Satellite attitude tracking control of moving targets combining deep reinforcement learning and predefined-time stability considering energy optimization

•An attitude tracking control method combining deep reinforcement learning and traditional satellite attitude controller for moving targets tracking and observation is proposed.•Integrate LSTM into TD3 to learn the moving state of the target from its image positions and obtain desired attitude in re...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in space research Ročník 69; číslo 5; s. 2182 - 2196
Hlavní autoři: Shi, Zhong, Zhao, Fanyu, Wang, Xin, Jin, Zhonghe
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2022
Témata:
ISSN:0273-1177, 1879-1948
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •An attitude tracking control method combining deep reinforcement learning and traditional satellite attitude controller for moving targets tracking and observation is proposed.•Integrate LSTM into TD3 to learn the moving state of the target from its image positions and obtain desired attitude in real time.•Energy optimization is considered in the design of the reward function of the TD3, which promotes the TD3 to learn a strategy of generating the desired attitude that satellite maneuvers to with less energy.•An adaptive backstepping controller with predefined-time stability is designed to ensure that the satellite attitude reaches the desired attitude within a predefined decision period in the presence of the external disturbance and uncertain inertia properties.•A simulation system of moving target tracking and observation is established, and the results indicate that our approach is superior in terms of tracking ability and energy consumption. Space-based moving targets tracking and observation facilitates target recognition and analysis of target characteristics, but the ability of satellite attitude tracking control needs to be improved, especially considering the energy optimization for long-time tracking. An attitude tracking control method combining deep reinforcement learning and predefined-time stability is proposed, which not only improves the autonomous decision-making ability but also ensures the reliability of the satellite attitude control. The long short-term memory network is integrated into the twin delayed deep deterministic policy gradient algorithm to learn the moving state of the target from its image positions as the input to generate the desired attitude in real time, and energy optimization is considered in the design of the reward function. Then an adaptive backstepping controller is designed to achieve predefined-time stability in the presence of the external disturbance and uncertain inertia properties, which ensures that the satellite attitude is controlled to the desired value within a predefined decision period. Finally, a simulation system of moving target tracking is established, and the results indicate that our approach is superior in terms of tracking ability and energy consumption.
AbstractList •An attitude tracking control method combining deep reinforcement learning and traditional satellite attitude controller for moving targets tracking and observation is proposed.•Integrate LSTM into TD3 to learn the moving state of the target from its image positions and obtain desired attitude in real time.•Energy optimization is considered in the design of the reward function of the TD3, which promotes the TD3 to learn a strategy of generating the desired attitude that satellite maneuvers to with less energy.•An adaptive backstepping controller with predefined-time stability is designed to ensure that the satellite attitude reaches the desired attitude within a predefined decision period in the presence of the external disturbance and uncertain inertia properties.•A simulation system of moving target tracking and observation is established, and the results indicate that our approach is superior in terms of tracking ability and energy consumption. Space-based moving targets tracking and observation facilitates target recognition and analysis of target characteristics, but the ability of satellite attitude tracking control needs to be improved, especially considering the energy optimization for long-time tracking. An attitude tracking control method combining deep reinforcement learning and predefined-time stability is proposed, which not only improves the autonomous decision-making ability but also ensures the reliability of the satellite attitude control. The long short-term memory network is integrated into the twin delayed deep deterministic policy gradient algorithm to learn the moving state of the target from its image positions as the input to generate the desired attitude in real time, and energy optimization is considered in the design of the reward function. Then an adaptive backstepping controller is designed to achieve predefined-time stability in the presence of the external disturbance and uncertain inertia properties, which ensures that the satellite attitude is controlled to the desired value within a predefined decision period. Finally, a simulation system of moving target tracking is established, and the results indicate that our approach is superior in terms of tracking ability and energy consumption.
Author Shi, Zhong
Jin, Zhonghe
Zhao, Fanyu
Wang, Xin
Author_xml – sequence: 1
  givenname: Zhong
  orcidid: 0000-0002-9924-1802
  surname: Shi
  fullname: Shi, Zhong
  email: clock1991529@163.com
– sequence: 2
  givenname: Fanyu
  surname: Zhao
  fullname: Zhao, Fanyu
  email: aeroplanzju@163.com
– sequence: 3
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  email: wangxin@zju.edu.cn
– sequence: 4
  givenname: Zhonghe
  surname: Jin
  fullname: Jin, Zhonghe
  email: jinzh@zju.edu.cn
BookMark eNp9kM1q3DAQgEVIoZukD9CbXsCuRpJXXnoqIW0KgRzanIUsjZfZ2NIiKYHtm_Rtayc95ZDTwMx88_NdsPOYIjL2GUQLArZfDq0ruZVCQguyFaDP2AZ6s2tgp_tzthHSqAbAmI_sopSDECCNERv295erOE1UkbtaqT4F5DU7_0hxz32KNaeJp5HP6XnNVJf3WMtSmQeKayYgHnlGimPKHmeMlU_o8kvNxcCPGQOOFDE0lWbkpbqBln2ndXqhgHntxIh5f-LpuPTQH1cpxSv2YXRTwU__4yV7-H7z-_q2ubv_8fP6213j5c7UxilUBmDQogPXdUGDC6A7hRq7UXttUA7Kmd70gxr1bht0jwpBeSXkYLZaXTLzOtfnVErG0XqqLxcsHmiyIOxq2B7sYtiuhi1IuxheSHhDHjPNLp_eZb6-Mri89EyYbfGE0WOgjL7akOgd-h9VM5s0
CitedBy_id crossref_primary_10_1109_TAES_2023_3258928
crossref_primary_10_1016_j_physa_2025_130465
crossref_primary_10_1016_j_ast_2024_109333
crossref_primary_10_1016_j_neunet_2023_06_017
crossref_primary_10_1061_JAEEEZ_ASENG_5646
crossref_primary_10_1016_j_rineng_2025_106784
crossref_primary_10_1007_s10409_024_24262_x
crossref_primary_10_1109_TCYB_2022_3207325
crossref_primary_10_1016_j_asr_2023_01_025
crossref_primary_10_1016_j_ast_2025_110481
crossref_primary_10_1016_j_jfranklin_2024_106694
crossref_primary_10_1002_rnc_6369
crossref_primary_10_1017_aer_2023_4
Cites_doi 10.1016/j.nancom.2018.02.003
10.1016/j.asr.2018.07.026
10.1016/j.actaastro.2009.06.008
10.1109/TAES.2013.120006
10.1016/j.actaastro.2020.08.009
10.1016/j.asr.2020.06.019
10.1016/j.ast.2018.03.041
10.1108/IR-05-2018-0086
10.1016/j.asr.2017.01.018
10.1016/j.ast.2018.02.002
10.1016/j.sigpro.2019.05.027
10.1109/9.90228
10.2514/1.G002843
10.1016/j.actaastro.2018.05.046
10.1016/j.asr.2019.12.030
10.1016/j.ast.2018.09.010
10.1016/j.asr.2014.05.013
10.1016/j.jfranklin.2020.01.001
ContentType Journal Article
Copyright 2021 COSPAR
Copyright_xml – notice: 2021 COSPAR
DBID AAYXX
CITATION
DOI 10.1016/j.asr.2021.12.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Astronomy & Astrophysics
Physics
EISSN 1879-1948
EndPage 2196
ExternalDocumentID 10_1016_j_asr_2021_12_014
S027311772100908X
GroupedDBID --K
--M
-~X
.~1
0R~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SDG
SEP
SES
SPC
SPCBC
SSE
SSQ
SSZ
T5K
ZMT
~02
~G-
1B1
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HME
HVGLF
HX~
HZ~
IHE
R2-
RPZ
SEW
SHN
T9H
UHS
VH1
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-a3e3711b4051a55d41ad1453e4e5f4c47e2b3a7878b3f496d48e3e13c302b7643
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771715300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0273-1177
IngestDate Sat Nov 29 07:23:15 EST 2025
Tue Nov 18 21:26:37 EST 2025
Fri Feb 23 02:43:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Predefined-time stability
Attitude tracking control
Moving target tracking
Twin delayed deep deterministic policy gradient algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-a3e3711b4051a55d41ad1453e4e5f4c47e2b3a7878b3f496d48e3e13c302b7643
ORCID 0000-0002-9924-1802
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_asr_2021_12_014
crossref_primary_10_1016_j_asr_2021_12_014
elsevier_sciencedirect_doi_10_1016_j_asr_2021_12_014
PublicationCentury 2000
PublicationDate 2022-03-01
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Advances in space research
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Azimi, Sharifi (b0020) 2018; 2018
Hu, Huang, Chen (b0050) 2017; 59
Zhu, Yan (b0145) 2014; 54
Adams, Spain, Parker, Hevert, Roach, Cotten (b0005) 2019
Wang, Miao, Li, Hwang (b0110) 2020; 357
Elkins, Sood, Rumpf (b0025) 2020
Wen, Kreutz-Delgado (b0115) 1991; 36
Li, Cai, Liu, Lin, Wang (b0065) 2018; 16
Gao, Yan, Zhou, Chen, Liu (b0040) 2019; 164
Liu, Vukovich, Shi, Sun (b0070) 2018; 62
Sandau (b0090) 2010; 66
Wu, Yan, Shen, Wu, Xiao (b0120) 2021
Xu, Wu, Zhao (b0130) 2019; 46
Sánchez-Torres, Sanchez, Loukianov (b0085) 2015
Mousavi, Schukat, Howley (b0080) 2016
Amrr, Nabi (b0010) 2020; 66
Marsh, Karpenko, Gong (b0075) 2018; 41
Zhang, Wu, Zhao, Xu (b0135) 2018
Felicetti, Emami (b0030) 2018; 76
Huo, Meng, Song, Jin (b0055) 2018; 152
Fujimoto, Hoof, Meger (b0035) 2018
Jiménez-Rodríguez, Sánchez-Torres, Loukianov (b0060) 2017; 50
Zhang, Xiang (b0140) 2017
Gaudet, Linares, Furfaro (b0045) 2020; 65
Schaul, Quan, Antonoglou, Silver (b0095) 2016
Segal, Gurfil, Shahid (b0100) 2014; 50
Arechiga, Michaels, Black (b0015) 2018
Wu, Han, Zheng, Wang, Hua, Chen, Cheng (b0125) 2018; 78
Spiller, Magionami, Schiattarella, Curti, Facchinetti, Ansalone, Tuozzi (b0105) 2020; 177
Hu (10.1016/j.asr.2021.12.014_b0050) 2017; 59
Fujimoto (10.1016/j.asr.2021.12.014_b0035) 2018
Mousavi (10.1016/j.asr.2021.12.014_b0080) 2016
Segal (10.1016/j.asr.2021.12.014_b0100) 2014; 50
Wu (10.1016/j.asr.2021.12.014_b0120) 2021
Wang (10.1016/j.asr.2021.12.014_b0110) 2020; 357
Zhang (10.1016/j.asr.2021.12.014_b0140) 2017
Elkins (10.1016/j.asr.2021.12.014_b0025) 2020
Spiller (10.1016/j.asr.2021.12.014_b0105) 2020; 177
Zhang (10.1016/j.asr.2021.12.014_b0135) 2018
Arechiga (10.1016/j.asr.2021.12.014_b0015) 2018
Xu (10.1016/j.asr.2021.12.014_b0130) 2019; 46
Sandau (10.1016/j.asr.2021.12.014_b0090) 2010; 66
Gao (10.1016/j.asr.2021.12.014_b0040) 2019; 164
Jiménez-Rodríguez (10.1016/j.asr.2021.12.014_b0060) 2017; 50
Azimi (10.1016/j.asr.2021.12.014_b0020) 2018; 2018
Adams (10.1016/j.asr.2021.12.014_b0005) 2019
Amrr (10.1016/j.asr.2021.12.014_b0010) 2020; 66
Gaudet (10.1016/j.asr.2021.12.014_b0045) 2020; 65
Sánchez-Torres (10.1016/j.asr.2021.12.014_b0085) 2015
Zhu (10.1016/j.asr.2021.12.014_b0145) 2014; 54
Felicetti (10.1016/j.asr.2021.12.014_b0030) 2018; 76
Schaul (10.1016/j.asr.2021.12.014_b0095) 2016
Huo (10.1016/j.asr.2021.12.014_b0055) 2018; 152
Li (10.1016/j.asr.2021.12.014_b0065) 2018; 16
Wu (10.1016/j.asr.2021.12.014_b0125) 2018; 78
Marsh (10.1016/j.asr.2021.12.014_b0075) 2018; 41
Wen (10.1016/j.asr.2021.12.014_b0115) 1991; 36
Liu (10.1016/j.asr.2021.12.014_b0070) 2018; 62
References_xml – volume: 2018
  start-page: 140
  year: 2018
  end-page: 148
  ident: b0020
  article-title: A hybrid control scheme for attitude and vibration suppression of a flexible spacecraft using energy-based actuators switching mechanism
  publication-title: Aerosp. Sci. Technol.
– volume: 16
  start-page: 81
  year: 2018
  end-page: 90
  ident: b0065
  article-title: Deep reinforcement learning: Algorithm, applications, and ultra-low-power implementation
  publication-title: Nano Com. Net.
– year: 2021
  ident: b0120
  article-title: Predefined-time attitude stabilization of receiver aircraft in aerial refueling
  publication-title: IEEE Trans. Circuits Syst. II: Express Briefs
– volume: 164
  start-page: 67
  year: 2019
  end-page: 73
  ident: b0040
  article-title: Long short-term memory-based recurrent neural networks for nonlinear target tracking
  publication-title: Signal Process.
– start-page: 197
  year: 2018
  end-page: 207
  ident: b0135
  article-title: A method of attitude control based on deep deterministic policy gradient
  publication-title: International Conference on Cognitive Systems and Signal Processing
– volume: 41
  start-page: 335
  year: 2018
  end-page: 348
  ident: b0075
  article-title: Relationships between maneuver time and energy for reaction wheel attitude control
  publication-title: J. Guid. Control Dyn.
– volume: 177
  start-page: 478
  year: 2020
  end-page: 496
  ident: b0105
  article-title: On-orbit recognition of resident space objects by using star trackers
  publication-title: Acta Astronaut.
– volume: 54
  start-page: 1064
  year: 2014
  end-page: 1076
  ident: b0145
  article-title: Space-based line-of-sight tracking control of GEO target using nonsingular terminal sliding mode
  publication-title: Adv. Space Res.
– volume: 76
  start-page: 58
  year: 2018
  end-page: 71
  ident: b0030
  article-title: Image-based attitude maneuvers for space debris tracking
  publication-title: Aerosp. Sci. Technol.
– volume: 65
  start-page: 1723
  year: 2020
  end-page: 1741
  ident: b0045
  article-title: Deep reinforcement learning for six degree-of-freedom planetary landing
  publication-title: Adv. Space Res.
– volume: 59
  start-page: 1751
  year: 2017
  end-page: 1762
  ident: b0050
  article-title: Space-based visible observation strategy for beyond-LEO objects based on an equatorial LEO satellite with multi-sensors
  publication-title: Adv. Space Res.
– volume: 66
  start-page: 1
  year: 2010
  end-page: 12
  ident: b0090
  article-title: Status and trends of small satellite missions for Earth observation
  publication-title: Acta Astronaut.
– start-page: 234
  year: 2018
  end-page: 240
  ident: b0015
  article-title: Onboard image processing for small satellites
  publication-title: IEEE National Aerospace and Electronics Conference
– volume: 66
  start-page: 1659
  year: 2020
  end-page: 1671
  ident: b0010
  article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach
  publication-title: Adv. Space Res.
– volume: 50
  start-page: 676
  year: 2014
  end-page: 688
  ident: b0100
  article-title: In-orbit tracking of resident space objects: A comparison of monocular and stereoscopic vision
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 36
  start-page: 1148
  year: 1991
  end-page: 1162
  ident: b0115
  article-title: The attitude control problem
  publication-title: IEEE Trans. Automat. Contr.
– start-page: 1
  year: 2019
  end-page: 7
  ident: b0005
  article-title: Towards an integrated GPU accelerated SoC as a flight computer for small satellites
  publication-title: 2019 IEEE Aerospace Conference
– start-page: 1
  year: 2016
  end-page: 21
  ident: b0095
  article-title: Prioritized experience replay
  publication-title: International Conference on Learning Representations
– year: 2020
  ident: b0025
  article-title: Adaptive continuous control of spacecraft attitude using deep reinforcement learning
  publication-title: 2020 AAS/AIAA Astrodynamics Specialist Conference
– volume: 152
  start-page: 557
  year: 2018
  end-page: 566
  ident: b0055
  article-title: Adaptive prediction backstepping attitude control for liquid-filled micro-satellite with flexible appendages
  publication-title: Acta Astronaut.
– volume: 62
  start-page: 2631
  year: 2018
  end-page: 2648
  ident: b0070
  article-title: Robust fault tolerant nonfragile H∞ attitude control for spacecraft via stochastically intermediate observer
  publication-title: Adv. Space Res.
– volume: 46
  start-page: 415
  year: 2019
  end-page: 420
  ident: b0130
  article-title: Model-based deep reinforcement learning with heuristic search for satellite attitude control
  publication-title: Ind. Rob.
– volume: 357
  start-page: 4212
  year: 2020
  end-page: 4221
  ident: b0110
  article-title: Attitude control of rigid spacecraft with predefined-time stability
  publication-title: J. Franklin Inst.
– volume: 50
  start-page: 1680
  year: 2017
  end-page: 1685
  ident: b0060
  article-title: Predefined-time backstepping control for tracking a class of mechanical systems
  publication-title: Automatica
– volume: 78
  start-page: 102
  year: 2018
  end-page: 117
  ident: b0125
  article-title: Attitude tracking control for a space moving target with high dynamic performance using hybrid actuator
  publication-title: Aerosp. Sci. Technol.
– start-page: 426
  year: 2016
  end-page: 440
  ident: b0080
  article-title: Deep reinforcement learning: an overview
  publication-title: Proceedings of SAI Intelligent Systems Conference
– start-page: 5842
  year: 2015
  end-page: 5846
  ident: b0085
  article-title: Predefined-time stability of dynamical systems with sliding modes
  publication-title: 2015 American Control Conference
– start-page: 729
  year: 2017
  end-page: 737
  ident: b0140
  article-title: Tracking imaging feedback attitude control of video satellite
  publication-title: Proceedings of the International Conference on Electrical Engineering and Automation
– start-page: 1587
  year: 2018
  end-page: 1596
  ident: b0035
  article-title: Addressing function approximation error in actor-critic methods
  publication-title: International Conference on Machine Learning
– volume: 16
  start-page: 81
  year: 2018
  ident: 10.1016/j.asr.2021.12.014_b0065
  article-title: Deep reinforcement learning: Algorithm, applications, and ultra-low-power implementation
  publication-title: Nano Com. Net.
  doi: 10.1016/j.nancom.2018.02.003
– volume: 62
  start-page: 2631
  issue: 9
  year: 2018
  ident: 10.1016/j.asr.2021.12.014_b0070
  article-title: Robust fault tolerant nonfragile H∞ attitude control for spacecraft via stochastically intermediate observer
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2018.07.026
– volume: 50
  start-page: 1680
  issue: 1
  year: 2017
  ident: 10.1016/j.asr.2021.12.014_b0060
  article-title: Predefined-time backstepping control for tracking a class of mechanical systems
  publication-title: Automatica
– volume: 66
  start-page: 1
  issue: 1–2
  year: 2010
  ident: 10.1016/j.asr.2021.12.014_b0090
  article-title: Status and trends of small satellite missions for Earth observation
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2009.06.008
– volume: 50
  start-page: 676
  issue: 1
  year: 2014
  ident: 10.1016/j.asr.2021.12.014_b0100
  article-title: In-orbit tracking of resident space objects: A comparison of monocular and stereoscopic vision
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2013.120006
– start-page: 729
  year: 2017
  ident: 10.1016/j.asr.2021.12.014_b0140
  article-title: Tracking imaging feedback attitude control of video satellite
– volume: 177
  start-page: 478
  year: 2020
  ident: 10.1016/j.asr.2021.12.014_b0105
  article-title: On-orbit recognition of resident space objects by using star trackers
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.08.009
– volume: 66
  start-page: 1659
  issue: 7
  year: 2020
  ident: 10.1016/j.asr.2021.12.014_b0010
  article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2020.06.019
– year: 2020
  ident: 10.1016/j.asr.2021.12.014_b0025
  article-title: Adaptive continuous control of spacecraft attitude using deep reinforcement learning
– volume: 78
  start-page: 102
  year: 2018
  ident: 10.1016/j.asr.2021.12.014_b0125
  article-title: Attitude tracking control for a space moving target with high dynamic performance using hybrid actuator
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.03.041
– start-page: 1
  year: 2019
  ident: 10.1016/j.asr.2021.12.014_b0005
  article-title: Towards an integrated GPU accelerated SoC as a flight computer for small satellites
– volume: 46
  start-page: 415
  issue: 3
  year: 2019
  ident: 10.1016/j.asr.2021.12.014_b0130
  article-title: Model-based deep reinforcement learning with heuristic search for satellite attitude control
  publication-title: Ind. Rob.
  doi: 10.1108/IR-05-2018-0086
– start-page: 197
  year: 2018
  ident: 10.1016/j.asr.2021.12.014_b0135
  article-title: A method of attitude control based on deep deterministic policy gradient
– start-page: 426
  year: 2016
  ident: 10.1016/j.asr.2021.12.014_b0080
  article-title: Deep reinforcement learning: an overview
– volume: 59
  start-page: 1751
  issue: 7
  year: 2017
  ident: 10.1016/j.asr.2021.12.014_b0050
  article-title: Space-based visible observation strategy for beyond-LEO objects based on an equatorial LEO satellite with multi-sensors
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2017.01.018
– volume: 76
  start-page: 58
  year: 2018
  ident: 10.1016/j.asr.2021.12.014_b0030
  article-title: Image-based attitude maneuvers for space debris tracking
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.02.002
– volume: 164
  start-page: 67
  year: 2019
  ident: 10.1016/j.asr.2021.12.014_b0040
  article-title: Long short-term memory-based recurrent neural networks for nonlinear target tracking
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.05.027
– volume: 36
  start-page: 1148
  issue: 10
  year: 1991
  ident: 10.1016/j.asr.2021.12.014_b0115
  article-title: The attitude control problem
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/9.90228
– start-page: 1
  year: 2016
  ident: 10.1016/j.asr.2021.12.014_b0095
  article-title: Prioritized experience replay
– start-page: 1587
  year: 2018
  ident: 10.1016/j.asr.2021.12.014_b0035
  article-title: Addressing function approximation error in actor-critic methods
– volume: 41
  start-page: 335
  issue: 2
  year: 2018
  ident: 10.1016/j.asr.2021.12.014_b0075
  article-title: Relationships between maneuver time and energy for reaction wheel attitude control
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G002843
– volume: 152
  start-page: 557
  year: 2018
  ident: 10.1016/j.asr.2021.12.014_b0055
  article-title: Adaptive prediction backstepping attitude control for liquid-filled micro-satellite with flexible appendages
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.05.046
– volume: 65
  start-page: 1723
  issue: 7
  year: 2020
  ident: 10.1016/j.asr.2021.12.014_b0045
  article-title: Deep reinforcement learning for six degree-of-freedom planetary landing
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2019.12.030
– start-page: 5842
  year: 2015
  ident: 10.1016/j.asr.2021.12.014_b0085
  article-title: Predefined-time stability of dynamical systems with sliding modes
– volume: 2018
  start-page: 140
  issue: 82
  year: 2018
  ident: 10.1016/j.asr.2021.12.014_b0020
  article-title: A hybrid control scheme for attitude and vibration suppression of a flexible spacecraft using energy-based actuators switching mechanism
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.09.010
– volume: 54
  start-page: 1064
  issue: 6
  year: 2014
  ident: 10.1016/j.asr.2021.12.014_b0145
  article-title: Space-based line-of-sight tracking control of GEO target using nonsingular terminal sliding mode
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2014.05.013
– volume: 357
  start-page: 4212
  issue: 7
  year: 2020
  ident: 10.1016/j.asr.2021.12.014_b0110
  article-title: Attitude control of rigid spacecraft with predefined-time stability
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.01.001
– start-page: 234
  year: 2018
  ident: 10.1016/j.asr.2021.12.014_b0015
  article-title: Onboard image processing for small satellites
– year: 2021
  ident: 10.1016/j.asr.2021.12.014_b0120
  article-title: Predefined-time attitude stabilization of receiver aircraft in aerial refueling
  publication-title: IEEE Trans. Circuits Syst. II: Express Briefs
SSID ssj0012770
Score 2.4035141
Snippet •An attitude tracking control method combining deep reinforcement learning and traditional satellite attitude controller for moving targets tracking and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2182
SubjectTerms Attitude tracking control
Moving target tracking
Predefined-time stability
Twin delayed deep deterministic policy gradient algorithm
Title Satellite attitude tracking control of moving targets combining deep reinforcement learning and predefined-time stability considering energy optimization
URI https://dx.doi.org/10.1016/j.asr.2021.12.014
Volume 69
WOSCitedRecordID wos000771715300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012770
  issn: 0273-1177
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEF-OVkEfRE-l9R_7ID54RC7ZTTZ5PKRFi5SCFQ5fQjaZ2NY2OS5paT-Kn8cv5uzOJs0drdgHX0JuyW7umN_Nzs78Zoaxt0LqMINy6iUIFzyg-ODpIsq9aRmCEpGvC0oU_qL29-P5PDkYjX53uTAXp6qq4svLZPFfRY1jKGyTOnsHcfeL4gDeo9DximLH6z8J_mtmi2y2MMlawwMowPSByH9Sdi0R001QnVwJxARvDLVc214RkwJgMVmCraiaW-dh11riR1dVoIASjdPCM43pjTPCEmyvzOq2-ad5EiinsEaNdOZSPYd28IyoB5aMizotN81bBn41WzPS8gy-H9VubyXvtvXs7qIGO78OBZC6mh_3ON-jwgh27hEMHRt4Ju6ZXU7_oWXlmZjyUFlTXxcHynBF81ITI7eLoyKObtwhyFlx8iFrTDXYwLfOYMpjXa3GvbZL9tzFjhZ3kuISqVki9YN0apqpbwYqTFC1bs4-78z3-mBWoBS5-tzv6YLrlma49j1uNo8GJs_hY_bInVX4jDD2hI2gGrOtWWOiJ_XZFX_H7T05x5oxezgobjlm9w9o_Cn71UOSd5DkHSS5gySvS06Q5A6SvIckN5DkK5DkHSQ5QpKvQZL3kOQDSHKCJB9C8hn7trtz-PGT51qCeHmQqNbLBAjl-xqPGX4WhoX0s8KXoQAJYSlzqSDQIsNNKNailElUyBgE-CIX00ArtL6fs42qrmCLcbTDVCFEoEuIJAB-kklWljEeOYJcx3qbTTtJpLmrl2_atpymtyJgm73vpyyoWMzfHpadeFNn7ZIVmyJUb5_24i7veMkeXP-zXrGNdnkOr9m9_KI9bpZvHE7_ALJB1Iw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Satellite+attitude+tracking+control+of+moving+targets+combining+deep+reinforcement+learning+and+predefined-time+stability+considering+energy+optimization&rft.jtitle=Advances+in+space+research&rft.au=Shi%2C+Zhong&rft.au=Zhao%2C+Fanyu&rft.au=Wang%2C+Xin&rft.au=Jin%2C+Zhonghe&rft.date=2022-03-01&rft.issn=0273-1177&rft.volume=69&rft.issue=5&rft.spage=2182&rft.epage=2196&rft_id=info:doi/10.1016%2Fj.asr.2021.12.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asr_2021_12_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon