer and Nonlinear Programming
– volume: 88
  start-page: 10
  year: 2012
  end-page: 11
  ident: b40
  article-title: How to make the gradients small
  publication-title: Optimization
– volume: 108
  start-page: 177
  year: 2006
  end-page: 205
  ident: b42
  article-title: Cubic regularization of Newton method and its global performance
  publication-title: Math. Program.
– volume: 57
  start-page: 365
  issue: 2
  year: 2014
  ident: 10.1016/j.cam.2023.115105_b12
  article-title: Two conjugate gradient methods with the sufficient descent property
  publication-title: Acta Math. Sinica. (Chin. Ser.)
– volume: 215
  start-page: 2269
  year: 2009
  ident: 10.1016/j.cam.2023.115105_b23
  article-title: An improved Wei-Yao-Liu nonlinear conjugate gradient method for optimization computation
  publication-title: Appl. Math. Comput.
– volume: 7
  start-page: 149
  issue: 2
  year: 1964
  ident: 10.1016/j.cam.2023.115105_b2
  article-title: Function minimization by conjugate gradients
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.2.149
– volume: 9
  start-page: 94
  year: 1969
  ident: 10.1016/j.cam.2023.115105_b3
  article-title: The conjugate gradients method in extreme problems
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(69)90035-4
– volume: 20
  start-page: 2833
  issue: 6
  year: 2010
  ident: 10.1016/j.cam.2023.115105_b43
  article-title: On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/090774100
– year: 1983
  ident: 10.1016/j.cam.2023.115105_b44
– volume: 3
  start-page: 35
  issue: R1
  year: 1969
  ident: 10.1016/j.cam.2023.115105_b30
  article-title: Note sur la convergence de méthodes de directions conjuguées
  publication-title: Rev. Fr. Inform. Rech. Oper.
– volume: 69
  start-page: 129
  issue: 1
  year: 1991
  ident: 10.1016/j.cam.2023.115105_b5
  article-title: Efficient generalized conjugate gradients algorithms, Part 1: Theory
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940464
– volume: 26
  start-page: 629
  year: 2006
  ident: 10.1016/j.cam.2023.115105_b10
  article-title: A descent modified Polak-Ribière-Polyakk conjugate gradient method and its global convergence
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drl016
– volume: 29
  start-page: 79
  year: 2007
  ident: 10.1016/j.cam.2023.115105_b27
  article-title: Minimization of a detail-preserving regularization functional for impulse noise removal
  publication-title: J. Math. Imaging Vision.
  doi: 10.1007/s10851-007-0027-4
– volume: 183
  start-page: 1341
  issue: 2
  year: 2006
  ident: 10.1016/j.cam.2023.115105_b17
  article-title: The convergence properties of some new conjugate gradient methods
  publication-title: Appl. Math. Comput.
– volume: 173
  start-page: 38
  year: 2022
  ident: 10.1016/j.cam.2023.115105_b16
  article-title: Global convergence of a descent PRP type conjugate gradient method for nonconvex optimization
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2021.11.001
– volume: 91
  start-page: 201
  issue: 2
  year: 2002
  ident: 10.1016/j.cam.2023.115105_b22
  article-title: Benchmarking optimization software with performance profiles
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 152
  start-page: 243
  year: 2020
  ident: 10.1016/j.cam.2023.115105_b9
  article-title: A conjugate gradient algorithm and its applications in image restoration
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2019.12.002
– volume: 108
  start-page: 177
  issue: 1
  year: 2006
  ident: 10.1016/j.cam.2023.115105_b42
  article-title: Cubic regularization of Newton method and its global performance
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0706-8
– volume: 78
  start-page: 613
  issue: 3
  year: 2018
  ident: 10.1016/j.cam.2023.115105_b37
  article-title: Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-017-9417-1
– volume: 2
  start-page: 35
  issue: 1
  year: 2006
  ident: 10.1016/j.cam.2023.115105_b25
  article-title: A survey of nonlinear conjugate gradient methods
  publication-title: Pac. J. Optim.
– volume: 9
  start-page: 1341
  year: 2015
  ident: 10.1016/j.cam.2023.115105_b29
  article-title: Spectral gradient method for impulse noise removal
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-014-0845-4
– volume: 28
  start-page: 1751
  issue: 2
  year: 2018
  ident: 10.1016/j.cam.2023.115105_b41
  article-title: Accelerated methods for nonconvex optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1114296
– volume: 4
  start-page: 765
  issue: 3
  year: 2010
  ident: 10.1016/j.cam.2023.115105_b20
  article-title: Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080740167
– volume: 60
  start-page: 89
  issue: 1
  year: 2015
  ident: 10.1016/j.cam.2023.115105_b31
  article-title: A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-014-9662-z
– year: 2000
  ident: 10.1016/j.cam.2023.115105_b24
– volume: 2
  start-page: 21
  issue: 1
  year: 1992
  ident: 10.1016/j.cam.2023.115105_b33
  article-title: Global convergence properties of conjugate gradient methods for optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/0802003
– volume: 49
  start-page: 409
  issue: 6
  year: 1952
  ident: 10.1016/j.cam.2023.115105_b1
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. Nat. Bur. Stand.
  doi: 10.6028/jres.049.044
– volume: 72
  start-page: 101
  year: 2013
  ident: 10.1016/j.cam.2023.115105_b7
  article-title: A sufficient descent Dai-Yuan type nonlinear conjugate gradient method for unconstrained optimization problems
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-012-0694-6
– volume: 286
  start-page: 186
  year: 2015
  ident: 10.1016/j.cam.2023.115105_b14
  article-title: A three-terms Polak-Ribière-Polyak conjugate gradient algorithm for large-scale nonlinear equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.03.014
– volume: 14
  start-page: 1651
  issue: 4
  year: 2018
  ident: 10.1016/j.cam.2023.115105_b35
  article-title: A generalized approach to sparse and stable portfolio optimization problem
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2018025
– volume: 43
  start-page: 87
  year: 2001
  ident: 10.1016/j.cam.2023.115105_b26
  article-title: New conjugacy conditions and related nonlinear conjugate gradient methods
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s002450010019
– volume: 57
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.cam.2023.115105_b11
  article-title: A modified nonlinear Polak-Ribière-Polyak conjugate gradient method with sufficient descent property
  publication-title: Calcolo
  doi: 10.1007/s10092-020-00378-2
– volume: 16
  start-page: 1157
  issue: 4
  year: 2011
  ident: 10.1016/j.cam.2023.115105_b36
  article-title: A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– year: 2021
  ident: 10.1016/j.cam.2023.115105_b47
– volume: 191
  start-page: 381
  issue: 2
  year: 2007
  ident: 10.1016/j.cam.2023.115105_b38
  article-title: A note about WYL’s conjugate gradient method and its applications
  publication-title: Appl. Math. Comput.
– volume: 10
  year: 2022
  ident: 10.1016/j.cam.2023.115105_b49
  article-title: A nonlinear conjugate gradient method with complexity guarantees and its application to nonconvex regression
  publication-title: EURO J. Comput. Optim
  doi: 10.1016/j.ejco.2022.100044
– year: 1987
  ident: 10.1016/j.cam.2023.115105_b34
– volume: 21
  start-page: 212
  issue: 1
  year: 2011
  ident: 10.1016/j.cam.2023.115105_b32
  article-title: A three-term conjugate gradient method with sufficient descent property for unconstrained optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/080743573
– year: 2007
  ident: 10.1016/j.cam.2023.115105_b28
  article-title: Minimization of an edge-preserving regularization functional by conjugate gradient types methods
– volume: 23
  start-page: 555
  issue: 5
  year: 2010
  ident: 10.1016/j.cam.2023.115105_b13
  article-title: A descent spectral conjugate gradient method for impulse noise removal
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.01.010
– volume: 3
  start-page: 11
  issue: 1
  year: 2009
  ident: 10.1016/j.cam.2023.115105_b15
  article-title: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-008-0086-5
– year: 2019
  ident: 10.1016/j.cam.2023.115105_b8
  article-title: A modified descent Polak-Ribière-Polyak conjugate gradient method with global convergence property for nonconvex functions
– year: 2004
  ident: 10.1016/j.cam.2023.115105_b39
– volume: 88
  start-page: 10
  year: 2012
  ident: 10.1016/j.cam.2023.115105_b40
  article-title: How to make the gradients small
  publication-title: Optimization
– volume: 77
  start-page: 387
  year: 2014
  ident: 10.1016/j.cam.2023.115105_b6
  article-title: Two modified nonlinear conjugate gradient methods with disturbance factors for unconstrained optimization
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-014-1303-7
– year: 2017
  ident: 10.1016/j.cam.2023.115105_b46
– volume: 218
  start-page: 7421
  issue: 14
  year: 2012
  ident: 10.1016/j.cam.2023.115105_b18
  article-title: Another improved Wei-Yao-Liu nonlinear conjugate gradient method with sufficient descent property
  publication-title: Appl. Math. Comput.
– volume: 10
  start-page: 177
  year: 1999
  ident: 10.1016/j.cam.2023.115105_b4
  article-title: A nonlinear conjugate gradients method with a strong global convergence property
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497318992
– volume: 10
  start-page: 147
  year: 2008
  ident: 10.1016/j.cam.2023.115105_b51
  article-title: An unconstrained optimization test functions collection
  publication-title: Adv. Model. Optim.
– year: 1970
  ident: 10.1016/j.cam.2023.115105_b50
  article-title: Nonlinear programming, computational methods
– year: 2016
  ident: 10.1016/j.cam.2023.115105_b45
– volume: 31
  issue: 1
  year: 2021
  ident: 10.1016/j.cam.2023.115105_b48
  article-title: Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M130563X
– volume: 87
  start-page: 1
  year: 2021
  ident: 10.1016/j.cam.2023.115105_b21
  article-title: Smoothing strategy along with conjugate gradient algorithm for signal reconstruction
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01440-z
– volume: 28
  issue: 4
  year: 2021
  ident: 10.1016/j.cam.2023.115105_b19
  article-title: A gradient-type iterative method for impulse noise removal
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.2358
SSID ssj0006914
Score 2.4651017
Snippet In this paper, a modified conjugate gradient method is proposed for nonconvex optimization. This method possesses the sufficient descent property independent...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115105
SubjectTerms Complexity analysis
Global convergence
Nonconvex unconstrained optimization
Sufficient descent condition
Title A modified PRP-type conjugate gradient algorithm with complexity analysis and its application to image restoration problems
URI https://dx.doi.org/10.1016/j.cam.2023.115105
Volume 427
WOSCitedRecordID wos000964583500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006914
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA9654M-iJ94fpEHn5RAm3ab9nE5TvzAY9ET1qeSTZqzy2336HZl4f75m0mTtHieqGAfSjc06TLzI_llZjJDyCulFlFmjGZGiIylPE5ZDisDA2gJrhVXE21ssQlxfJzP58XMuQs2tpyAaJp8tyvO_6uqoQ2UjUdn_0LdYVBogGdQOtxB7XD_I8VPsbpNbZBazj7PmLWxwqZ3uUWD2ZvT1sZ4oaH3dN3W3feVjz7HNME75OTS5ynxfoWRkxupar3COJ_WlqTpG11Vms01TFfZyhHe6mizwzruuwpJYwO1P3THRb5tBy-Ts2l_lHWYpHq77Xxrj9OPTRc8CYFzzp525UxNf45LCIYVQMZztPt5Zb7vTQ9L2MtjVgGewAqAjHFY3ELI4RccF4eFPRdui5KbZJ-LSQEz4f70_dH8Q1i_s6LPCO__h_eF26jAnz70azYzYign98hdJ3A67SFxn9yomgfkzqdBxA_JxZR6cFAPDhrAQT04aAAHRXDQARzUgwMeNAVw0BE4aLemFhx0BA7qwfGIfH17dHL4jrnyG0zxQnRMZiLWWbFQ6HyWWkaFjGTGsdqVjkXEFyaFrVmexpEq0sokIsbIRV7BNUllZJLHZK9ZN9UTQk0yMQq7Gq1TZfJCcSETncULZEPaHJDIi7FULjc9lkg5K30Q4rIEyZco-bKX_AF5Hbqc94lZfvdy6nVTOmbZM8YSgHR9t6f_1u0ZuT2g_TnZ69pt9YLcUj-6etO-dHC7BKxuoyE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+PRP-type+conjugate+gradient+algorithm+with+complexity+analysis+and+its+application+to+image+restoration+problems&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Chen%2C+Yu&rft.au=Kuang%2C+Kai&rft.au=Yan%2C+Xueling&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.volume=427&rft_id=info:doi/10.1016%2Fj.cam.2023.115105&rft.externalDocID=S0377042723000493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon