A type-3 logic fuzzy system: Optimized by a correntropy based Kalman filter with adaptive fuzzy kernel size

In this study, a self-organizing interval type-3 fuzzy logic system (SO-IT3FLS) with a new learning algorithm is presented. An adaptive kernel size using fuzzy systems is introduced to improve the robustness of conventional correntropy based Kalman filters against non-Gaussian noise. The maximum cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 572; S. 424 - 443
Hauptverfasser: Qasem, Sultan Noman, Ahmadian, Ali, Mohammadzadeh, Ardashir, Rathinasamy, Sakthivel, Pahlevanzadeh, Bahareh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.09.2021
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, a self-organizing interval type-3 fuzzy logic system (SO-IT3FLS) with a new learning algorithm is presented. An adaptive kernel size using fuzzy systems is introduced to improve the robustness of conventional correntropy based Kalman filters against non-Gaussian noise. The maximum correntropy Kalman filter (MCKF) and maximum correntropy unscented Kalman filter (MCUKF) with the proposed adaptive fuzzy kernel size are reformulated to optimize both rule and antecedent parameters, respectively. In addition to the rule parameters, the proposed membership function (MF) parameters and the level of α-cuts are also optimized. Five simulation examples with real-world data sets are given for examination. The simulations show that the introduced SO-IT3FLS and learning algorithm result in better accuracy in contrast to the other kind of fuzzy neural networks and conventional learning techniques. Furthermore, it is verified that the robustness of the proposed learning method against non-Gaussian noise is improved in contrast to the conventional Kalman filter, maximum correntropy Kalman filter and unscented Kalman filter.
AbstractList In this study, a self-organizing interval type-3 fuzzy logic system (SO-IT3FLS) with a new learning algorithm is presented. An adaptive kernel size using fuzzy systems is introduced to improve the robustness of conventional correntropy based Kalman filters against non-Gaussian noise. The maximum correntropy Kalman filter (MCKF) and maximum correntropy unscented Kalman filter (MCUKF) with the proposed adaptive fuzzy kernel size are reformulated to optimize both rule and antecedent parameters, respectively. In addition to the rule parameters, the proposed membership function (MF) parameters and the level of α-cuts are also optimized. Five simulation examples with real-world data sets are given for examination. The simulations show that the introduced SO-IT3FLS and learning algorithm result in better accuracy in contrast to the other kind of fuzzy neural networks and conventional learning techniques. Furthermore, it is verified that the robustness of the proposed learning method against non-Gaussian noise is improved in contrast to the conventional Kalman filter, maximum correntropy Kalman filter and unscented Kalman filter.
Author Pahlevanzadeh, Bahareh
Ahmadian, Ali
Qasem, Sultan Noman
Mohammadzadeh, Ardashir
Rathinasamy, Sakthivel
Author_xml – sequence: 1
  givenname: Sultan Noman
  surname: Qasem
  fullname: Qasem, Sultan Noman
  email: SNMohammed@imamu.edu.sa
  organization: Computer Science Department, College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
– sequence: 2
  givenname: Ali
  surname: Ahmadian
  fullname: Ahmadian, Ali
  email: ahmadian@ubonab.ac.ir
  organization: Electrical Engineering Department, University of Bonab, Bonab, Iran
– sequence: 3
  givenname: Ardashir
  surname: Mohammadzadeh
  fullname: Mohammadzadeh, Ardashir
  email: a.mzadeh@ubonab.ac.ir
  organization: Electrical Engineering Department, University of Bonab, Bonab, Iran
– sequence: 4
  givenname: Sakthivel
  surname: Rathinasamy
  fullname: Rathinasamy, Sakthivel
  organization: Department of Applied Mathematics, Bharathiar University, Coimbatore 641-046, India
– sequence: 5
  givenname: Bahareh
  surname: Pahlevanzadeh
  fullname: Pahlevanzadeh, Bahareh
  email: pahlevanzadeh@ricest.ac.ir
  organization: Department of Design and System Operations, Regional Information Center for Science and Technology (RICeST), Shiraz, Fars, Iran
BookMark eNp9kMtOwzAQRS1UJNrCB7DzDySMnTghsKoqXqJSN7C2ps4EXNKksk1R-vW4oisWXY10R-dq5kzYqOs7YuxaQCpAFDfr1HY-lSBFCiqFTJyxsbgtZVLISozYGEBCAlKpCzbxfg0AeVkUY_Y142HYUpLxtv-whjff-_3A_eADbe74chvsxu6p5quBIze9c9QF128HvkIf41dsN9jxxraBHP-x4ZNjjZHa0bHqi1xHLfex5ZKdN9h6ujrOKXt_fHibPyeL5dPLfLZIjKzKkGDWGCywbOpqVeV5XZSqzNCYRkBW5qqqQJi6hjyuQGWoFBWUYw6ZUSuJ0mRTVv71Gtd776jRxgYMto-no221AH1wptc6OtMHZxqUjs4iKf6RW2c36IaTzP0fQ_GlnSWnvbHUGaqtIxN03dsT9C-tBIhm
CitedBy_id crossref_primary_10_1177_01423312231158431
crossref_primary_10_3390_axioms11060276
crossref_primary_10_1016_j_engappai_2022_105110
crossref_primary_10_3390_s21217419
crossref_primary_10_3390_s22197532
crossref_primary_10_1016_j_apacoust_2023_109573
crossref_primary_10_1109_TETCI_2024_3433514
crossref_primary_10_1007_s00521_022_08174_5
crossref_primary_10_1016_j_neucom_2023_126316
crossref_primary_10_1155_2022_2133712
crossref_primary_10_1155_2022_3082657
crossref_primary_10_1109_TSMC_2025_3543170
crossref_primary_10_3390_mi12111390
crossref_primary_10_3233_JIFS_231460
crossref_primary_10_1007_s40815_023_01470_9
crossref_primary_10_3390_sym15071354
crossref_primary_10_3390_math12244031
crossref_primary_10_1007_s40815_024_01909_7
crossref_primary_10_3390_machines11020175
crossref_primary_10_3390_sym15101941
crossref_primary_10_1016_j_ins_2024_121454
crossref_primary_10_1007_s11071_022_07867_9
crossref_primary_10_1049_cth2_12415
crossref_primary_10_1007_s13042_023_01825_6
crossref_primary_10_3390_math12131976
crossref_primary_10_1002_int_23058
crossref_primary_10_3390_axioms11080410
crossref_primary_10_1016_j_asoc_2022_109636
crossref_primary_10_1002_rnc_7900
crossref_primary_10_3390_pr10081530
crossref_primary_10_1016_j_egyr_2021_07_004
crossref_primary_10_1016_j_isatra_2024_03_029
crossref_primary_10_1007_s40815_024_01806_z
crossref_primary_10_3390_math9243199
crossref_primary_10_1016_j_engappai_2024_109627
crossref_primary_10_1109_ACCESS_2023_3272531
crossref_primary_10_1155_er_7746281
crossref_primary_10_3390_math12121792
crossref_primary_10_1155_2022_1132557
crossref_primary_10_1002_int_22910
crossref_primary_10_1016_j_asoc_2021_108054
crossref_primary_10_1007_s40010_023_00849_5
crossref_primary_10_1109_TSMC_2022_3190091
crossref_primary_10_1007_s11071_023_08744_9
crossref_primary_10_1109_JAS_2024_124530
crossref_primary_10_1109_TFUZZ_2024_3392296
crossref_primary_10_1109_TIE_2021_3134052
crossref_primary_10_1155_2022_2091337
crossref_primary_10_3390_axioms11060251
crossref_primary_10_1016_j_asoc_2025_113297
crossref_primary_10_1007_s40747_023_01248_4
crossref_primary_10_1007_s10489_022_04155_2
crossref_primary_10_1007_s40815_024_01902_0
crossref_primary_10_1002_oca_3310
crossref_primary_10_3390_mi13091490
crossref_primary_10_1016_j_fss_2024_109014
crossref_primary_10_1007_s40815_023_01499_w
crossref_primary_10_1016_j_chaos_2025_116584
crossref_primary_10_3390_math10173186
crossref_primary_10_3390_electronics11010063
crossref_primary_10_1007_s12652_022_04509_1
crossref_primary_10_1016_j_oceaneng_2022_113014
crossref_primary_10_3390_s23020821
crossref_primary_10_3390_mca29040067
crossref_primary_10_1016_j_engappai_2022_105363
crossref_primary_10_1016_j_ins_2023_03_076
crossref_primary_10_3390_su141912473
crossref_primary_10_1016_j_measurement_2023_113527
crossref_primary_10_1007_s40435_022_01051_y
crossref_primary_10_3390_electronics10243122
crossref_primary_10_3390_electronics11192980
crossref_primary_10_1016_j_engappai_2022_105726
crossref_primary_10_3390_math13030375
crossref_primary_10_3390_math10152594
crossref_primary_10_1155_2022_3483778
crossref_primary_10_3390_math11244933
crossref_primary_10_1155_2022_2573805
crossref_primary_10_1007_s40430_025_05786_5
crossref_primary_10_1088_1361_6501_adc028
Cites_doi 10.1007/s12530-010-9009-7
10.22190/FUME190327035A
10.1109/TSMCB.2003.817053
10.1016/j.ins.2019.06.053
10.1007/s00500-014-1287-8
10.1007/978-3-030-34135-0_6
10.1162/neco.1993.5.6.954
10.1109/TFUZZ.2010.2047949
10.1162/neco.1997.9.2.461
10.1016/j.ins.2016.03.047
10.1016/j.ins.2018.05.053
10.1016/j.asoc.2019.03.027
10.1016/j.ins.2011.12.033
10.1016/j.ins.2018.10.025
10.1016/j.ins.2019.07.032
10.1016/j.isatra.2020.12.008
10.1007/s41066-018-0133-2
10.1016/j.ins.2019.05.047
10.1016/j.engappai.2020.103483
10.1016/j.ins.2018.09.002
10.1007/s00500-019-04157-2
10.1109/TIM.2020.2983531
10.1109/TFUZZ.2009.2029569
10.1007/s40815-019-00685-z
10.1016/j.ijar.2019.07.011
10.1109/TFUZZ.2019.2898582
10.1109/FUZZY.2005.1452543
10.1016/S0165-0114(97)00098-5
10.1007/s00500-017-2938-3
10.1109/TPEL.2019.2896019
10.1007/s00500-019-03889-5
10.1016/j.fss.2005.12.011
10.1007/978-3-319-05170-3_1
10.1109/JAS.2019.1911348
10.1016/j.ins.2019.09.027
10.1007/978-1-4471-5058-9_62
10.3390/jimaging5080071
10.1016/j.automatica.2016.10.004
10.1016/j.ins.2020.03.059
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.05.031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 443
ExternalDocumentID 10_1016_j_ins_2021_05_031
S0020025521004898
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-a3fca6a7fd9b944d67573accf1037459901cdd0444d053a55e6e4a403c5b2a2c3
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683573200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:51:28 EST 2025
Sat Nov 29 06:55:58 EST 2025
Fri Feb 23 02:43:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interval type-3 fuzzy logic systems
Self-organizing
Correntropy criterion
Learning algorithm
Kalman filter
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-a3fca6a7fd9b944d67573accf1037459901cdd0444d053a55e6e4a403c5b2a2c3
PageCount 20
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2021_05_031
crossref_primary_10_1016_j_ins_2021_05_031
elsevier_sciencedirect_doi_10_1016_j_ins_2021_05_031
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shukla, Muhuri (b0190) 2019; 36
Auto-mpg data, 1996. Machine learning databases. URL
Zhao, Wang, Yan, Shen (b0240) 2019; 473
Angelov, Filev (b0020) 2004; 34
de Jesús Rubio (b0055) 2009; 17
Yingwei, Sundararajan, Saratchandran (b0230) 1997; 9
Wang, Zeng, Keane (b0210) 2010; 1
Wang, Zeng, Keane (b0215) 2013; 220
Housing data, 1996. Machine learning databases. URL
Mohammadzadeh, A., Sabzalian, M.H., Ahmadian, A., Nabipour, N., 2020. A dynamic general type-2 fuzzy system with optimized secondary membership for online frequency regulation. ISA Trans. 1–12.
Mohammadzadeh, Kayacan (b0115) 2006; 36
Almaraashi, John, Hopgood, Ahmadi (b0010) 2016; 360
Martínez, Gonzalez, Mendoza, Melin (b0095) 2019; 5
Poma, Y., Melin, P., González, C.I., Martinez, G.E., 2020. Optimal recognition model based on convolutional neural networks and fuzzy gravitational search algorithm method. In: Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Springer, pp. 71–81.
Rong, Sundararajan, Huang, Saratchandran (b0170) 2006; 157
Zarandi, Soltanzadeh, Mohammadi, Castillo (b0235) 2019; 80
Mohammadzadeh, Kayacan (b0120) 2020; 90
de los Angeles Hernandez, M., Melin, P., Méndez, G.M., Castillo, O., López-Juarez, I., 2015. A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems. Soft Comput. 19 (3), 661–678.
Jianzhong, Shaohua, Yong, Rong (b0085) 2019; 23
Daum (b0050) 2015
Chen, Liu, Zhao, Principe (b0035) 2017; 76
Mohammadzadeh, Sabzalian, Zhang (b0130) 2019
Olivas, Valdez, Melin, Sombra, Castillo (b0135) 2019; 476
.
Albu, Precup, Teban (b0005) 2019; 17
Chen, Zou, Gunawan (b0040) 2019; 500
Jammalamadaka, Qiu, Ning (b0080) 2019; 17
Ruiz-García, Hagras, Pomares, Ruiz (b0175) 2019; 27
Izanloo, Fakoorian, Yazdi, Simon (b0075) 2016
Precup, Teban, Albu, Borlea, Zamfirache, Petriu (b0165) 2020; 69
Tian, Nie, Wang (b0195) 2019; 502
Wang, Yen (b0225) 1999; 101
Wang, Zeng, Keane (b0205) 2010; 18
Sang, Zhou, Yu (b0180) 2019; 504
McCulloch, Wagner (b0105) 2020; 510
Pedrycz, Kwak (b0150) 2013; 220
Melin, Sánchez (b0110) 2019; 4
Dian, Han, Guo, Li, Zhao, Hu, Wu (b0065) 2019; 21
Wang, Kumbasar (b0220) 2019; 6
Shahparast, Mansoori (b0185) 2019; 113
Pozna, Precup (b0160) 2014; 11
Martínez-Soto, R., Castillo, O., Castro, J.R., 2014. Genetic algorithm optimization for type-2 non-singleton fuzzy logic controllers. In: Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Springer, pp. 3–18.
Zhou, Lai, Miao, Gao, Yue (b0245) 2020; 507
Kadirkamanathan, Niranjan (b0090) 1993; 5
Chen, Wang (b0045) 2018; 22
Angelov, P., Filev, D., 2005. Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. In: Fuzzy Systems, 2005. FUZZ’05. The 14th IEEE International Conference on. IEEE, pp. 1068–1073.
Vafamand, Khooban, Dragičević, Blaabjerg, Boudjadar (b0200) 2019; 34
Bagheri, Miri, Shabakhty (b0030) 2016; 30
Ontiveros, Melin, Castillo (b0140) 2020; 525
Ontiveros-Robles, Melin (b0145) 2020; 24
Almaraashi (10.1016/j.ins.2021.05.031_b0010) 2016; 360
10.1016/j.ins.2021.05.031_b0025
Zhao (10.1016/j.ins.2021.05.031_b0240) 2019; 473
10.1016/j.ins.2021.05.031_b0100
Pedrycz (10.1016/j.ins.2021.05.031_b0150) 2013; 220
Daum (10.1016/j.ins.2021.05.031_b0050) 2015
10.1016/j.ins.2021.05.031_b0060
Chen (10.1016/j.ins.2021.05.031_b0035) 2017; 76
Chen (10.1016/j.ins.2021.05.031_b0045) 2018; 22
Precup (10.1016/j.ins.2021.05.031_b0165) 2020; 69
Wang (10.1016/j.ins.2021.05.031_b0210) 2010; 1
Tian (10.1016/j.ins.2021.05.031_b0195) 2019; 502
Wang (10.1016/j.ins.2021.05.031_b0215) 2013; 220
Wang (10.1016/j.ins.2021.05.031_b0225) 1999; 101
10.1016/j.ins.2021.05.031_b0015
Sang (10.1016/j.ins.2021.05.031_b0180) 2019; 504
Zarandi (10.1016/j.ins.2021.05.031_b0235) 2019; 80
McCulloch (10.1016/j.ins.2021.05.031_b0105) 2020; 510
Ontiveros (10.1016/j.ins.2021.05.031_b0140) 2020; 525
Rong (10.1016/j.ins.2021.05.031_b0170) 2006; 157
Pozna (10.1016/j.ins.2021.05.031_b0160) 2014; 11
Melin (10.1016/j.ins.2021.05.031_b0110) 2019; 4
Vafamand (10.1016/j.ins.2021.05.031_b0200) 2019; 34
Kadirkamanathan (10.1016/j.ins.2021.05.031_b0090) 1993; 5
Yingwei (10.1016/j.ins.2021.05.031_b0230) 1997; 9
10.1016/j.ins.2021.05.031_b0125
Wang (10.1016/j.ins.2021.05.031_b0205) 2010; 18
Bagheri (10.1016/j.ins.2021.05.031_b0030) 2016; 30
Olivas (10.1016/j.ins.2021.05.031_b0135) 2019; 476
Chen (10.1016/j.ins.2021.05.031_b0040) 2019; 500
Mohammadzadeh (10.1016/j.ins.2021.05.031_b0120) 2020; 90
Shukla (10.1016/j.ins.2021.05.031_b0190) 2019; 36
Shahparast (10.1016/j.ins.2021.05.031_b0185) 2019; 113
Jammalamadaka (10.1016/j.ins.2021.05.031_b0080) 2019; 17
Mohammadzadeh (10.1016/j.ins.2021.05.031_b0130) 2019
Albu (10.1016/j.ins.2021.05.031_b0005) 2019; 17
Martínez (10.1016/j.ins.2021.05.031_b0095) 2019; 5
Ontiveros-Robles (10.1016/j.ins.2021.05.031_b0145) 2020; 24
10.1016/j.ins.2021.05.031_b0155
Wang (10.1016/j.ins.2021.05.031_b0220) 2019; 6
Jianzhong (10.1016/j.ins.2021.05.031_b0085) 2019; 23
Dian (10.1016/j.ins.2021.05.031_b0065) 2019; 21
10.1016/j.ins.2021.05.031_b0070
Izanloo (10.1016/j.ins.2021.05.031_b0075) 2016
Mohammadzadeh (10.1016/j.ins.2021.05.031_b0115) 2006; 36
Angelov (10.1016/j.ins.2021.05.031_b0020) 2004; 34
Zhou (10.1016/j.ins.2021.05.031_b0245) 2020; 507
de Jesús Rubio (10.1016/j.ins.2021.05.031_b0055) 2009; 17
Ruiz-García (10.1016/j.ins.2021.05.031_b0175) 2019; 27
References_xml – volume: 4
  start-page: 211
  year: 2019
  end-page: 236
  ident: b0110
  article-title: Optimization of type-1, interval type-2 and general type-2 fuzzy inference systems using a hierarchical genetic algorithm for modular granular neural networks
  publication-title: Granular Comput.
– volume: 220
  start-page: 110
  year: 2013
  end-page: 123
  ident: b0215
  article-title: A simplified structure evolving method for Mamdani fuzzy system identification and its application to high-dimensional problems
  publication-title: Inf. Sci.
– volume: 80
  start-page: 329
  year: 2019
  end-page: 341
  ident: b0235
  article-title: Designing a general type-2 fuzzy expert system for diagnosis of depression
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 461
  year: 1997
  end-page: 478
  ident: b0230
  article-title: A sequential learning scheme for function approximation using minimal radial basis function neural networks
  publication-title: Neural Comput.
– volume: 17
  start-page: 1296
  year: 2009
  end-page: 1309
  ident: b0055
  article-title: SOFMLS: online self-organizing fuzzy modified least-squares network
  publication-title: Fuzzy Syst. IEEE Trans.
– volume: 500
  start-page: 127
  year: 2019
  end-page: 139
  ident: b0040
  article-title: Fuzzy time series forecasting based on proportions of intervals and particle swarm optimization techniques
  publication-title: Inf. Sci.
– volume: 30
  start-page: 235
  year: 2016
  end-page: 244
  ident: b0030
  article-title: Fuzzy reliability analysis using a new alpha level set optimization approach based on particle swarm optimization
  publication-title: J. Intell. Fuzzy Syst.
– volume: 510
  start-page: 135
  year: 2020
  end-page: 154
  ident: b0105
  article-title: On the choice of similarity measures for type-2 fuzzy sets
  publication-title: Inf. Sci.
– volume: 525
  start-page: 37
  year: 2020
  end-page: 53
  ident: b0140
  article-title: Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis
  publication-title: Inf. Sci.
– volume: 101
  start-page: 353
  year: 1999
  end-page: 362
  ident: b0225
  article-title: Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter
  publication-title: Fuzzy Sets Syst.
– volume: 22
  start-page: 1361
  year: 2018
  end-page: 1380
  ident: b0045
  article-title: Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced karnik–mendel algorithms
  publication-title: Soft. Comput.
– volume: 507
  start-page: 553
  year: 2020
  end-page: 573
  ident: b0245
  article-title: Multigranulation rough-fuzzy clustering based on shadowed sets
  publication-title: Inf. Sci.
– reference: Angelov, P., Filev, D., 2005. Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. In: Fuzzy Systems, 2005. FUZZ’05. The 14th IEEE International Conference on. IEEE, pp. 1068–1073.
– volume: 504
  start-page: 546
  year: 2019
  end-page: 560
  ident: b0180
  article-title: An uncertain possibility-probability information fusion method under interval type-2 fuzzy environment and its application in stock selection
  publication-title: Inf. Sci.
– volume: 23
  start-page: 13513
  year: 2019
  end-page: 13530
  ident: b0085
  article-title: An improved general type-2 fuzzy sets type reduction and its application in general type-2 fuzzy controller design
  publication-title: Soft. Comput.
– volume: 360
  start-page: 21
  year: 2016
  end-page: 42
  ident: b0010
  article-title: Learning of interval and general type-2 fuzzy logic systems using simulated annealing: theory and practice
  publication-title: Inf. Sci.
– volume: 17
  start-page: 285
  year: 2019
  end-page: 308
  ident: b0005
  article-title: Results and challenges of artificial neural networks used for decision-making and control in medical applications
  publication-title: Facta Universitatis Ser.: Mech. Eng.
– volume: 157
  start-page: 1260
  year: 2006
  end-page: 1275
  ident: b0170
  article-title: Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
  publication-title: Fuzzy Sets Syst.
– volume: 76
  start-page: 70
  year: 2017
  end-page: 77
  ident: b0035
  article-title: Maximum correntropy kalman filter
  publication-title: Automatica
– start-page: 500
  year: 2016
  end-page: 505
  ident: b0075
  article-title: Kalman filtering based on the maximum correntropy criterion in the presence of non-gaussian noise
  publication-title: 2016 Annual Conference on Information Science and Systems (CISS). IEEE
– volume: 90
  year: 2020
  ident: b0120
  article-title: A novel fractional-order type-2 fuzzy control method for online frequency regulation in ac microgrid
  publication-title: Eng. Appl. Artif. Intell.
– volume: 1
  start-page: 83
  year: 2010
  end-page: 95
  ident: b0210
  article-title: A structure evolving learning method for fuzzy systems
  publication-title: Evolving Syst.
– volume: 476
  start-page: 159
  year: 2019
  end-page: 175
  ident: b0135
  article-title: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 69
  start-page: 4625
  year: 2020
  end-page: 4636
  ident: b0165
  article-title: Evolving fuzzy models for prosthetic hand myoelectric-based control
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 21
  start-page: 2032
  year: 2019
  end-page: 2042
  ident: b0065
  article-title: Double closed-loop general type-2 fuzzy sliding model control for trajectory tracking of wheeled mobile robots
  publication-title: Int. J. Fuzzy Syst.
– volume: 27
  start-page: 2381
  year: 2019
  end-page: 2395
  ident: b0175
  article-title: Toward a fuzzy logic system based on general forms of interval type-2 fuzzy sets
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 36
  start-page: 5227
  year: 2019
  end-page: 5244
  ident: b0190
  article-title: General type-2 fuzzy decision making and its application to travel time selection
  publication-title: J. Intell. Fuzzy Syst.
– reference: Martínez-Soto, R., Castillo, O., Castro, J.R., 2014. Genetic algorithm optimization for type-2 non-singleton fuzzy logic controllers. In: Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Springer, pp. 3–18.
– reference: Auto-mpg data, 1996. Machine learning databases. URL:
– volume: 220
  start-page: 110
  year: 2013
  end-page: 123
  ident: b0150
  article-title: Linguistic models as a framework of user-centric system modeling
  publication-title: Inf. Sci.
– volume: 502
  start-page: 446
  year: 2019
  end-page: 471
  ident: b0195
  article-title: Social network analysis-based consensus-supporting framework for large-scale group decision-making with incomplete interval type-2 fuzzy information
  publication-title: Inf. Sci.
– volume: 113
  start-page: 336
  year: 2019
  end-page: 353
  ident: b0185
  article-title: Developing an online general type-2 fuzzy classifier using evolving type-1 rules
  publication-title: Int. J. Approximate Reasoning
– volume: 5
  start-page: 954
  year: 1993
  end-page: 975
  ident: b0090
  article-title: A function estimation approach to sequential learning with neural networks
  publication-title: Neural Comput.
– volume: 17
  start-page: 81
  year: 2019
  end-page: 104
  ident: b0080
  article-title: Predicting a stock portfolio with the multivariate bayesian structural time series model: Do news or emotions matter?
  publication-title: Int. J. Artif. Intell.
– reference: Poma, Y., Melin, P., González, C.I., Martinez, G.E., 2020. Optimal recognition model based on convolutional neural networks and fuzzy gravitational search algorithm method. In: Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Springer, pp. 71–81.
– volume: 18
  start-page: 755
  year: 2010
  end-page: 770
  ident: b0205
  article-title: An evolving-construction scheme for fuzzy systems
  publication-title: Fuzzy Syst. IEEE Trans.
– reference: Housing data, 1996. Machine learning databases. URL:
– volume: 36
  start-page: 727
  year: 2006
  end-page: 745
  ident: b0115
  article-title: A non-singleton type-2 fuzzy neural network with adaptive secondary membership for high dimensional applications
  publication-title: Syst. Man Cybern. Part A: Syst. Humans IEEE Trans.
– volume: 473
  start-page: 227
  year: 2019
  end-page: 238
  ident: b0240
  article-title: Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays
  publication-title: Inf. Sci.
– volume: 11
  start-page: 21
  year: 2014
  end-page: 39
  ident: b0160
  article-title: Applications of signatures to expert systems modelling
  publication-title: Acta Polytech. Hungarica
– start-page: 411
  year: 2015
  end-page: 413
  ident: b0050
  article-title: Extended Kalman Filters
  publication-title: Encyclopedia Syst. Control
– volume: 6
  start-page: 247
  year: 2019
  end-page: 257
  ident: b0220
  article-title: Parameter optimization of interval type-2 fuzzy neural networks based on pso and bbbc methods
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 34
  start-page: 484
  year: 2004
  end-page: 498
  ident: b0020
  article-title: An approach to online identification of Takagi-Sugeno fuzzy models
  publication-title: Syst. Man Cybern. Part B
– volume: 24
  start-page: 83
  year: 2020
  end-page: 99
  ident: b0145
  article-title: Toward a development of general type-2 fuzzy classifiers applied in diagnosis problems through embedded type-1 fuzzy classifiers
  publication-title: Soft. Comput.
– reference: .
– volume: 34
  start-page: 11300
  year: 2019
  end-page: 11308
  ident: b0200
  article-title: Robust non-fragile fuzzy control of uncertain dc microgrids feeding constant power loads
  publication-title: IEEE Trans. Power Electron.
– reference: de los Angeles Hernandez, M., Melin, P., Méndez, G.M., Castillo, O., López-Juarez, I., 2015. A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems. Soft Comput. 19 (3), 661–678.
– year: 2019
  ident: b0130
  article-title: An interval type-3 fuzzy system and a new online fractional-order learning algorithm: theory and practice
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 5
  start-page: 71
  year: 2019
  ident: b0095
  article-title: General type-2 fuzzy sugeno integral for edge detection
  publication-title: J. Imag.
– reference: Mohammadzadeh, A., Sabzalian, M.H., Ahmadian, A., Nabipour, N., 2020. A dynamic general type-2 fuzzy system with optimized secondary membership for online frequency regulation. ISA Trans. 1–12.
– volume: 1
  start-page: 83
  issue: 2
  year: 2010
  ident: 10.1016/j.ins.2021.05.031_b0210
  article-title: A structure evolving learning method for fuzzy systems
  publication-title: Evolving Syst.
  doi: 10.1007/s12530-010-9009-7
– volume: 17
  start-page: 285
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0005
  article-title: Results and challenges of artificial neural networks used for decision-making and control in medical applications
  publication-title: Facta Universitatis Ser.: Mech. Eng.
  doi: 10.22190/FUME190327035A
– volume: 34
  start-page: 484
  issue: 1
  year: 2004
  ident: 10.1016/j.ins.2021.05.031_b0020
  article-title: An approach to online identification of Takagi-Sugeno fuzzy models
  publication-title: Syst. Man Cybern. Part B
  doi: 10.1109/TSMCB.2003.817053
– volume: 502
  start-page: 446
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0195
  article-title: Social network analysis-based consensus-supporting framework for large-scale group decision-making with incomplete interval type-2 fuzzy information
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.06.053
– ident: 10.1016/j.ins.2021.05.031_b0060
  doi: 10.1007/s00500-014-1287-8
– ident: 10.1016/j.ins.2021.05.031_b0155
  doi: 10.1007/978-3-030-34135-0_6
– volume: 5
  start-page: 954
  issue: 6
  year: 1993
  ident: 10.1016/j.ins.2021.05.031_b0090
  article-title: A function estimation approach to sequential learning with neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1993.5.6.954
– volume: 18
  start-page: 755
  issue: 4
  year: 2010
  ident: 10.1016/j.ins.2021.05.031_b0205
  article-title: An evolving-construction scheme for fuzzy systems
  publication-title: Fuzzy Syst. IEEE Trans.
  doi: 10.1109/TFUZZ.2010.2047949
– volume: 9
  start-page: 461
  issue: 2
  year: 1997
  ident: 10.1016/j.ins.2021.05.031_b0230
  article-title: A sequential learning scheme for function approximation using minimal radial basis function neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.2.461
– volume: 30
  start-page: 235
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2021.05.031_b0030
  article-title: Fuzzy reliability analysis using a new alpha level set optimization approach based on particle swarm optimization
  publication-title: J. Intell. Fuzzy Syst.
– volume: 360
  start-page: 21
  year: 2016
  ident: 10.1016/j.ins.2021.05.031_b0010
  article-title: Learning of interval and general type-2 fuzzy logic systems using simulated annealing: theory and practice
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.03.047
– volume: 507
  start-page: 553
  year: 2020
  ident: 10.1016/j.ins.2021.05.031_b0245
  article-title: Multigranulation rough-fuzzy clustering based on shadowed sets
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.05.053
– volume: 17
  start-page: 81
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0080
  article-title: Predicting a stock portfolio with the multivariate bayesian structural time series model: Do news or emotions matter?
  publication-title: Int. J. Artif. Intell.
– volume: 80
  start-page: 329
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0235
  article-title: Designing a general type-2 fuzzy expert system for diagnosis of depression
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.027
– volume: 220
  start-page: 110
  year: 2013
  ident: 10.1016/j.ins.2021.05.031_b0215
  article-title: A simplified structure evolving method for Mamdani fuzzy system identification and its application to high-dimensional problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.12.033
– volume: 476
  start-page: 159
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0135
  article-title: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.10.025
– ident: 10.1016/j.ins.2021.05.031_b0070
– volume: 504
  start-page: 546
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0180
  article-title: An uncertain possibility-probability information fusion method under interval type-2 fuzzy environment and its application in stock selection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.07.032
– ident: 10.1016/j.ins.2021.05.031_b0125
  doi: 10.1016/j.isatra.2020.12.008
– volume: 4
  start-page: 211
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0110
  article-title: Optimization of type-1, interval type-2 and general type-2 fuzzy inference systems using a hierarchical genetic algorithm for modular granular neural networks
  publication-title: Granular Comput.
  doi: 10.1007/s41066-018-0133-2
– year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0130
  article-title: An interval type-3 fuzzy system and a new online fractional-order learning algorithm: theory and practice
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 36
  start-page: 727
  issue: 4
  year: 2006
  ident: 10.1016/j.ins.2021.05.031_b0115
  article-title: A non-singleton type-2 fuzzy neural network with adaptive secondary membership for high dimensional applications
  publication-title: Syst. Man Cybern. Part A: Syst. Humans IEEE Trans.
– volume: 500
  start-page: 127
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0040
  article-title: Fuzzy time series forecasting based on proportions of intervals and particle swarm optimization techniques
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.05.047
– volume: 90
  year: 2020
  ident: 10.1016/j.ins.2021.05.031_b0120
  article-title: A novel fractional-order type-2 fuzzy control method for online frequency regulation in ac microgrid
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103483
– ident: 10.1016/j.ins.2021.05.031_b0025
– volume: 473
  start-page: 227
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0240
  article-title: Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.09.002
– volume: 24
  start-page: 83
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2021.05.031_b0145
  article-title: Toward a development of general type-2 fuzzy classifiers applied in diagnosis problems through embedded type-1 fuzzy classifiers
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-019-04157-2
– volume: 69
  start-page: 4625
  issue: 7
  year: 2020
  ident: 10.1016/j.ins.2021.05.031_b0165
  article-title: Evolving fuzzy models for prosthetic hand myoelectric-based control
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2983531
– volume: 17
  start-page: 1296
  issue: 6
  year: 2009
  ident: 10.1016/j.ins.2021.05.031_b0055
  article-title: SOFMLS: online self-organizing fuzzy modified least-squares network
  publication-title: Fuzzy Syst. IEEE Trans.
  doi: 10.1109/TFUZZ.2009.2029569
– volume: 21
  start-page: 2032
  issue: 7
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0065
  article-title: Double closed-loop general type-2 fuzzy sliding model control for trajectory tracking of wheeled mobile robots
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-019-00685-z
– volume: 220
  start-page: 110
  year: 2013
  ident: 10.1016/j.ins.2021.05.031_b0150
  article-title: Linguistic models as a framework of user-centric system modeling
  publication-title: Inf. Sci.
– volume: 113
  start-page: 336
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0185
  article-title: Developing an online general type-2 fuzzy classifier using evolving type-1 rules
  publication-title: Int. J. Approximate Reasoning
  doi: 10.1016/j.ijar.2019.07.011
– volume: 11
  start-page: 21
  issue: 2
  year: 2014
  ident: 10.1016/j.ins.2021.05.031_b0160
  article-title: Applications of signatures to expert systems modelling
  publication-title: Acta Polytech. Hungarica
– start-page: 500
  year: 2016
  ident: 10.1016/j.ins.2021.05.031_b0075
  article-title: Kalman filtering based on the maximum correntropy criterion in the presence of non-gaussian noise
– volume: 27
  start-page: 2381
  issue: 12
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0175
  article-title: Toward a fuzzy logic system based on general forms of interval type-2 fuzzy sets
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2898582
– ident: 10.1016/j.ins.2021.05.031_b0015
  doi: 10.1109/FUZZY.2005.1452543
– volume: 101
  start-page: 353
  issue: 3
  year: 1999
  ident: 10.1016/j.ins.2021.05.031_b0225
  article-title: Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(97)00098-5
– volume: 22
  start-page: 1361
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2021.05.031_b0045
  article-title: Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced karnik–mendel algorithms
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-017-2938-3
– volume: 34
  start-page: 11300
  issue: 11
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0200
  article-title: Robust non-fragile fuzzy control of uncertain dc microgrids feeding constant power loads
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2019.2896019
– volume: 23
  start-page: 13513
  issue: 24
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0085
  article-title: An improved general type-2 fuzzy sets type reduction and its application in general type-2 fuzzy controller design
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-019-03889-5
– volume: 36
  start-page: 5227
  issue: 6
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0190
  article-title: General type-2 fuzzy decision making and its application to travel time selection
  publication-title: J. Intell. Fuzzy Syst.
– volume: 157
  start-page: 1260
  issue: 9
  year: 2006
  ident: 10.1016/j.ins.2021.05.031_b0170
  article-title: Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2005.12.011
– ident: 10.1016/j.ins.2021.05.031_b0100
  doi: 10.1007/978-3-319-05170-3_1
– volume: 6
  start-page: 247
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0220
  article-title: Parameter optimization of interval type-2 fuzzy neural networks based on pso and bbbc methods
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2019.1911348
– volume: 510
  start-page: 135
  year: 2020
  ident: 10.1016/j.ins.2021.05.031_b0105
  article-title: On the choice of similarity measures for type-2 fuzzy sets
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.09.027
– start-page: 411
  year: 2015
  ident: 10.1016/j.ins.2021.05.031_b0050
  article-title: Extended Kalman Filters
  publication-title: Encyclopedia Syst. Control
  doi: 10.1007/978-1-4471-5058-9_62
– volume: 5
  start-page: 71
  issue: 8
  year: 2019
  ident: 10.1016/j.ins.2021.05.031_b0095
  article-title: General type-2 fuzzy sugeno integral for edge detection
  publication-title: J. Imag.
  doi: 10.3390/jimaging5080071
– volume: 76
  start-page: 70
  year: 2017
  ident: 10.1016/j.ins.2021.05.031_b0035
  article-title: Maximum correntropy kalman filter
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.10.004
– volume: 525
  start-page: 37
  year: 2020
  ident: 10.1016/j.ins.2021.05.031_b0140
  article-title: Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.03.059
SSID ssj0004766
Score 2.6288874
Snippet In this study, a self-organizing interval type-3 fuzzy logic system (SO-IT3FLS) with a new learning algorithm is presented. An adaptive kernel size using fuzzy...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 424
SubjectTerms Correntropy criterion
Interval type-3 fuzzy logic systems
Kalman filter
Learning algorithm
Self-organizing
Title A type-3 logic fuzzy system: Optimized by a correntropy based Kalman filter with adaptive fuzzy kernel size
URI https://dx.doi.org/10.1016/j.ins.2021.05.031
Volume 572
WOSCitedRecordID wos000683573200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQc4ICggWijaA-KAZcle79Y1NwsV8ZDCQ0XKzZrs2moaPyInrZr8If4msw87plBED1ysxIknj_k8M7s737eEvGRcBDkPIr_gbOpzIUMfVBT6KowEFtASIgZms4l4PD6eTJIvo9GPjgtzWcZ1fXx1lSz-q6vxHDpbU2dv4e7eKJ7Ax-h0PKLb8fhPjk_NtKofeSaqecXFZrN2gs16-P8ZY0Q129jCEzzZGH2mtlmsPZ3RlPcJSj2vX8z0OrrjvilYWH1wY2yet3Veeku0MqxtHbPJAMol1r5g_4qmK9sFVGI56o2bagvL9KwyCgmWcDPrMdCcQYWvbEDlZvInbZXe-qlvJ_6mOydrWEJlG9ZgvtIquuVwJoOFfavWllkQ-HqMM4zOwu7s4-Irt4Rrl6q5VXj6LQvYCYlzHLpoQXYWGm1Wl2x-Udy-lgn7_sSu9e08QxOZNpEFIgs0X3-XxSLB8LmbfjiZfNxScGO7LN79hG4B3bQSXvsefy6BBmXN6QNy341HaGpx9JCM8nqP3BuoVO6RQ8dtoa_owMXUZYVHZJ5SizhqEEcNSKhF3Bva441O1xToAG_U4I1avFGLN6rxRju8OVMWb1Tj7TH5_u7k9O173-3h4UuWxCsfokLCEcSFSqYJ5wrHp3EEUhaan8qFXpWVSmnRQoXpAITIj3IOGDykmDJgMnpCduqmzp8SipWTDJkqsKosOCRsimVVjE8VGsCIE--ToPtbM-kE7vU-K2V2ozv3yev-koVVd_nbm3nnq8zdRbbszBB3N192cJvPeEbubu-M52Rn1V7kh-SOvFzNlu0LB7qf0b2z3Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+type-3+logic+fuzzy+system%3A+Optimized+by+a+correntropy+based+Kalman+filter+with+adaptive+fuzzy+kernel+size&rft.jtitle=Information+sciences&rft.au=Qasem%2C+Sultan+Noman&rft.au=Ahmadian%2C+Ali&rft.au=Mohammadzadeh%2C+Ardashir&rft.au=Rathinasamy%2C+Sakthivel&rft.date=2021-09-01&rft.issn=0020-0255&rft.volume=572&rft.spage=424&rft.epage=443&rft_id=info:doi/10.1016%2Fj.ins.2021.05.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_05_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon