Satellite attitude tracking control of moving targets combining deep reinforcement learning and predefined-time stability considering energy optimization
•An attitude tracking control method combining deep reinforcement learning and traditional satellite attitude controller for moving targets tracking and observation is proposed.•Integrate LSTM into TD3 to learn the moving state of the target from its image positions and obtain desired attitude in re...
Uloženo v:
| Vydáno v: | Advances in space research Ročník 69; číslo 5; s. 2182 - 2196 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.03.2022
|
| Témata: | |
| ISSN: | 0273-1177, 1879-1948 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •An attitude tracking control method combining deep reinforcement learning and traditional satellite attitude controller for moving targets tracking and observation is proposed.•Integrate LSTM into TD3 to learn the moving state of the target from its image positions and obtain desired attitude in real time.•Energy optimization is considered in the design of the reward function of the TD3, which promotes the TD3 to learn a strategy of generating the desired attitude that satellite maneuvers to with less energy.•An adaptive backstepping controller with predefined-time stability is designed to ensure that the satellite attitude reaches the desired attitude within a predefined decision period in the presence of the external disturbance and uncertain inertia properties.•A simulation system of moving target tracking and observation is established, and the results indicate that our approach is superior in terms of tracking ability and energy consumption.
Space-based moving targets tracking and observation facilitates target recognition and analysis of target characteristics, but the ability of satellite attitude tracking control needs to be improved, especially considering the energy optimization for long-time tracking. An attitude tracking control method combining deep reinforcement learning and predefined-time stability is proposed, which not only improves the autonomous decision-making ability but also ensures the reliability of the satellite attitude control. The long short-term memory network is integrated into the twin delayed deep deterministic policy gradient algorithm to learn the moving state of the target from its image positions as the input to generate the desired attitude in real time, and energy optimization is considered in the design of the reward function. Then an adaptive backstepping controller is designed to achieve predefined-time stability in the presence of the external disturbance and uncertain inertia properties, which ensures that the satellite attitude is controlled to the desired value within a predefined decision period. Finally, a simulation system of moving target tracking is established, and the results indicate that our approach is superior in terms of tracking ability and energy consumption. |
|---|---|
| AbstractList | •An attitude tracking control method combining deep reinforcement learning and traditional satellite attitude controller for moving targets tracking and observation is proposed.•Integrate LSTM into TD3 to learn the moving state of the target from its image positions and obtain desired attitude in real time.•Energy optimization is considered in the design of the reward function of the TD3, which promotes the TD3 to learn a strategy of generating the desired attitude that satellite maneuvers to with less energy.•An adaptive backstepping controller with predefined-time stability is designed to ensure that the satellite attitude reaches the desired attitude within a predefined decision period in the presence of the external disturbance and uncertain inertia properties.•A simulation system of moving target tracking and observation is established, and the results indicate that our approach is superior in terms of tracking ability and energy consumption.
Space-based moving targets tracking and observation facilitates target recognition and analysis of target characteristics, but the ability of satellite attitude tracking control needs to be improved, especially considering the energy optimization for long-time tracking. An attitude tracking control method combining deep reinforcement learning and predefined-time stability is proposed, which not only improves the autonomous decision-making ability but also ensures the reliability of the satellite attitude control. The long short-term memory network is integrated into the twin delayed deep deterministic policy gradient algorithm to learn the moving state of the target from its image positions as the input to generate the desired attitude in real time, and energy optimization is considered in the design of the reward function. Then an adaptive backstepping controller is designed to achieve predefined-time stability in the presence of the external disturbance and uncertain inertia properties, which ensures that the satellite attitude is controlled to the desired value within a predefined decision period. Finally, a simulation system of moving target tracking is established, and the results indicate that our approach is superior in terms of tracking ability and energy consumption. |
| Author | Shi, Zhong Jin, Zhonghe Zhao, Fanyu Wang, Xin |
| Author_xml | – sequence: 1 givenname: Zhong orcidid: 0000-0002-9924-1802 surname: Shi fullname: Shi, Zhong email: clock1991529@163.com – sequence: 2 givenname: Fanyu surname: Zhao fullname: Zhao, Fanyu email: aeroplanzju@163.com – sequence: 3 givenname: Xin surname: Wang fullname: Wang, Xin email: wangxin@zju.edu.cn – sequence: 4 givenname: Zhonghe surname: Jin fullname: Jin, Zhonghe email: jinzh@zju.edu.cn |
| BookMark | eNp9kM1q3DAQgEVIoZukD9CbXsCuRpJXXnoqIW0KgRzanIUsjZfZ2NIiKYHtm_Rtayc95ZDTwMx88_NdsPOYIjL2GUQLArZfDq0ruZVCQguyFaDP2AZ6s2tgp_tzthHSqAbAmI_sopSDECCNERv295erOE1UkbtaqT4F5DU7_0hxz32KNaeJp5HP6XnNVJf3WMtSmQeKayYgHnlGimPKHmeMlU_o8kvNxcCPGQOOFDE0lWbkpbqBln2ndXqhgHntxIh5f-LpuPTQH1cpxSv2YXRTwU__4yV7-H7z-_q2ubv_8fP6213j5c7UxilUBmDQogPXdUGDC6A7hRq7UXttUA7Kmd70gxr1bht0jwpBeSXkYLZaXTLzOtfnVErG0XqqLxcsHmiyIOxq2B7sYtiuhi1IuxheSHhDHjPNLp_eZb6-Mri89EyYbfGE0WOgjL7akOgd-h9VM5s0 |
| CitedBy_id | crossref_primary_10_1109_TAES_2023_3258928 crossref_primary_10_1016_j_physa_2025_130465 crossref_primary_10_1016_j_ast_2024_109333 crossref_primary_10_1016_j_neunet_2023_06_017 crossref_primary_10_1061_JAEEEZ_ASENG_5646 crossref_primary_10_1016_j_rineng_2025_106784 crossref_primary_10_1007_s10409_024_24262_x crossref_primary_10_1109_TCYB_2022_3207325 crossref_primary_10_1016_j_asr_2023_01_025 crossref_primary_10_1016_j_ast_2025_110481 crossref_primary_10_1016_j_jfranklin_2024_106694 crossref_primary_10_1002_rnc_6369 crossref_primary_10_1017_aer_2023_4 |
| Cites_doi | 10.1016/j.nancom.2018.02.003 10.1016/j.asr.2018.07.026 10.1016/j.actaastro.2009.06.008 10.1109/TAES.2013.120006 10.1016/j.actaastro.2020.08.009 10.1016/j.asr.2020.06.019 10.1016/j.ast.2018.03.041 10.1108/IR-05-2018-0086 10.1016/j.asr.2017.01.018 10.1016/j.ast.2018.02.002 10.1016/j.sigpro.2019.05.027 10.1109/9.90228 10.2514/1.G002843 10.1016/j.actaastro.2018.05.046 10.1016/j.asr.2019.12.030 10.1016/j.ast.2018.09.010 10.1016/j.asr.2014.05.013 10.1016/j.jfranklin.2020.01.001 |
| ContentType | Journal Article |
| Copyright | 2021 COSPAR |
| Copyright_xml | – notice: 2021 COSPAR |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asr.2021.12.014 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Astronomy & Astrophysics Physics |
| EISSN | 1879-1948 |
| EndPage | 2196 |
| ExternalDocumentID | 10_1016_j_asr_2021_12_014 S027311772100908X |
| GroupedDBID | --K --M -~X .~1 0R~ 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNEU ABQEM ABQYD ABYKQ ACDAQ ACFVG ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IMUCA J1W KOM LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 ROL SDF SDG SEP SES SPC SPCBC SSE SSQ SSZ T5K ZMT ~02 ~G- 1B1 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HME HVGLF HX~ HZ~ IHE R2- RPZ SEW SHN T9H UHS VH1 VOH WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-a3e3711b4051a55d41ad1453e4e5f4c47e2b3a7878b3f496d48e3e13c302b7643 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771715300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0273-1177 |
| IngestDate | Sat Nov 29 07:23:15 EST 2025 Tue Nov 18 21:26:37 EST 2025 Fri Feb 23 02:43:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Predefined-time stability Attitude tracking control Moving target tracking Twin delayed deep deterministic policy gradient algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-a3e3711b4051a55d41ad1453e4e5f4c47e2b3a7878b3f496d48e3e13c302b7643 |
| ORCID | 0000-0002-9924-1802 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asr_2021_12_014 crossref_primary_10_1016_j_asr_2021_12_014 elsevier_sciencedirect_doi_10_1016_j_asr_2021_12_014 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Advances in space research |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Azimi, Sharifi (b0020) 2018; 2018 Hu, Huang, Chen (b0050) 2017; 59 Zhu, Yan (b0145) 2014; 54 Adams, Spain, Parker, Hevert, Roach, Cotten (b0005) 2019 Wang, Miao, Li, Hwang (b0110) 2020; 357 Elkins, Sood, Rumpf (b0025) 2020 Wen, Kreutz-Delgado (b0115) 1991; 36 Li, Cai, Liu, Lin, Wang (b0065) 2018; 16 Gao, Yan, Zhou, Chen, Liu (b0040) 2019; 164 Liu, Vukovich, Shi, Sun (b0070) 2018; 62 Sandau (b0090) 2010; 66 Wu, Yan, Shen, Wu, Xiao (b0120) 2021 Xu, Wu, Zhao (b0130) 2019; 46 Sánchez-Torres, Sanchez, Loukianov (b0085) 2015 Mousavi, Schukat, Howley (b0080) 2016 Amrr, Nabi (b0010) 2020; 66 Marsh, Karpenko, Gong (b0075) 2018; 41 Zhang, Wu, Zhao, Xu (b0135) 2018 Felicetti, Emami (b0030) 2018; 76 Huo, Meng, Song, Jin (b0055) 2018; 152 Fujimoto, Hoof, Meger (b0035) 2018 Jiménez-Rodríguez, Sánchez-Torres, Loukianov (b0060) 2017; 50 Zhang, Xiang (b0140) 2017 Gaudet, Linares, Furfaro (b0045) 2020; 65 Schaul, Quan, Antonoglou, Silver (b0095) 2016 Segal, Gurfil, Shahid (b0100) 2014; 50 Arechiga, Michaels, Black (b0015) 2018 Wu, Han, Zheng, Wang, Hua, Chen, Cheng (b0125) 2018; 78 Spiller, Magionami, Schiattarella, Curti, Facchinetti, Ansalone, Tuozzi (b0105) 2020; 177 Hu (10.1016/j.asr.2021.12.014_b0050) 2017; 59 Fujimoto (10.1016/j.asr.2021.12.014_b0035) 2018 Mousavi (10.1016/j.asr.2021.12.014_b0080) 2016 Segal (10.1016/j.asr.2021.12.014_b0100) 2014; 50 Wu (10.1016/j.asr.2021.12.014_b0120) 2021 Wang (10.1016/j.asr.2021.12.014_b0110) 2020; 357 Zhang (10.1016/j.asr.2021.12.014_b0140) 2017 Elkins (10.1016/j.asr.2021.12.014_b0025) 2020 Spiller (10.1016/j.asr.2021.12.014_b0105) 2020; 177 Zhang (10.1016/j.asr.2021.12.014_b0135) 2018 Arechiga (10.1016/j.asr.2021.12.014_b0015) 2018 Xu (10.1016/j.asr.2021.12.014_b0130) 2019; 46 Sandau (10.1016/j.asr.2021.12.014_b0090) 2010; 66 Gao (10.1016/j.asr.2021.12.014_b0040) 2019; 164 Jiménez-Rodríguez (10.1016/j.asr.2021.12.014_b0060) 2017; 50 Azimi (10.1016/j.asr.2021.12.014_b0020) 2018; 2018 Adams (10.1016/j.asr.2021.12.014_b0005) 2019 Amrr (10.1016/j.asr.2021.12.014_b0010) 2020; 66 Gaudet (10.1016/j.asr.2021.12.014_b0045) 2020; 65 Sánchez-Torres (10.1016/j.asr.2021.12.014_b0085) 2015 Zhu (10.1016/j.asr.2021.12.014_b0145) 2014; 54 Felicetti (10.1016/j.asr.2021.12.014_b0030) 2018; 76 Schaul (10.1016/j.asr.2021.12.014_b0095) 2016 Huo (10.1016/j.asr.2021.12.014_b0055) 2018; 152 Li (10.1016/j.asr.2021.12.014_b0065) 2018; 16 Wu (10.1016/j.asr.2021.12.014_b0125) 2018; 78 Marsh (10.1016/j.asr.2021.12.014_b0075) 2018; 41 Wen (10.1016/j.asr.2021.12.014_b0115) 1991; 36 Liu (10.1016/j.asr.2021.12.014_b0070) 2018; 62 |
| References_xml | – volume: 2018 start-page: 140 year: 2018 end-page: 148 ident: b0020 article-title: A hybrid control scheme for attitude and vibration suppression of a flexible spacecraft using energy-based actuators switching mechanism publication-title: Aerosp. Sci. Technol. – volume: 16 start-page: 81 year: 2018 end-page: 90 ident: b0065 article-title: Deep reinforcement learning: Algorithm, applications, and ultra-low-power implementation publication-title: Nano Com. Net. – year: 2021 ident: b0120 article-title: Predefined-time attitude stabilization of receiver aircraft in aerial refueling publication-title: IEEE Trans. Circuits Syst. II: Express Briefs – volume: 164 start-page: 67 year: 2019 end-page: 73 ident: b0040 article-title: Long short-term memory-based recurrent neural networks for nonlinear target tracking publication-title: Signal Process. – start-page: 197 year: 2018 end-page: 207 ident: b0135 article-title: A method of attitude control based on deep deterministic policy gradient publication-title: International Conference on Cognitive Systems and Signal Processing – volume: 41 start-page: 335 year: 2018 end-page: 348 ident: b0075 article-title: Relationships between maneuver time and energy for reaction wheel attitude control publication-title: J. Guid. Control Dyn. – volume: 177 start-page: 478 year: 2020 end-page: 496 ident: b0105 article-title: On-orbit recognition of resident space objects by using star trackers publication-title: Acta Astronaut. – volume: 54 start-page: 1064 year: 2014 end-page: 1076 ident: b0145 article-title: Space-based line-of-sight tracking control of GEO target using nonsingular terminal sliding mode publication-title: Adv. Space Res. – volume: 76 start-page: 58 year: 2018 end-page: 71 ident: b0030 article-title: Image-based attitude maneuvers for space debris tracking publication-title: Aerosp. Sci. Technol. – volume: 65 start-page: 1723 year: 2020 end-page: 1741 ident: b0045 article-title: Deep reinforcement learning for six degree-of-freedom planetary landing publication-title: Adv. Space Res. – volume: 59 start-page: 1751 year: 2017 end-page: 1762 ident: b0050 article-title: Space-based visible observation strategy for beyond-LEO objects based on an equatorial LEO satellite with multi-sensors publication-title: Adv. Space Res. – volume: 66 start-page: 1 year: 2010 end-page: 12 ident: b0090 article-title: Status and trends of small satellite missions for Earth observation publication-title: Acta Astronaut. – start-page: 234 year: 2018 end-page: 240 ident: b0015 article-title: Onboard image processing for small satellites publication-title: IEEE National Aerospace and Electronics Conference – volume: 66 start-page: 1659 year: 2020 end-page: 1671 ident: b0010 article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach publication-title: Adv. Space Res. – volume: 50 start-page: 676 year: 2014 end-page: 688 ident: b0100 article-title: In-orbit tracking of resident space objects: A comparison of monocular and stereoscopic vision publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 36 start-page: 1148 year: 1991 end-page: 1162 ident: b0115 article-title: The attitude control problem publication-title: IEEE Trans. Automat. Contr. – start-page: 1 year: 2019 end-page: 7 ident: b0005 article-title: Towards an integrated GPU accelerated SoC as a flight computer for small satellites publication-title: 2019 IEEE Aerospace Conference – start-page: 1 year: 2016 end-page: 21 ident: b0095 article-title: Prioritized experience replay publication-title: International Conference on Learning Representations – year: 2020 ident: b0025 article-title: Adaptive continuous control of spacecraft attitude using deep reinforcement learning publication-title: 2020 AAS/AIAA Astrodynamics Specialist Conference – volume: 152 start-page: 557 year: 2018 end-page: 566 ident: b0055 article-title: Adaptive prediction backstepping attitude control for liquid-filled micro-satellite with flexible appendages publication-title: Acta Astronaut. – volume: 62 start-page: 2631 year: 2018 end-page: 2648 ident: b0070 article-title: Robust fault tolerant nonfragile H∞ attitude control for spacecraft via stochastically intermediate observer publication-title: Adv. Space Res. – volume: 46 start-page: 415 year: 2019 end-page: 420 ident: b0130 article-title: Model-based deep reinforcement learning with heuristic search for satellite attitude control publication-title: Ind. Rob. – volume: 357 start-page: 4212 year: 2020 end-page: 4221 ident: b0110 article-title: Attitude control of rigid spacecraft with predefined-time stability publication-title: J. Franklin Inst. – volume: 50 start-page: 1680 year: 2017 end-page: 1685 ident: b0060 article-title: Predefined-time backstepping control for tracking a class of mechanical systems publication-title: Automatica – volume: 78 start-page: 102 year: 2018 end-page: 117 ident: b0125 article-title: Attitude tracking control for a space moving target with high dynamic performance using hybrid actuator publication-title: Aerosp. Sci. Technol. – start-page: 426 year: 2016 end-page: 440 ident: b0080 article-title: Deep reinforcement learning: an overview publication-title: Proceedings of SAI Intelligent Systems Conference – start-page: 5842 year: 2015 end-page: 5846 ident: b0085 article-title: Predefined-time stability of dynamical systems with sliding modes publication-title: 2015 American Control Conference – start-page: 729 year: 2017 end-page: 737 ident: b0140 article-title: Tracking imaging feedback attitude control of video satellite publication-title: Proceedings of the International Conference on Electrical Engineering and Automation – start-page: 1587 year: 2018 end-page: 1596 ident: b0035 article-title: Addressing function approximation error in actor-critic methods publication-title: International Conference on Machine Learning – volume: 16 start-page: 81 year: 2018 ident: 10.1016/j.asr.2021.12.014_b0065 article-title: Deep reinforcement learning: Algorithm, applications, and ultra-low-power implementation publication-title: Nano Com. Net. doi: 10.1016/j.nancom.2018.02.003 – volume: 62 start-page: 2631 issue: 9 year: 2018 ident: 10.1016/j.asr.2021.12.014_b0070 article-title: Robust fault tolerant nonfragile H∞ attitude control for spacecraft via stochastically intermediate observer publication-title: Adv. Space Res. doi: 10.1016/j.asr.2018.07.026 – volume: 50 start-page: 1680 issue: 1 year: 2017 ident: 10.1016/j.asr.2021.12.014_b0060 article-title: Predefined-time backstepping control for tracking a class of mechanical systems publication-title: Automatica – volume: 66 start-page: 1 issue: 1–2 year: 2010 ident: 10.1016/j.asr.2021.12.014_b0090 article-title: Status and trends of small satellite missions for Earth observation publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2009.06.008 – volume: 50 start-page: 676 issue: 1 year: 2014 ident: 10.1016/j.asr.2021.12.014_b0100 article-title: In-orbit tracking of resident space objects: A comparison of monocular and stereoscopic vision publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2013.120006 – start-page: 729 year: 2017 ident: 10.1016/j.asr.2021.12.014_b0140 article-title: Tracking imaging feedback attitude control of video satellite – volume: 177 start-page: 478 year: 2020 ident: 10.1016/j.asr.2021.12.014_b0105 article-title: On-orbit recognition of resident space objects by using star trackers publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.08.009 – volume: 66 start-page: 1659 issue: 7 year: 2020 ident: 10.1016/j.asr.2021.12.014_b0010 article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach publication-title: Adv. Space Res. doi: 10.1016/j.asr.2020.06.019 – year: 2020 ident: 10.1016/j.asr.2021.12.014_b0025 article-title: Adaptive continuous control of spacecraft attitude using deep reinforcement learning – volume: 78 start-page: 102 year: 2018 ident: 10.1016/j.asr.2021.12.014_b0125 article-title: Attitude tracking control for a space moving target with high dynamic performance using hybrid actuator publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.03.041 – start-page: 1 year: 2019 ident: 10.1016/j.asr.2021.12.014_b0005 article-title: Towards an integrated GPU accelerated SoC as a flight computer for small satellites – volume: 46 start-page: 415 issue: 3 year: 2019 ident: 10.1016/j.asr.2021.12.014_b0130 article-title: Model-based deep reinforcement learning with heuristic search for satellite attitude control publication-title: Ind. Rob. doi: 10.1108/IR-05-2018-0086 – start-page: 197 year: 2018 ident: 10.1016/j.asr.2021.12.014_b0135 article-title: A method of attitude control based on deep deterministic policy gradient – start-page: 426 year: 2016 ident: 10.1016/j.asr.2021.12.014_b0080 article-title: Deep reinforcement learning: an overview – volume: 59 start-page: 1751 issue: 7 year: 2017 ident: 10.1016/j.asr.2021.12.014_b0050 article-title: Space-based visible observation strategy for beyond-LEO objects based on an equatorial LEO satellite with multi-sensors publication-title: Adv. Space Res. doi: 10.1016/j.asr.2017.01.018 – volume: 76 start-page: 58 year: 2018 ident: 10.1016/j.asr.2021.12.014_b0030 article-title: Image-based attitude maneuvers for space debris tracking publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.02.002 – volume: 164 start-page: 67 year: 2019 ident: 10.1016/j.asr.2021.12.014_b0040 article-title: Long short-term memory-based recurrent neural networks for nonlinear target tracking publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.05.027 – volume: 36 start-page: 1148 issue: 10 year: 1991 ident: 10.1016/j.asr.2021.12.014_b0115 article-title: The attitude control problem publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/9.90228 – start-page: 1 year: 2016 ident: 10.1016/j.asr.2021.12.014_b0095 article-title: Prioritized experience replay – start-page: 1587 year: 2018 ident: 10.1016/j.asr.2021.12.014_b0035 article-title: Addressing function approximation error in actor-critic methods – volume: 41 start-page: 335 issue: 2 year: 2018 ident: 10.1016/j.asr.2021.12.014_b0075 article-title: Relationships between maneuver time and energy for reaction wheel attitude control publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G002843 – volume: 152 start-page: 557 year: 2018 ident: 10.1016/j.asr.2021.12.014_b0055 article-title: Adaptive prediction backstepping attitude control for liquid-filled micro-satellite with flexible appendages publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.05.046 – volume: 65 start-page: 1723 issue: 7 year: 2020 ident: 10.1016/j.asr.2021.12.014_b0045 article-title: Deep reinforcement learning for six degree-of-freedom planetary landing publication-title: Adv. Space Res. doi: 10.1016/j.asr.2019.12.030 – start-page: 5842 year: 2015 ident: 10.1016/j.asr.2021.12.014_b0085 article-title: Predefined-time stability of dynamical systems with sliding modes – volume: 2018 start-page: 140 issue: 82 year: 2018 ident: 10.1016/j.asr.2021.12.014_b0020 article-title: A hybrid control scheme for attitude and vibration suppression of a flexible spacecraft using energy-based actuators switching mechanism publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.09.010 – volume: 54 start-page: 1064 issue: 6 year: 2014 ident: 10.1016/j.asr.2021.12.014_b0145 article-title: Space-based line-of-sight tracking control of GEO target using nonsingular terminal sliding mode publication-title: Adv. Space Res. doi: 10.1016/j.asr.2014.05.013 – volume: 357 start-page: 4212 issue: 7 year: 2020 ident: 10.1016/j.asr.2021.12.014_b0110 article-title: Attitude control of rigid spacecraft with predefined-time stability publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.01.001 – start-page: 234 year: 2018 ident: 10.1016/j.asr.2021.12.014_b0015 article-title: Onboard image processing for small satellites – year: 2021 ident: 10.1016/j.asr.2021.12.014_b0120 article-title: Predefined-time attitude stabilization of receiver aircraft in aerial refueling publication-title: IEEE Trans. Circuits Syst. II: Express Briefs |
| SSID | ssj0012770 |
| Score | 2.4035141 |
| Snippet | •An attitude tracking control method combining deep reinforcement learning and traditional satellite attitude controller for moving targets tracking and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2182 |
| SubjectTerms | Attitude tracking control Moving target tracking Predefined-time stability Twin delayed deep deterministic policy gradient algorithm |
| Title | Satellite attitude tracking control of moving targets combining deep reinforcement learning and predefined-time stability considering energy optimization |
| URI | https://dx.doi.org/10.1016/j.asr.2021.12.014 |
| Volume | 69 |
| WOSCitedRecordID | wos000771715300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012770 issn: 0273-1177 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEF-OVkEfRE-l9R_7ID54RC7ZTTZ5PKRFi5SCFQ5fQjaZ2NY2OS5paT-Kn8cv5uzOJs0drdgHX0JuyW7umN_Nzs78Zoaxt0LqMINy6iUIFzyg-ODpIsq9aRmCEpGvC0oU_qL29-P5PDkYjX53uTAXp6qq4svLZPFfRY1jKGyTOnsHcfeL4gDeo9DximLH6z8J_mtmi2y2MMlawwMowPSByH9Sdi0R001QnVwJxARvDLVc214RkwJgMVmCraiaW-dh11riR1dVoIASjdPCM43pjTPCEmyvzOq2-ad5EiinsEaNdOZSPYd28IyoB5aMizotN81bBn41WzPS8gy-H9VubyXvtvXs7qIGO78OBZC6mh_3ON-jwgh27hEMHRt4Ju6ZXU7_oWXlmZjyUFlTXxcHynBF81ITI7eLoyKObtwhyFlx8iFrTDXYwLfOYMpjXa3GvbZL9tzFjhZ3kuISqVki9YN0apqpbwYqTFC1bs4-78z3-mBWoBS5-tzv6YLrlma49j1uNo8GJs_hY_bInVX4jDD2hI2gGrOtWWOiJ_XZFX_H7T05x5oxezgobjlm9w9o_Cn71UOSd5DkHSS5gySvS06Q5A6SvIckN5DkK5DkHSQ5QpKvQZL3kOQDSHKCJB9C8hn7trtz-PGT51qCeHmQqNbLBAjl-xqPGX4WhoX0s8KXoQAJYSlzqSDQIsNNKNailElUyBgE-CIX00ArtL6fs42qrmCLcbTDVCFEoEuIJAB-kklWljEeOYJcx3qbTTtJpLmrl2_atpymtyJgm73vpyyoWMzfHpadeFNn7ZIVmyJUb5_24i7veMkeXP-zXrGNdnkOr9m9_KI9bpZvHE7_ALJB1Iw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Satellite+attitude+tracking+control+of+moving+targets+combining+deep+reinforcement+learning+and+predefined-time+stability+considering+energy+optimization&rft.jtitle=Advances+in+space+research&rft.au=Shi%2C+Zhong&rft.au=Zhao%2C+Fanyu&rft.au=Wang%2C+Xin&rft.au=Jin%2C+Zhonghe&rft.date=2022-03-01&rft.issn=0273-1177&rft.volume=69&rft.issue=5&rft.spage=2182&rft.epage=2196&rft_id=info:doi/10.1016%2Fj.asr.2021.12.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asr_2021_12_014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon |