Anomaly detection of defects on concrete structures with the convolutional autoencoder

•Deep learning model is applied for the anomaly detection of concrete defects.•The model training is in the unsupervised mode, with no label needed.•This anomaly detection technique is adaptable to defects on wide ranges of scales.•The technique outperforms classical automatic methods in concrete de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced engineering informatics Ročník 45; s. 101105
Hlavní autoři: Chow, J.K., Su, Z., Wu, J., Tan, P.S., Mao, X., Wang, Y.H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2020
Témata:
ISSN:1474-0346, 1873-5320
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Deep learning model is applied for the anomaly detection of concrete defects.•The model training is in the unsupervised mode, with no label needed.•This anomaly detection technique is adaptable to defects on wide ranges of scales.•The technique outperforms classical automatic methods in concrete defect detection.•Anomaly scores of the anomaly map alert inspectors for any potential defects. This paper reports the application of deep learning for implementing the anomaly detection of defects on concrete structures, so as to facilitate the visual inspection of civil infrastructure. A convolutional autoencoder was trained as a reconstruction-based model, with the defect-free images, to rapidly and reliably detect defects from the large volume of image datasets. This training process was in the unsupervised mode, with no label needed, thereby requiring no prior knowledge and saving an enormous amount of time for label preparation. The built anomaly detector favors minimizing the reconstruction errors of defect-free images, which renders high reconstruction errors of defects, in turn, detecting the location of defects. The assessment shows that the proposed anomaly detection technique is robust and adaptable to defects on wide ranges of scales. Comparison was also made with the segmentation results produced by other automatic classical methods, revealing that the results made by the anomaly map outperform other segmentation methods, in terms of precision, recall, F1 measure and F2 measure, without severe under- and over-segmentation. Further, instead of merely being a binary map, each pixel of the anomaly map is represented by the anomaly score, which acts as a risk indicator for alerting inspectors, wherever defects on concrete structures are detected.
AbstractList •Deep learning model is applied for the anomaly detection of concrete defects.•The model training is in the unsupervised mode, with no label needed.•This anomaly detection technique is adaptable to defects on wide ranges of scales.•The technique outperforms classical automatic methods in concrete defect detection.•Anomaly scores of the anomaly map alert inspectors for any potential defects. This paper reports the application of deep learning for implementing the anomaly detection of defects on concrete structures, so as to facilitate the visual inspection of civil infrastructure. A convolutional autoencoder was trained as a reconstruction-based model, with the defect-free images, to rapidly and reliably detect defects from the large volume of image datasets. This training process was in the unsupervised mode, with no label needed, thereby requiring no prior knowledge and saving an enormous amount of time for label preparation. The built anomaly detector favors minimizing the reconstruction errors of defect-free images, which renders high reconstruction errors of defects, in turn, detecting the location of defects. The assessment shows that the proposed anomaly detection technique is robust and adaptable to defects on wide ranges of scales. Comparison was also made with the segmentation results produced by other automatic classical methods, revealing that the results made by the anomaly map outperform other segmentation methods, in terms of precision, recall, F1 measure and F2 measure, without severe under- and over-segmentation. Further, instead of merely being a binary map, each pixel of the anomaly map is represented by the anomaly score, which acts as a risk indicator for alerting inspectors, wherever defects on concrete structures are detected.
ArticleNumber 101105
Author Chow, J.K.
Mao, X.
Wu, J.
Wang, Y.H.
Su, Z.
Tan, P.S.
Author_xml – sequence: 1
  givenname: J.K.
  surname: Chow
  fullname: Chow, J.K.
  email: junkangchow@ust.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, HKSAR, China
– sequence: 2
  givenname: Z.
  surname: Su
  fullname: Su, Z.
  email: zsuad@connect.ust.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, HKSAR, China
– sequence: 3
  givenname: J.
  surname: Wu
  fullname: Wu, J.
  email: jwuah@connect.ust.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, HKSAR, China
– sequence: 4
  givenname: P.S.
  surname: Tan
  fullname: Tan, P.S.
  email: pstan@connect.ust.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, HKSAR, China
– sequence: 5
  givenname: X.
  surname: Mao
  fullname: Mao, X.
  email: xmaoac@connect.ust.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, HKSAR, China
– sequence: 6
  givenname: Y.H.
  surname: Wang
  fullname: Wang, Y.H.
  email: ceyhwang@ust.hk
  organization: Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology, HKSAR, China
BookMark eNp9kM1OAyEURompiW31AdzxAlNhYIaZuGoa_5ImbtQtYeCS0kwHA0xN317GunLhCr5cDrnfWaDZ4AdA6JaSFSW0vtuvFLhVScqfTEl1gea0EayoWElm-c4FLwjj9RVaxLgnmWlaMUcf68EfVH_CBhLo5PyAvc3B5hBxTtoPOuQZjimMOo0BIv5yaYfTDqbh0ffjhKkeqzF5GLQ3EK7RpVV9hJvfc4neHx_eNs_F9vXpZbPeFrpsRSoUqwgpqTXaWCCcVhU0HVOgaiG45czkPrRpyq7uKOvyq5YbaLtG5fUoEMuWSJz_1cHHGMBK7ZKa9klBuV5SIic9ci-zHjnpkWc9maR_yM_gDiqc_mXuzwzkSkcHQUbtcmMwLmRf0nj3D_0N3tiBoA
CitedBy_id crossref_primary_10_1016_j_autcon_2024_105540
crossref_primary_10_1109_TNNLS_2025_3542229
crossref_primary_10_14359_51734601
crossref_primary_10_1109_JSEN_2022_3149721
crossref_primary_10_1177_14759217231183143
crossref_primary_10_1016_j_aei_2023_101940
crossref_primary_10_1080_10589759_2025_2456673
crossref_primary_10_1155_2021_5551555
crossref_primary_10_3390_app14167194
crossref_primary_10_3390_bioengineering10040405
crossref_primary_10_1007_s11042_024_18418_2
crossref_primary_10_3390_app12189244
crossref_primary_10_1088_1361_6501_ad25db
crossref_primary_10_1109_TSM_2023_3245606
crossref_primary_10_1016_j_autcon_2020_103372
crossref_primary_10_1007_s10845_024_02415_1
crossref_primary_10_1016_j_aei_2022_101672
crossref_primary_10_1002_nag_70063
crossref_primary_10_1109_ACCESS_2024_3471169
crossref_primary_10_3390_app13158701
crossref_primary_10_1016_j_aei_2021_101255
crossref_primary_10_1177_14759217251365856
crossref_primary_10_37434_tdnk2025_02_01
crossref_primary_10_1016_j_jmsy_2025_05_003
crossref_primary_10_1007_s00371_023_03124_1
crossref_primary_10_1061_JITSE4_ISENG_2574
crossref_primary_10_1016_j_oceaneng_2024_117700
crossref_primary_10_1016_j_aei_2022_101566
crossref_primary_10_1093_iti_liac013
crossref_primary_10_1016_j_jrst_2025_08_003
crossref_primary_10_1109_JSSC_2023_3236566
crossref_primary_10_1007_s10489_024_05693_7
crossref_primary_10_3390_app121910168
crossref_primary_10_1016_j_conbuildmat_2021_126146
crossref_primary_10_1177_1748006X20965111
crossref_primary_10_3390_app13031891
crossref_primary_10_1109_TCSVT_2024_3408034
crossref_primary_10_1007_s41060_025_00740_z
crossref_primary_10_1016_j_aei_2025_103202
crossref_primary_10_1016_j_aei_2021_101399
crossref_primary_10_1007_s10845_022_02034_8
crossref_primary_10_1016_j_autcon_2021_103973
crossref_primary_10_1088_1361_6501_ad080e
crossref_primary_10_1016_j_iintel_2023_100029
crossref_primary_10_1016_j_engappai_2024_109374
crossref_primary_10_1016_j_aei_2021_101272
crossref_primary_10_1016_j_aei_2021_101392
crossref_primary_10_1016_j_aei_2022_101575
crossref_primary_10_1109_JSEN_2024_3480133
crossref_primary_10_1007_s00138_023_01454_7
crossref_primary_10_1016_j_iswa_2025_200532
crossref_primary_10_1016_j_eswa_2025_128376
crossref_primary_10_1177_14759217241259081
crossref_primary_10_3390_buildings12040432
crossref_primary_10_1016_j_ejmp_2025_104914
crossref_primary_10_1016_j_autcon_2022_104371
crossref_primary_10_1029_2024GL111818
crossref_primary_10_1109_ACCESS_2024_3424488
crossref_primary_10_1016_j_engappai_2024_109683
crossref_primary_10_1016_j_dte_2025_100062
crossref_primary_10_1016_j_ifacol_2023_10_1144
crossref_primary_10_1016_j_aei_2020_101182
crossref_primary_10_1016_j_jmsy_2024_12_005
crossref_primary_10_1177_14759217221150376
crossref_primary_10_1109_JIOT_2023_3280843
crossref_primary_10_1016_j_engstruct_2024_119192
crossref_primary_10_1177_14759217241271000
crossref_primary_10_1061_JITSE4_ISENG_2157
crossref_primary_10_3390_s24061835
crossref_primary_10_1016_j_autcon_2025_106423
crossref_primary_10_1016_j_advengsoft_2021_103031
crossref_primary_10_1016_j_autcon_2024_105354
crossref_primary_10_1111_mice_13132
crossref_primary_10_1016_j_aei_2022_101639
crossref_primary_10_1145_3765743
crossref_primary_10_1007_s10845_023_02270_6
crossref_primary_10_1016_j_jobe_2023_106976
crossref_primary_10_1016_j_neucom_2024_129168
crossref_primary_10_1016_j_compeleceng_2024_109660
crossref_primary_10_1016_j_ndteint_2024_103125
crossref_primary_10_1049_tje2_12405
crossref_primary_10_1016_j_knosys_2024_111563
crossref_primary_10_1109_TMI_2023_3314318
crossref_primary_10_1007_s10845_024_02511_2
crossref_primary_10_1016_j_jii_2023_100443
crossref_primary_10_1186_s40537_023_00791_8
crossref_primary_10_3390_s21144929
crossref_primary_10_1016_j_fpc_2025_06_005
crossref_primary_10_1108_RPJ_05_2023_0157
crossref_primary_10_1016_j_autcon_2024_105369
crossref_primary_10_3390_s23218750
crossref_primary_10_3390_app11188404
crossref_primary_10_3390_s24072263
crossref_primary_10_1016_j_aei_2023_102253
crossref_primary_10_1109_ACCESS_2022_3171559
crossref_primary_10_1016_j_ijimpeng_2023_104825
crossref_primary_10_1088_2631_8695_ad5e34
crossref_primary_10_3390_electronics12244941
crossref_primary_10_1111_mice_13233
crossref_primary_10_1016_j_autcon_2024_105497
crossref_primary_10_3390_app11209751
crossref_primary_10_1007_s00158_022_03185_1
crossref_primary_10_1108_ECAM_06_2023_0613
crossref_primary_10_3390_electronics11050779
crossref_primary_10_1016_j_jobe_2025_113710
crossref_primary_10_1016_j_compstruct_2022_115579
crossref_primary_10_3390_app10207347
crossref_primary_10_1016_j_aei_2023_102007
crossref_primary_10_1016_j_measurement_2023_112718
crossref_primary_10_1016_j_istruc_2023_105780
crossref_primary_10_1016_j_compositesb_2025_113038
crossref_primary_10_1016_j_matdes_2023_111686
crossref_primary_10_3389_fmtec_2024_1277152
crossref_primary_10_1016_j_aei_2021_101303
crossref_primary_10_1177_14759217251324107
crossref_primary_10_1016_j_aei_2022_101822
crossref_primary_10_1155_2024_8846470
crossref_primary_10_3390_math10224351
crossref_primary_10_1016_j_aei_2024_102910
crossref_primary_10_1016_j_autcon_2022_104602
crossref_primary_10_1109_TIM_2021_3087826
crossref_primary_10_1016_j_jenvman_2024_124011
crossref_primary_10_1007_s11004_025_10190_9
crossref_primary_10_1108_CI_04_2022_0075
crossref_primary_10_1016_j_engappai_2025_110107
crossref_primary_10_1016_j_pnucene_2024_105501
crossref_primary_10_1109_TII_2022_3217751
crossref_primary_10_1007_s10489_023_05199_8
crossref_primary_10_1007_s42107_025_01281_3
crossref_primary_10_1109_ACCESS_2022_3192134
crossref_primary_10_1109_TASE_2022_3140784
crossref_primary_10_1007_s13349_022_00650_9
crossref_primary_10_1016_j_ress_2023_109258
crossref_primary_10_1088_2051_672X_ac9247
crossref_primary_10_37434_tpwj2025_07_05
crossref_primary_10_1016_j_ymssp_2024_112296
crossref_primary_10_1016_j_eswa_2025_127662
crossref_primary_10_1007_s00521_021_06784_z
crossref_primary_10_1016_j_measurement_2023_113153
crossref_primary_10_1109_TIM_2022_3196436
crossref_primary_10_1155_2020_8829715
crossref_primary_10_3390_math10224254
crossref_primary_10_1016_j_aei_2024_102577
crossref_primary_10_1016_j_procir_2022_04_033
crossref_primary_10_1016_j_jobe_2024_111170
crossref_primary_10_1007_s00371_022_02666_0
crossref_primary_10_1115_1_4065276
crossref_primary_10_3390_electronics13112049
crossref_primary_10_1016_j_ssci_2022_105766
crossref_primary_10_3390_s23146295
crossref_primary_10_1016_j_ymssp_2024_112076
crossref_primary_10_1007_s00170_025_16390_1
crossref_primary_10_3390_s23062954
crossref_primary_10_1080_21693277_2024_2378199
crossref_primary_10_1016_j_engfracmech_2021_108160
crossref_primary_10_1080_15623599_2024_2331864
crossref_primary_10_1016_j_ifacol_2023_10_1542
crossref_primary_10_1007_s00521_023_08507_y
crossref_primary_10_1016_j_autcon_2021_103959
crossref_primary_10_3390_machines12050309
crossref_primary_10_1016_j_engappai_2025_110302
crossref_primary_10_1016_j_enbuild_2024_115052
crossref_primary_10_1016_j_measurement_2023_112892
crossref_primary_10_1371_journal_pone_0329945
crossref_primary_10_3390_jimaging9070137
crossref_primary_10_1007_s10845_024_02372_9
crossref_primary_10_1111_mice_13413
crossref_primary_10_1109_ACCESS_2023_3291674
crossref_primary_10_3390_network3020013
crossref_primary_10_1016_j_aei_2024_102723
crossref_primary_10_1007_s00500_021_06110_8
crossref_primary_10_1016_j_aei_2025_103669
crossref_primary_10_1080_0951192X_2024_2397821
crossref_primary_10_3390_app132011273
crossref_primary_10_1016_j_engstruct_2023_116473
crossref_primary_10_1007_s10717_024_00664_3
crossref_primary_10_1007_s10489_021_02475_3
crossref_primary_10_1016_j_istruc_2022_03_068
crossref_primary_10_1016_j_inffus_2024_102654
crossref_primary_10_1002_bate_202100091
crossref_primary_10_1016_j_aei_2024_102936
crossref_primary_10_3390_s23218904
crossref_primary_10_1016_j_aei_2020_101206
crossref_primary_10_1016_j_autcon_2023_104828
crossref_primary_10_1080_15732479_2023_2263441
crossref_primary_10_1109_TNNLS_2022_3175888
crossref_primary_10_1016_j_swevo_2024_101650
crossref_primary_10_1109_ACCESS_2024_3453664
crossref_primary_10_1007_s42107_023_00648_8
crossref_primary_10_1016_j_aei_2022_101819
crossref_primary_10_1007_s12206_024_0833_2
crossref_primary_10_1038_s41598_024_66760_0
crossref_primary_10_3390_s24082440
crossref_primary_10_1016_j_engstruct_2024_117760
crossref_primary_10_1016_j_aei_2021_101512
crossref_primary_10_1016_j_jmsy_2023_02_007
crossref_primary_10_1155_2022_8046620
crossref_primary_10_3390_app132212445
crossref_primary_10_1177_14759217221122296
crossref_primary_10_1016_j_neucom_2021_04_089
crossref_primary_10_1061_JCCEE5_CPENG_5041
crossref_primary_10_1016_j_eswa_2025_127005
crossref_primary_10_3390_electronics13020284
crossref_primary_10_1080_17686733_2025_2458952
crossref_primary_10_1080_17499518_2023_2251128
Cites_doi 10.1177/1475921718765419
10.1109/ICASI.2017.7988574
10.1016/j.aei.2018.05.004
10.1016/0734-189X(85)90125-2
10.5120/13715-1478
10.1177/1475921718757405
10.1002/tal.1400
10.1007/978-3-030-20893-6_39
10.1061/(ASCE)0887-3801(2006)20:3(210)
10.1109/TSMC.1979.4310076
10.1145/1541880.1541882
10.1016/j.aei.2015.01.008
10.1016/j.autcon.2018.11.028
10.1088/1361-665X/aa510e
10.1080/08839514.2019.1583862
10.1007/978-3-319-10590-1_53
10.1016/j.media.2017.07.005
10.3390/jimaging4020036
10.3390/s18010209
10.1016/j.jocs.2016.11.016
10.1117/1.JRS.11.042609
10.1016/j.conbuildmat.2018.08.011
10.3390/s18103452
10.1007/s10845-018-1415-x
10.1016/j.proeng.2017.01.418
10.1002/tee.20244
10.1007/s00138-009-0189-8
10.1109/TASE.2014.2354314
10.1109/TIE.2017.2764844
10.7708/ijtte.2018.8(1).01
10.1016/0734-189X(85)90133-1
10.1111/j.1467-8667.2012.00790.x
10.1111/mice.12263
10.1109/COMST.2018.2844341
10.1061/(ASCE)0887-3801(2003)17:4(255)
10.1061/(ASCE)CP.1943-5487.0000257
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aei.2020.101105
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-5320
ExternalDocumentID 10_1016_j_aei_2020_101105
S1474034620300744
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
UHS
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-a350021fdcdfe04155e8b3aea6774f43d0201882b6b13bdcd94de9b8afec1e0f3
ISICitedReferencesCount 245
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552715300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-0346
IngestDate Sat Nov 29 07:05:39 EST 2025
Tue Nov 18 22:35:04 EST 2025
Thu Jun 13 14:30:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Cracking
Spalling
Convolutional autoencoder
Anomaly detection
Unsupervised learning
Concrete structure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-a350021fdcdfe04155e8b3aea6774f43d0201882b6b13bdcd94de9b8afec1e0f3
ParticipantIDs crossref_citationtrail_10_1016_j_aei_2020_101105
crossref_primary_10_1016_j_aei_2020_101105
elsevier_sciencedirect_doi_10_1016_j_aei_2020_101105
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Advanced engineering informatics
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yamaguchi, Hashimoto (b0150) 2010; 21
Ke, Lin, Huang (b0110) 2017
Chandola, Banerjee, Kumar (b0095) 2009; 41
Bergmann, Fauser, Sattlegger, Steger (b0220) 2019
Dung, Anh (b0200) 2019; 99
M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: European Conference on Computer Vision, Springer, Cham, 2014, pp. 818-833. https://doi.org/10.1007/978-3-319-10590-1_53.
Lattanzi, Miller (b0165) 2012; 28
Y. Lu, P. Xu, Anomaly detection for skin disease images using variational autoencoder, arXiv preprint arXiv:1807.01349 (2018).
Cha, Choi, Büyüköztürk (b0180) 2017; 32
Yamaguchi, Nakamura, Saegusa, Hashimoto (b0145) 2008; 3
Haselmann, Gruber, Tabatabai (b0065) 2018
Fujita, Mitani, Hamamoto (b0130) 2006
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sánchez (b0045) 2017; 42
Baur, Wiestler, Albarqouni, Navab (b0050) 2018
Hüthwohl, Brilakis (b0020) 2018; 37
Mohammadi, Al-Fuqaha, Sorour, Guizani (b0100) 2017; 20
Napoletano, Piccoli, Schettini (b0070) 2018; 18
Ronneberger, Fischer, Brox (b0245) 2015
Haselmann, Gruber (b0075) 2019; 33
Y. Noh, D. Koo, Y.M. Kang, D. Park, D. Lee, Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering, in: May (Ed.), Proceedings of 2017 International Conference on Applied System Innovation, IEEE, 2017, pp. 877-880, https://doi.org/10.1109/ICASI.2017.7988574.
T.C., Hutchinson, Z. Chen, Improved image analysis for evaluating concrete damage, Journal of Computing in Civil Engineering 20 (3) (2006) 210-216, https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(210).
Fisher, Camp, Krzhizhanovskaya (b0085) 2017; 20
Gopalakrishnan, Gholami, Vidyadharan, Choudhary, Agrawal (b0195) 2018; 8
Sato, Bao, Koya (b0140) 2018; 8
Yokoyama, Matsumoto (b0185) 2017; 171
Kapur, Sahoo, Wong (b0265) 1985; 29
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
Kim, Cho (b0210) 2018; 18
Ball, Anderson, Chan (b0060) 2017; 11
Adewumi, Akinyelu (b0040) 2017; 8
O’Byrne, Schoefs, Ghosh, Pakrashi (b0160) 2013; 28
Dorafshan, Thomas, Maguire (b0190) 2018; 186
R. Chalapathy, S. Chawla, Deep learning for anomaly detection: A survey, arXiv preprint arXiv:1901.03407 (2019).
S. Akcay, A. Atapour-Abarghouei, T.P. Breckon, Ganomaly: Semi-supervised anomaly detection via adversarial training, in: C. Jawahar, H. Li, G. Mori, K. Schindler (Eds.), Computer Vision – ACCV 2018, Springer, Cham, 2018. pp. 622-637. https://doi.org/10.1007/978-3-030-20893-6_39.
Goodfellow, Bengio, Courville (b0225) 2016
Abdel-Qader, Abudayyeh, Kelly (b0125) 2003; 17
Bengio (b0235) 2019; 2
Koch, Georgieva, Kasireddy, Akinci, Fieguth (b0010) 2015; 29
Géron (b0230) 2017
Kiran, Thomas, Parakkal (b0115) 2018; 4
Prasanna, Dana, Gucunski, Basily, La, Lim, Parvardeh (b0170) 2016; 13
Otsu (b0255) 1979; 9
Kwon, Kim, Kim, Suh, Kim, Kim (b0035) 2017
Omar, Ngadi, Jebur (b0030) 2013; 79
Bao, Tang, Li, Zhang (b0080) 2019; 18
Verma, Bhadauria, Akhtar (b0005) 2013; 834572
Yeum, Choi, Dyke (b0025) 2018; 18
Yeum, Choi, Dyke (b0015) 2017; 26
Li, Zhao (b0205) 2019
Lin, Li, Wang, Shu, Niu (b0215) 2019; 30
Tsai (b0260) 1985; 29
Chen, Jahanshahi (b0175) 2018; 65
Rafiei, Adeli (b0090) 2017; 26
O’Byrne (10.1016/j.aei.2020.101105_b0160) 2013; 28
10.1016/j.aei.2020.101105_b0105
Chen (10.1016/j.aei.2020.101105_b0175) 2018; 65
Tsai (10.1016/j.aei.2020.101105_b0260) 1985; 29
Prasanna (10.1016/j.aei.2020.101105_b0170) 2016; 13
Li (10.1016/j.aei.2020.101105_b0205) 2019
Verma (10.1016/j.aei.2020.101105_b0005) 2013; 834572
Haselmann (10.1016/j.aei.2020.101105_b0075) 2019; 33
10.1016/j.aei.2020.101105_b0155
Lin (10.1016/j.aei.2020.101105_b0215) 2019; 30
Ronneberger (10.1016/j.aei.2020.101105_b0245) 2015
Napoletano (10.1016/j.aei.2020.101105_b0070) 2018; 18
Gopalakrishnan (10.1016/j.aei.2020.101105_b0195) 2018; 8
Cha (10.1016/j.aei.2020.101105_b0180) 2017; 32
Kapur (10.1016/j.aei.2020.101105_b0265) 1985; 29
Rafiei (10.1016/j.aei.2020.101105_b0090) 2017; 26
Yokoyama (10.1016/j.aei.2020.101105_b0185) 2017; 171
Ke (10.1016/j.aei.2020.101105_b0110) 2017
Otsu (10.1016/j.aei.2020.101105_b0255) 1979; 9
Yamaguchi (10.1016/j.aei.2020.101105_b0145) 2008; 3
Chandola (10.1016/j.aei.2020.101105_b0095) 2009; 41
Dung (10.1016/j.aei.2020.101105_b0200) 2019; 99
Baur (10.1016/j.aei.2020.101105_b0050) 2018
Omar (10.1016/j.aei.2020.101105_b0030) 2013; 79
Litjens (10.1016/j.aei.2020.101105_b0045) 2017; 42
Yamaguchi (10.1016/j.aei.2020.101105_b0150) 2010; 21
Fisher (10.1016/j.aei.2020.101105_b0085) 2017; 20
Mohammadi (10.1016/j.aei.2020.101105_b0100) 2017; 20
Bao (10.1016/j.aei.2020.101105_b0080) 2019; 18
Yeum (10.1016/j.aei.2020.101105_b0015) 2017; 26
Lattanzi (10.1016/j.aei.2020.101105_b0165) 2012; 28
Abdel-Qader (10.1016/j.aei.2020.101105_b0125) 2003; 17
Hüthwohl (10.1016/j.aei.2020.101105_b0020) 2018; 37
Adewumi (10.1016/j.aei.2020.101105_b0040) 2017; 8
Bergmann (10.1016/j.aei.2020.101105_b0220) 2019
Yeum (10.1016/j.aei.2020.101105_b0025) 2018; 18
Bengio (10.1016/j.aei.2020.101105_b0235) 2019; 2
Koch (10.1016/j.aei.2020.101105_b0010) 2015; 29
Géron (10.1016/j.aei.2020.101105_b0230) 2017
10.1016/j.aei.2020.101105_b0120
10.1016/j.aei.2020.101105_b0240
10.1016/j.aei.2020.101105_b0055
Haselmann (10.1016/j.aei.2020.101105_b0065) 2018
10.1016/j.aei.2020.101105_b0135
Dorafshan (10.1016/j.aei.2020.101105_b0190) 2018; 186
Fujita (10.1016/j.aei.2020.101105_b0130) 2006
Ball (10.1016/j.aei.2020.101105_b0060) 2017; 11
Kim (10.1016/j.aei.2020.101105_b0210) 2018; 18
Sato (10.1016/j.aei.2020.101105_b0140) 2018; 8
Goodfellow (10.1016/j.aei.2020.101105_b0225) 2016
Kiran (10.1016/j.aei.2020.101105_b0115) 2018; 4
Kwon (10.1016/j.aei.2020.101105_b0035) 2017
10.1016/j.aei.2020.101105_b0250
References_xml – reference: R. Chalapathy, S. Chawla, Deep learning for anomaly detection: A survey, arXiv preprint arXiv:1901.03407 (2019).
– volume: 8
  start-page: 1
  year: 2018
  end-page: 6
  ident: b0140
  article-title: Crack detection on concrete surfaces using V-shaped features
  publication-title: World of Computer Science & Information Technology Journal
– volume: 13
  start-page: 591
  year: 2016
  end-page: 599
  ident: b0170
  article-title: Automated crack detection on concrete bridges
  publication-title: IEEE Trans. Autom. Sci. Eng.
– year: 2016
  ident: b0225
  article-title: Deep Learning
– volume: 18
  start-page: 401
  year: 2019
  end-page: 421
  ident: b0080
  article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring
  publication-title: Structural Health Monitoring
– volume: 41
  start-page: 1
  year: 2009
  end-page: 72
  ident: b0095
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
– volume: 99
  start-page: 52
  year: 2019
  end-page: 58
  ident: b0200
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Autom. Constr.
– reference: S. Akcay, A. Atapour-Abarghouei, T.P. Breckon, Ganomaly: Semi-supervised anomaly detection via adversarial training, in: C. Jawahar, H. Li, G. Mori, K. Schindler (Eds.), Computer Vision – ACCV 2018, Springer, Cham, 2018. pp. 622-637. https://doi.org/10.1007/978-3-030-20893-6_39.
– volume: 37
  start-page: 150
  year: 2018
  end-page: 162
  ident: b0020
  article-title: Detecting healthy concrete surfaces
  publication-title: Adv. Eng. Inf.
– volume: 26
  year: 2017
  ident: b0015
  article-title: Autonomous image localization for visual inspection of civil infrastructure
  publication-title: Smart Mater. Struct.
– volume: 3
  start-page: 128
  year: 2008
  end-page: 135
  ident: b0145
  article-title: Image-based crack detection for real concrete surfaces
  publication-title: IEEJ Trans. Electr. Electron. Eng.
– volume: 28
  start-page: 253
  year: 2012
  end-page: 262
  ident: b0165
  article-title: Robust automated concrete damage detection algorithms for field applications
  publication-title: J. Comput. Civil Eng.
– start-page: 901
  year: 2006
  end-page: 904
  ident: b0130
  article-title: A method for crack detection on a concrete structure
  publication-title: in: 18th International Conference on Pattern Recognition (ICPR'06), IEEE
– volume: 20
  start-page: 143
  year: 2017
  end-page: 153
  ident: b0085
  article-title: Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection
  publication-title: Journal of Computational Science
– volume: 4
  start-page: 36
  year: 2018
  ident: b0115
  article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos
  publication-title: Journal of Imaging
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: b0045
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
– reference: Y. Lu, P. Xu, Anomaly detection for skin disease images using variational autoencoder, arXiv preprint arXiv:1807.01349 (2018).
– volume: 65
  start-page: 4392
  year: 2018
  end-page: 4400
  ident: b0175
  article-title: NB-CNN: Deep learning-based crack detection using convolutional neural network and naïve bayes data fusion
  publication-title: IEEE Trans. Ind. Electron.
– volume: 32
  start-page: 361
  year: 2017
  end-page: 378
  ident: b0180
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– year: 2019
  ident: b0205
  article-title: Image-based concrete crack detection using convolutional neural network and exhaustive search technique, Advance
  publication-title: Civ. Eng.
– reference: Y. Noh, D. Koo, Y.M. Kang, D. Park, D. Lee, Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering, in: May (Ed.), Proceedings of 2017 International Conference on Applied System Innovation, IEEE, 2017, pp. 877-880, https://doi.org/10.1109/ICASI.2017.7988574.
– volume: 17
  start-page: 255
  year: 2003
  end-page: 263
  ident: b0125
  article-title: Analysis of edge-detection techniques for crack identification in bridges
  publication-title: J. Comput. Civil Eng.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b0245
  publication-title: U-Net: Convolutional networks for biomedical image segmentation
– volume: 8
  start-page: 937
  year: 2017
  end-page: 953
  ident: b0040
  article-title: A survey of machine-learning and nature-inspired based credit card fraud detection
  publication-title: International of Journal of System Assurance Engineering and Management
– volume: 21
  start-page: 797
  year: 2010
  end-page: 809
  ident: b0150
  article-title: Fast crack detection method for large-size concrete surface images using percolation-based image processing
  publication-title: Mach. Vis. Appl.
– start-page: 1
  year: 2017
  end-page: 13
  ident: b0035
  article-title: A survey of deep learning-based network anomaly detection
  publication-title: Cluster Computing
– volume: 28
  start-page: 162
  year: 2013
  end-page: 177
  ident: b0160
  article-title: Texture analysis based damage detection of ageing infrastructural elements
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– year: 2017
  ident: b0230
  article-title: Hands-on machine learning with Scikit-Learn & TensorFlow
– start-page: 1
  year: 2018
  end-page: 6
  ident: b0065
  article-title: Anomaly detection using deep learning based image completion
  publication-title: in: Proceedings of the 2018 17
– volume: 30
  start-page: 2525
  year: 2019
  end-page: 2534
  ident: b0215
  article-title: Automated defect inspection of LED chip using deep convolutional neural network
  publication-title: J. Intell. Manuf.
– reference: M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: European Conference on Computer Vision, Springer, Cham, 2014, pp. 818-833. https://doi.org/10.1007/978-3-319-10590-1_53.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0195
  article-title: Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre-trained deep learning model
  publication-title: International Journal for Traffic and Transport Engineering
– volume: 2
  start-page: 1
  year: 2019
  end-page: 127
  ident: b0235
  article-title: Learning Deep Architectures for AI, Foundations and Trends®
  publication-title: Machine Learning
– volume: 186
  start-page: 1031
  year: 2018
  end-page: 1045
  ident: b0190
  article-title: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete
  publication-title: Constr. Build. Mater.
– volume: 26
  start-page: 1400
  year: 2017
  ident: b0090
  article-title: A novel machine learning-based algorithm to detect damage in high-rise building structures
  publication-title: The Structural Design of Tall and Special Buildings
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b0255
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 18
  start-page: 675
  year: 2018
  end-page: 689
  ident: b0025
  article-title: Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure
  publication-title: Structural Health Monitoring
– volume: 29
  start-page: 377
  year: 1985
  end-page: 393
  ident: b0260
  article-title: Moment-preserving thresholding: a new approach
  publication-title: Computer Vision, Graphics, and Image Processing
– volume: 18
  start-page: 3452
  year: 2018
  ident: b0210
  article-title: Automated vision-based detection of cracks on concrete surfaces using a deep learning technique
  publication-title: Sensors
– volume: 79
  start-page: 33
  year: 2013
  end-page: 41
  ident: b0030
  article-title: Machine learning techniques for anomaly detection: An overview
  publication-title: International Journal of Computer Applications
– volume: 171
  start-page: 1250
  year: 2017
  end-page: 1255
  ident: b0185
  article-title: Development of an automatic detector of cracks in concrete using machine learning
  publication-title: Procedia Eng.
– start-page: 9592
  year: 2019
  end-page: 9600
  ident: b0220
  article-title: MVTec AD – A comprehensive real-world dataset for unsupervised anomaly detection
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition
– volume: 29
  start-page: 196
  year: 2015
  end-page: 210
  ident: b0010
  article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure
  publication-title: Adv. Eng. Inf.
– volume: 834572
  year: 2013
  ident: b0005
  article-title: Review of non-destructive testing methods for condition monitoring of concrete structures
  publication-title: Journal of Construction Engineering
– volume: 29
  start-page: 273
  year: 1985
  end-page: 285
  ident: b0265
  article-title: A new method for gray-Level picture thresholding using the entropy of the histogram
  publication-title: Graphical Models and Image Processing
– volume: 18
  start-page: 209
  year: 2018
  ident: b0070
  article-title: Anomaly detection in nanofibrous materials by CNN-based self-similarity
  publication-title: Sensors
– volume: 33
  start-page: 548
  year: 2019
  end-page: 566
  ident: b0075
  article-title: Pixel-Wise Defect Detection by CNNs without Manually Labeled Training Data
  publication-title: Applied Artificial Intelligence
– start-page: 1163
  year: 2017
  end-page: 1168
  ident: b0110
  article-title: Anomaly detection of logo images in the mobile phone using convolutional autoencoder
  publication-title: in: Proceedings of the 2017 4th International Conference on Systems and Informatics, IEEE
– reference: T.C., Hutchinson, Z. Chen, Improved image analysis for evaluating concrete damage, Journal of Computing in Civil Engineering 20 (3) (2006) 210-216, https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(210).
– start-page: 161
  year: 2018
  end-page: 169
  ident: b0050
  article-title: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images
  publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
– volume: 20
  start-page: 2923
  year: 2017
  end-page: 2960
  ident: b0100
  article-title: Deep learning for IoT big data and streaming analytics: A survey
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 11
  year: 2017
  ident: b0060
  article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community
  publication-title: J. Appl. Remote Sens.
– volume: 18
  start-page: 675
  issue: 3
  year: 2018
  ident: 10.1016/j.aei.2020.101105_b0025
  article-title: Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921718765419
– ident: 10.1016/j.aei.2020.101105_b0155
  doi: 10.1109/ICASI.2017.7988574
– volume: 37
  start-page: 150
  year: 2018
  ident: 10.1016/j.aei.2020.101105_b0020
  article-title: Detecting healthy concrete surfaces
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2018.05.004
– volume: 29
  start-page: 273
  issue: 3
  year: 1985
  ident: 10.1016/j.aei.2020.101105_b0265
  article-title: A new method for gray-Level picture thresholding using the entropy of the histogram
  publication-title: Graphical Models and Image Processing
  doi: 10.1016/0734-189X(85)90125-2
– volume: 79
  start-page: 33
  issue: 2
  year: 2013
  ident: 10.1016/j.aei.2020.101105_b0030
  article-title: Machine learning techniques for anomaly detection: An overview
  publication-title: International Journal of Computer Applications
  doi: 10.5120/13715-1478
– volume: 18
  start-page: 401
  issue: 2
  year: 2019
  ident: 10.1016/j.aei.2020.101105_b0080
  article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921718757405
– volume: 26
  start-page: 1400
  issue: 18
  year: 2017
  ident: 10.1016/j.aei.2020.101105_b0090
  article-title: A novel machine learning-based algorithm to detect damage in high-rise building structures
  publication-title: The Structural Design of Tall and Special Buildings
  doi: 10.1002/tal.1400
– ident: 10.1016/j.aei.2020.101105_b0120
  doi: 10.1007/978-3-030-20893-6_39
– ident: 10.1016/j.aei.2020.101105_b0135
  doi: 10.1061/(ASCE)0887-3801(2006)20:3(210)
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.aei.2020.101105_b0255
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  ident: 10.1016/j.aei.2020.101105_b0095
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– volume: 29
  start-page: 196
  year: 2015
  ident: 10.1016/j.aei.2020.101105_b0010
  article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2015.01.008
– volume: 99
  start-page: 52
  year: 2019
  ident: 10.1016/j.aei.2020.101105_b0200
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.11.028
– volume: 26
  issue: 3
  year: 2017
  ident: 10.1016/j.aei.2020.101105_b0015
  article-title: Autonomous image localization for visual inspection of civil infrastructure
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa510e
– volume: 33
  start-page: 548
  issue: 6
  year: 2019
  ident: 10.1016/j.aei.2020.101105_b0075
  article-title: Pixel-Wise Defect Detection by CNNs without Manually Labeled Training Data
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/08839514.2019.1583862
– start-page: 1
  year: 2018
  ident: 10.1016/j.aei.2020.101105_b0065
  article-title: Anomaly detection using deep learning based image completion
– ident: 10.1016/j.aei.2020.101105_b0240
  doi: 10.1007/978-3-319-10590-1_53
– start-page: 9592
  year: 2019
  ident: 10.1016/j.aei.2020.101105_b0220
  article-title: MVTec AD – A comprehensive real-world dataset for unsupervised anomaly detection
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.aei.2020.101105_b0045
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– year: 2019
  ident: 10.1016/j.aei.2020.101105_b0205
  article-title: Image-based concrete crack detection using convolutional neural network and exhaustive search technique, Advance
  publication-title: Civ. Eng.
– start-page: 1
  year: 2017
  ident: 10.1016/j.aei.2020.101105_b0035
  article-title: A survey of deep learning-based network anomaly detection
  publication-title: Cluster Computing
– volume: 4
  start-page: 36
  issue: 2
  year: 2018
  ident: 10.1016/j.aei.2020.101105_b0115
  article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos
  publication-title: Journal of Imaging
  doi: 10.3390/jimaging4020036
– start-page: 234
  year: 2015
  ident: 10.1016/j.aei.2020.101105_b0245
– volume: 18
  start-page: 209
  issue: 1
  year: 2018
  ident: 10.1016/j.aei.2020.101105_b0070
  article-title: Anomaly detection in nanofibrous materials by CNN-based self-similarity
  publication-title: Sensors
  doi: 10.3390/s18010209
– ident: 10.1016/j.aei.2020.101105_b0055
– volume: 20
  start-page: 143
  year: 2017
  ident: 10.1016/j.aei.2020.101105_b0085
  article-title: Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2016.11.016
– volume: 11
  issue: 4
  year: 2017
  ident: 10.1016/j.aei.2020.101105_b0060
  article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.11.042609
– start-page: 901
  year: 2006
  ident: 10.1016/j.aei.2020.101105_b0130
  article-title: A method for crack detection on a concrete structure
– ident: 10.1016/j.aei.2020.101105_b0105
– volume: 186
  start-page: 1031
  year: 2018
  ident: 10.1016/j.aei.2020.101105_b0190
  article-title: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.08.011
– volume: 18
  start-page: 3452
  year: 2018
  ident: 10.1016/j.aei.2020.101105_b0210
  article-title: Automated vision-based detection of cracks on concrete surfaces using a deep learning technique
  publication-title: Sensors
  doi: 10.3390/s18103452
– volume: 30
  start-page: 2525
  year: 2019
  ident: 10.1016/j.aei.2020.101105_b0215
  article-title: Automated defect inspection of LED chip using deep convolutional neural network
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-018-1415-x
– year: 2017
  ident: 10.1016/j.aei.2020.101105_b0230
– volume: 171
  start-page: 1250
  year: 2017
  ident: 10.1016/j.aei.2020.101105_b0185
  article-title: Development of an automatic detector of cracks in concrete using machine learning
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.01.418
– volume: 3
  start-page: 128
  issue: 1
  year: 2008
  ident: 10.1016/j.aei.2020.101105_b0145
  article-title: Image-based crack detection for real concrete surfaces
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.20244
– volume: 21
  start-page: 797
  issue: 5
  year: 2010
  ident: 10.1016/j.aei.2020.101105_b0150
  article-title: Fast crack detection method for large-size concrete surface images using percolation-based image processing
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-009-0189-8
– volume: 13
  start-page: 591
  issue: 2
  year: 2016
  ident: 10.1016/j.aei.2020.101105_b0170
  article-title: Automated crack detection on concrete bridges
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2354314
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.aei.2020.101105_b0140
  article-title: Crack detection on concrete surfaces using V-shaped features
  publication-title: World of Computer Science & Information Technology Journal
– year: 2016
  ident: 10.1016/j.aei.2020.101105_b0225
– volume: 65
  start-page: 4392
  issue: 5
  year: 2018
  ident: 10.1016/j.aei.2020.101105_b0175
  article-title: NB-CNN: Deep learning-based crack detection using convolutional neural network and naïve bayes data fusion
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2764844
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.aei.2020.101105_b0195
  article-title: Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre-trained deep learning model
  publication-title: International Journal for Traffic and Transport Engineering
  doi: 10.7708/ijtte.2018.8(1).01
– volume: 29
  start-page: 377
  year: 1985
  ident: 10.1016/j.aei.2020.101105_b0260
  article-title: Moment-preserving thresholding: a new approach
  publication-title: Computer Vision, Graphics, and Image Processing
  doi: 10.1016/0734-189X(85)90133-1
– volume: 8
  start-page: 937
  issue: 2
  year: 2017
  ident: 10.1016/j.aei.2020.101105_b0040
  article-title: A survey of machine-learning and nature-inspired based credit card fraud detection
  publication-title: International of Journal of System Assurance Engineering and Management
– volume: 28
  start-page: 162
  issue: 3
  year: 2013
  ident: 10.1016/j.aei.2020.101105_b0160
  article-title: Texture analysis based damage detection of ageing infrastructural elements
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2012.00790.x
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.aei.2020.101105_b0235
  article-title: Learning Deep Architectures for AI, Foundations and Trends®
  publication-title: Machine Learning
– volume: 32
  start-page: 361
  year: 2017
  ident: 10.1016/j.aei.2020.101105_b0180
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12263
– volume: 20
  start-page: 2923
  issue: 4
  year: 2017
  ident: 10.1016/j.aei.2020.101105_b0100
  article-title: Deep learning for IoT big data and streaming analytics: A survey
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2018.2844341
– volume: 17
  start-page: 255
  issue: 4
  year: 2003
  ident: 10.1016/j.aei.2020.101105_b0125
  article-title: Analysis of edge-detection techniques for crack identification in bridges
  publication-title: J. Comput. Civil Eng.
  doi: 10.1061/(ASCE)0887-3801(2003)17:4(255)
– start-page: 1163
  year: 2017
  ident: 10.1016/j.aei.2020.101105_b0110
  article-title: Anomaly detection of logo images in the mobile phone using convolutional autoencoder
– ident: 10.1016/j.aei.2020.101105_b0250
– volume: 834572
  year: 2013
  ident: 10.1016/j.aei.2020.101105_b0005
  article-title: Review of non-destructive testing methods for condition monitoring of concrete structures
  publication-title: Journal of Construction Engineering
– volume: 28
  start-page: 253
  issue: 2
  year: 2012
  ident: 10.1016/j.aei.2020.101105_b0165
  article-title: Robust automated concrete damage detection algorithms for field applications
  publication-title: J. Comput. Civil Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000257
– start-page: 161
  year: 2018
  ident: 10.1016/j.aei.2020.101105_b0050
  article-title: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images
SSID ssj0016897
Score 2.6387668
Snippet •Deep learning model is applied for the anomaly detection of concrete defects.•The model training is in the unsupervised mode, with no label needed.•This...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101105
SubjectTerms Anomaly detection
Concrete structure
Convolutional autoencoder
Cracking
Spalling
Unsupervised learning
Title Anomaly detection of defects on concrete structures with the convolutional autoencoder
URI https://dx.doi.org/10.1016/j.aei.2020.101105
Volume 45
WOSCitedRecordID wos000552715300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5320
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016897
  issn: 1474-0346
  databaseCode: AIEXJ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb5wwELXapIdemn6q-WjlQ0-NQIAN2McoStWmVRSpabs3ZPCgJErZqMtGyb_PGMZAoqRqDr0gQMZ4mccwM377zNgHqEBZk6VBpFUWyDSp8Z1DLBuFn-fcCBmVnYjrt_zgQM1m-pAImYtuOYG8adTlpT7_r6bGc2hs99fZB5h76BRP4D4aHbdodtz-k-Exof9tzq62LbRQ-XjQAtE2HOu8wUixdcqyTjp2ifk2VWOPO-b6BY3OiQgs27kTurRE4fVqtZ43AKOY4TYpsLYT9vzucT9xtB9-DcfJp246ZDj-texbjBWEzg0eht_DaUEiGelw3ofKXAaRoMoiOVmZTrxk7IKO9E4H3tcSTkMDJ6HrPBzb3hTLvvURG6iFnrV2WmAXheui6Lt4zFaTPNXo-VZ3vuzN9oe5pkz1S_D4Yfu5744FeGscd0cvk4jk6Dl7RqkE3-kh8II9guYlW6O0gpPTXrxiPwkRfEAEn9ecEMHxyCOCj4jgDhEcEcFvIIJPEPGa_fi0d7T7OaDlNIIq0XkbGJG6iK62la3BKTOkoEphwGSYAtRSWPyZMSZcZVbGosRWWlrQpTI4nBiiWrxhK828gbeMayVUlFmZOjov6FgBBqa1gNLmBkAl6yzyj6moSGveLXlyVtxrnnX2cbjkvBda-Vtj6Z99QZFiHwEWiKP7L9t4yD022dMR3VtsBS0A79iT6qI9Wfx5TyC6BrhriA4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+of+defects+on+concrete+structures+with+the+convolutional+autoencoder&rft.jtitle=Advanced+engineering+informatics&rft.au=Chow%2C+J.K.&rft.au=Su%2C+Z.&rft.au=Wu%2C+J.&rft.au=Tan%2C+P.S.&rft.date=2020-08-01&rft.issn=1474-0346&rft.volume=45&rft.spage=101105&rft_id=info:doi/10.1016%2Fj.aei.2020.101105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aei_2020_101105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon