Anomaly detection of defects on concrete structures with the convolutional autoencoder
•Deep learning model is applied for the anomaly detection of concrete defects.•The model training is in the unsupervised mode, with no label needed.•This anomaly detection technique is adaptable to defects on wide ranges of scales.•The technique outperforms classical automatic methods in concrete de...
Uloženo v:
| Vydáno v: | Advanced engineering informatics Ročník 45; s. 101105 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2020
|
| Témata: | |
| ISSN: | 1474-0346, 1873-5320 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Deep learning model is applied for the anomaly detection of concrete defects.•The model training is in the unsupervised mode, with no label needed.•This anomaly detection technique is adaptable to defects on wide ranges of scales.•The technique outperforms classical automatic methods in concrete defect detection.•Anomaly scores of the anomaly map alert inspectors for any potential defects.
This paper reports the application of deep learning for implementing the anomaly detection of defects on concrete structures, so as to facilitate the visual inspection of civil infrastructure. A convolutional autoencoder was trained as a reconstruction-based model, with the defect-free images, to rapidly and reliably detect defects from the large volume of image datasets. This training process was in the unsupervised mode, with no label needed, thereby requiring no prior knowledge and saving an enormous amount of time for label preparation. The built anomaly detector favors minimizing the reconstruction errors of defect-free images, which renders high reconstruction errors of defects, in turn, detecting the location of defects. The assessment shows that the proposed anomaly detection technique is robust and adaptable to defects on wide ranges of scales. Comparison was also made with the segmentation results produced by other automatic classical methods, revealing that the results made by the anomaly map outperform other segmentation methods, in terms of precision, recall, F1 measure and F2 measure, without severe under- and over-segmentation. Further, instead of merely being a binary map, each pixel of the anomaly map is represented by the anomaly score, which acts as a risk indicator for alerting inspectors, wherever defects on concrete structures are detected. |
|---|---|
| AbstractList | •Deep learning model is applied for the anomaly detection of concrete defects.•The model training is in the unsupervised mode, with no label needed.•This anomaly detection technique is adaptable to defects on wide ranges of scales.•The technique outperforms classical automatic methods in concrete defect detection.•Anomaly scores of the anomaly map alert inspectors for any potential defects.
This paper reports the application of deep learning for implementing the anomaly detection of defects on concrete structures, so as to facilitate the visual inspection of civil infrastructure. A convolutional autoencoder was trained as a reconstruction-based model, with the defect-free images, to rapidly and reliably detect defects from the large volume of image datasets. This training process was in the unsupervised mode, with no label needed, thereby requiring no prior knowledge and saving an enormous amount of time for label preparation. The built anomaly detector favors minimizing the reconstruction errors of defect-free images, which renders high reconstruction errors of defects, in turn, detecting the location of defects. The assessment shows that the proposed anomaly detection technique is robust and adaptable to defects on wide ranges of scales. Comparison was also made with the segmentation results produced by other automatic classical methods, revealing that the results made by the anomaly map outperform other segmentation methods, in terms of precision, recall, F1 measure and F2 measure, without severe under- and over-segmentation. Further, instead of merely being a binary map, each pixel of the anomaly map is represented by the anomaly score, which acts as a risk indicator for alerting inspectors, wherever defects on concrete structures are detected. |
| ArticleNumber | 101105 |
| Author | Chow, J.K. Mao, X. Wu, J. Wang, Y.H. Su, Z. Tan, P.S. |
| Author_xml | – sequence: 1 givenname: J.K. surname: Chow fullname: Chow, J.K. email: junkangchow@ust.hk organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, HKSAR, China – sequence: 2 givenname: Z. surname: Su fullname: Su, Z. email: zsuad@connect.ust.hk organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, HKSAR, China – sequence: 3 givenname: J. surname: Wu fullname: Wu, J. email: jwuah@connect.ust.hk organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, HKSAR, China – sequence: 4 givenname: P.S. surname: Tan fullname: Tan, P.S. email: pstan@connect.ust.hk organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, HKSAR, China – sequence: 5 givenname: X. surname: Mao fullname: Mao, X. email: xmaoac@connect.ust.hk organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, HKSAR, China – sequence: 6 givenname: Y.H. surname: Wang fullname: Wang, Y.H. email: ceyhwang@ust.hk organization: Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology, HKSAR, China |
| BookMark | eNp9kM1OAyEURompiW31AdzxAlNhYIaZuGoa_5ImbtQtYeCS0kwHA0xN317GunLhCr5cDrnfWaDZ4AdA6JaSFSW0vtuvFLhVScqfTEl1gea0EayoWElm-c4FLwjj9RVaxLgnmWlaMUcf68EfVH_CBhLo5PyAvc3B5hBxTtoPOuQZjimMOo0BIv5yaYfTDqbh0ffjhKkeqzF5GLQ3EK7RpVV9hJvfc4neHx_eNs_F9vXpZbPeFrpsRSoUqwgpqTXaWCCcVhU0HVOgaiG45czkPrRpyq7uKOvyq5YbaLtG5fUoEMuWSJz_1cHHGMBK7ZKa9klBuV5SIic9ci-zHjnpkWc9maR_yM_gDiqc_mXuzwzkSkcHQUbtcmMwLmRf0nj3D_0N3tiBoA |
| CitedBy_id | crossref_primary_10_1016_j_autcon_2024_105540 crossref_primary_10_1109_TNNLS_2025_3542229 crossref_primary_10_14359_51734601 crossref_primary_10_1109_JSEN_2022_3149721 crossref_primary_10_1177_14759217231183143 crossref_primary_10_1016_j_aei_2023_101940 crossref_primary_10_1080_10589759_2025_2456673 crossref_primary_10_1155_2021_5551555 crossref_primary_10_3390_app14167194 crossref_primary_10_3390_bioengineering10040405 crossref_primary_10_1007_s11042_024_18418_2 crossref_primary_10_3390_app12189244 crossref_primary_10_1088_1361_6501_ad25db crossref_primary_10_1109_TSM_2023_3245606 crossref_primary_10_1016_j_autcon_2020_103372 crossref_primary_10_1007_s10845_024_02415_1 crossref_primary_10_1016_j_aei_2022_101672 crossref_primary_10_1002_nag_70063 crossref_primary_10_1109_ACCESS_2024_3471169 crossref_primary_10_3390_app13158701 crossref_primary_10_1016_j_aei_2021_101255 crossref_primary_10_1177_14759217251365856 crossref_primary_10_37434_tdnk2025_02_01 crossref_primary_10_1016_j_jmsy_2025_05_003 crossref_primary_10_1007_s00371_023_03124_1 crossref_primary_10_1061_JITSE4_ISENG_2574 crossref_primary_10_1016_j_oceaneng_2024_117700 crossref_primary_10_1016_j_aei_2022_101566 crossref_primary_10_1093_iti_liac013 crossref_primary_10_1016_j_jrst_2025_08_003 crossref_primary_10_1109_JSSC_2023_3236566 crossref_primary_10_1007_s10489_024_05693_7 crossref_primary_10_3390_app121910168 crossref_primary_10_1016_j_conbuildmat_2021_126146 crossref_primary_10_1177_1748006X20965111 crossref_primary_10_3390_app13031891 crossref_primary_10_1109_TCSVT_2024_3408034 crossref_primary_10_1007_s41060_025_00740_z crossref_primary_10_1016_j_aei_2025_103202 crossref_primary_10_1016_j_aei_2021_101399 crossref_primary_10_1007_s10845_022_02034_8 crossref_primary_10_1016_j_autcon_2021_103973 crossref_primary_10_1088_1361_6501_ad080e crossref_primary_10_1016_j_iintel_2023_100029 crossref_primary_10_1016_j_engappai_2024_109374 crossref_primary_10_1016_j_aei_2021_101272 crossref_primary_10_1016_j_aei_2021_101392 crossref_primary_10_1016_j_aei_2022_101575 crossref_primary_10_1109_JSEN_2024_3480133 crossref_primary_10_1007_s00138_023_01454_7 crossref_primary_10_1016_j_iswa_2025_200532 crossref_primary_10_1016_j_eswa_2025_128376 crossref_primary_10_1177_14759217241259081 crossref_primary_10_3390_buildings12040432 crossref_primary_10_1016_j_ejmp_2025_104914 crossref_primary_10_1016_j_autcon_2022_104371 crossref_primary_10_1029_2024GL111818 crossref_primary_10_1109_ACCESS_2024_3424488 crossref_primary_10_1016_j_engappai_2024_109683 crossref_primary_10_1016_j_dte_2025_100062 crossref_primary_10_1016_j_ifacol_2023_10_1144 crossref_primary_10_1016_j_aei_2020_101182 crossref_primary_10_1016_j_jmsy_2024_12_005 crossref_primary_10_1177_14759217221150376 crossref_primary_10_1109_JIOT_2023_3280843 crossref_primary_10_1016_j_engstruct_2024_119192 crossref_primary_10_1177_14759217241271000 crossref_primary_10_1061_JITSE4_ISENG_2157 crossref_primary_10_3390_s24061835 crossref_primary_10_1016_j_autcon_2025_106423 crossref_primary_10_1016_j_advengsoft_2021_103031 crossref_primary_10_1016_j_autcon_2024_105354 crossref_primary_10_1111_mice_13132 crossref_primary_10_1016_j_aei_2022_101639 crossref_primary_10_1145_3765743 crossref_primary_10_1007_s10845_023_02270_6 crossref_primary_10_1016_j_jobe_2023_106976 crossref_primary_10_1016_j_neucom_2024_129168 crossref_primary_10_1016_j_compeleceng_2024_109660 crossref_primary_10_1016_j_ndteint_2024_103125 crossref_primary_10_1049_tje2_12405 crossref_primary_10_1016_j_knosys_2024_111563 crossref_primary_10_1109_TMI_2023_3314318 crossref_primary_10_1007_s10845_024_02511_2 crossref_primary_10_1016_j_jii_2023_100443 crossref_primary_10_1186_s40537_023_00791_8 crossref_primary_10_3390_s21144929 crossref_primary_10_1016_j_fpc_2025_06_005 crossref_primary_10_1108_RPJ_05_2023_0157 crossref_primary_10_1016_j_autcon_2024_105369 crossref_primary_10_3390_s23218750 crossref_primary_10_3390_app11188404 crossref_primary_10_3390_s24072263 crossref_primary_10_1016_j_aei_2023_102253 crossref_primary_10_1109_ACCESS_2022_3171559 crossref_primary_10_1016_j_ijimpeng_2023_104825 crossref_primary_10_1088_2631_8695_ad5e34 crossref_primary_10_3390_electronics12244941 crossref_primary_10_1111_mice_13233 crossref_primary_10_1016_j_autcon_2024_105497 crossref_primary_10_3390_app11209751 crossref_primary_10_1007_s00158_022_03185_1 crossref_primary_10_1108_ECAM_06_2023_0613 crossref_primary_10_3390_electronics11050779 crossref_primary_10_1016_j_jobe_2025_113710 crossref_primary_10_1016_j_compstruct_2022_115579 crossref_primary_10_3390_app10207347 crossref_primary_10_1016_j_aei_2023_102007 crossref_primary_10_1016_j_measurement_2023_112718 crossref_primary_10_1016_j_istruc_2023_105780 crossref_primary_10_1016_j_compositesb_2025_113038 crossref_primary_10_1016_j_matdes_2023_111686 crossref_primary_10_3389_fmtec_2024_1277152 crossref_primary_10_1016_j_aei_2021_101303 crossref_primary_10_1177_14759217251324107 crossref_primary_10_1016_j_aei_2022_101822 crossref_primary_10_1155_2024_8846470 crossref_primary_10_3390_math10224351 crossref_primary_10_1016_j_aei_2024_102910 crossref_primary_10_1016_j_autcon_2022_104602 crossref_primary_10_1109_TIM_2021_3087826 crossref_primary_10_1016_j_jenvman_2024_124011 crossref_primary_10_1007_s11004_025_10190_9 crossref_primary_10_1108_CI_04_2022_0075 crossref_primary_10_1016_j_engappai_2025_110107 crossref_primary_10_1016_j_pnucene_2024_105501 crossref_primary_10_1109_TII_2022_3217751 crossref_primary_10_1007_s10489_023_05199_8 crossref_primary_10_1007_s42107_025_01281_3 crossref_primary_10_1109_ACCESS_2022_3192134 crossref_primary_10_1109_TASE_2022_3140784 crossref_primary_10_1007_s13349_022_00650_9 crossref_primary_10_1016_j_ress_2023_109258 crossref_primary_10_1088_2051_672X_ac9247 crossref_primary_10_37434_tpwj2025_07_05 crossref_primary_10_1016_j_ymssp_2024_112296 crossref_primary_10_1016_j_eswa_2025_127662 crossref_primary_10_1007_s00521_021_06784_z crossref_primary_10_1016_j_measurement_2023_113153 crossref_primary_10_1109_TIM_2022_3196436 crossref_primary_10_1155_2020_8829715 crossref_primary_10_3390_math10224254 crossref_primary_10_1016_j_aei_2024_102577 crossref_primary_10_1016_j_procir_2022_04_033 crossref_primary_10_1016_j_jobe_2024_111170 crossref_primary_10_1007_s00371_022_02666_0 crossref_primary_10_1115_1_4065276 crossref_primary_10_3390_electronics13112049 crossref_primary_10_1016_j_ssci_2022_105766 crossref_primary_10_3390_s23146295 crossref_primary_10_1016_j_ymssp_2024_112076 crossref_primary_10_1007_s00170_025_16390_1 crossref_primary_10_3390_s23062954 crossref_primary_10_1080_21693277_2024_2378199 crossref_primary_10_1016_j_engfracmech_2021_108160 crossref_primary_10_1080_15623599_2024_2331864 crossref_primary_10_1016_j_ifacol_2023_10_1542 crossref_primary_10_1007_s00521_023_08507_y crossref_primary_10_1016_j_autcon_2021_103959 crossref_primary_10_3390_machines12050309 crossref_primary_10_1016_j_engappai_2025_110302 crossref_primary_10_1016_j_enbuild_2024_115052 crossref_primary_10_1016_j_measurement_2023_112892 crossref_primary_10_1371_journal_pone_0329945 crossref_primary_10_3390_jimaging9070137 crossref_primary_10_1007_s10845_024_02372_9 crossref_primary_10_1111_mice_13413 crossref_primary_10_1109_ACCESS_2023_3291674 crossref_primary_10_3390_network3020013 crossref_primary_10_1016_j_aei_2024_102723 crossref_primary_10_1007_s00500_021_06110_8 crossref_primary_10_1016_j_aei_2025_103669 crossref_primary_10_1080_0951192X_2024_2397821 crossref_primary_10_3390_app132011273 crossref_primary_10_1016_j_engstruct_2023_116473 crossref_primary_10_1007_s10717_024_00664_3 crossref_primary_10_1007_s10489_021_02475_3 crossref_primary_10_1016_j_istruc_2022_03_068 crossref_primary_10_1016_j_inffus_2024_102654 crossref_primary_10_1002_bate_202100091 crossref_primary_10_1016_j_aei_2024_102936 crossref_primary_10_3390_s23218904 crossref_primary_10_1016_j_aei_2020_101206 crossref_primary_10_1016_j_autcon_2023_104828 crossref_primary_10_1080_15732479_2023_2263441 crossref_primary_10_1109_TNNLS_2022_3175888 crossref_primary_10_1016_j_swevo_2024_101650 crossref_primary_10_1109_ACCESS_2024_3453664 crossref_primary_10_1007_s42107_023_00648_8 crossref_primary_10_1016_j_aei_2022_101819 crossref_primary_10_1007_s12206_024_0833_2 crossref_primary_10_1038_s41598_024_66760_0 crossref_primary_10_3390_s24082440 crossref_primary_10_1016_j_engstruct_2024_117760 crossref_primary_10_1016_j_aei_2021_101512 crossref_primary_10_1016_j_jmsy_2023_02_007 crossref_primary_10_1155_2022_8046620 crossref_primary_10_3390_app132212445 crossref_primary_10_1177_14759217221122296 crossref_primary_10_1016_j_neucom_2021_04_089 crossref_primary_10_1061_JCCEE5_CPENG_5041 crossref_primary_10_1016_j_eswa_2025_127005 crossref_primary_10_3390_electronics13020284 crossref_primary_10_1080_17686733_2025_2458952 crossref_primary_10_1080_17499518_2023_2251128 |
| Cites_doi | 10.1177/1475921718765419 10.1109/ICASI.2017.7988574 10.1016/j.aei.2018.05.004 10.1016/0734-189X(85)90125-2 10.5120/13715-1478 10.1177/1475921718757405 10.1002/tal.1400 10.1007/978-3-030-20893-6_39 10.1061/(ASCE)0887-3801(2006)20:3(210) 10.1109/TSMC.1979.4310076 10.1145/1541880.1541882 10.1016/j.aei.2015.01.008 10.1016/j.autcon.2018.11.028 10.1088/1361-665X/aa510e 10.1080/08839514.2019.1583862 10.1007/978-3-319-10590-1_53 10.1016/j.media.2017.07.005 10.3390/jimaging4020036 10.3390/s18010209 10.1016/j.jocs.2016.11.016 10.1117/1.JRS.11.042609 10.1016/j.conbuildmat.2018.08.011 10.3390/s18103452 10.1007/s10845-018-1415-x 10.1016/j.proeng.2017.01.418 10.1002/tee.20244 10.1007/s00138-009-0189-8 10.1109/TASE.2014.2354314 10.1109/TIE.2017.2764844 10.7708/ijtte.2018.8(1).01 10.1016/0734-189X(85)90133-1 10.1111/j.1467-8667.2012.00790.x 10.1111/mice.12263 10.1109/COMST.2018.2844341 10.1061/(ASCE)0887-3801(2003)17:4(255) 10.1061/(ASCE)CP.1943-5487.0000257 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.aei.2020.101105 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1873-5320 |
| ExternalDocumentID | 10_1016_j_aei_2020_101105 S1474034620300744 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SST SSV SSZ T5K UHS XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-a350021fdcdfe04155e8b3aea6774f43d0201882b6b13bdcd94de9b8afec1e0f3 |
| ISICitedReferencesCount | 245 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552715300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-0346 |
| IngestDate | Sat Nov 29 07:05:39 EST 2025 Tue Nov 18 22:35:04 EST 2025 Thu Jun 13 14:30:57 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cracking Spalling Convolutional autoencoder Anomaly detection Unsupervised learning Concrete structure |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-a350021fdcdfe04155e8b3aea6774f43d0201882b6b13bdcd94de9b8afec1e0f3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_aei_2020_101105 crossref_primary_10_1016_j_aei_2020_101105 elsevier_sciencedirect_doi_10_1016_j_aei_2020_101105 |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 2020-08-00 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced engineering informatics |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yamaguchi, Hashimoto (b0150) 2010; 21 Ke, Lin, Huang (b0110) 2017 Chandola, Banerjee, Kumar (b0095) 2009; 41 Bergmann, Fauser, Sattlegger, Steger (b0220) 2019 Dung, Anh (b0200) 2019; 99 M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: European Conference on Computer Vision, Springer, Cham, 2014, pp. 818-833. https://doi.org/10.1007/978-3-319-10590-1_53. Lattanzi, Miller (b0165) 2012; 28 Y. Lu, P. Xu, Anomaly detection for skin disease images using variational autoencoder, arXiv preprint arXiv:1807.01349 (2018). Cha, Choi, Büyüköztürk (b0180) 2017; 32 Yamaguchi, Nakamura, Saegusa, Hashimoto (b0145) 2008; 3 Haselmann, Gruber, Tabatabai (b0065) 2018 Fujita, Mitani, Hamamoto (b0130) 2006 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sánchez (b0045) 2017; 42 Baur, Wiestler, Albarqouni, Navab (b0050) 2018 Hüthwohl, Brilakis (b0020) 2018; 37 Mohammadi, Al-Fuqaha, Sorour, Guizani (b0100) 2017; 20 Napoletano, Piccoli, Schettini (b0070) 2018; 18 Ronneberger, Fischer, Brox (b0245) 2015 Haselmann, Gruber (b0075) 2019; 33 Y. Noh, D. Koo, Y.M. Kang, D. Park, D. Lee, Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering, in: May (Ed.), Proceedings of 2017 International Conference on Applied System Innovation, IEEE, 2017, pp. 877-880, https://doi.org/10.1109/ICASI.2017.7988574. T.C., Hutchinson, Z. Chen, Improved image analysis for evaluating concrete damage, Journal of Computing in Civil Engineering 20 (3) (2006) 210-216, https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(210). Fisher, Camp, Krzhizhanovskaya (b0085) 2017; 20 Gopalakrishnan, Gholami, Vidyadharan, Choudhary, Agrawal (b0195) 2018; 8 Sato, Bao, Koya (b0140) 2018; 8 Yokoyama, Matsumoto (b0185) 2017; 171 Kapur, Sahoo, Wong (b0265) 1985; 29 D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014). Kim, Cho (b0210) 2018; 18 Ball, Anderson, Chan (b0060) 2017; 11 Adewumi, Akinyelu (b0040) 2017; 8 O’Byrne, Schoefs, Ghosh, Pakrashi (b0160) 2013; 28 Dorafshan, Thomas, Maguire (b0190) 2018; 186 R. Chalapathy, S. Chawla, Deep learning for anomaly detection: A survey, arXiv preprint arXiv:1901.03407 (2019). S. Akcay, A. Atapour-Abarghouei, T.P. Breckon, Ganomaly: Semi-supervised anomaly detection via adversarial training, in: C. Jawahar, H. Li, G. Mori, K. Schindler (Eds.), Computer Vision – ACCV 2018, Springer, Cham, 2018. pp. 622-637. https://doi.org/10.1007/978-3-030-20893-6_39. Goodfellow, Bengio, Courville (b0225) 2016 Abdel-Qader, Abudayyeh, Kelly (b0125) 2003; 17 Bengio (b0235) 2019; 2 Koch, Georgieva, Kasireddy, Akinci, Fieguth (b0010) 2015; 29 Géron (b0230) 2017 Kiran, Thomas, Parakkal (b0115) 2018; 4 Prasanna, Dana, Gucunski, Basily, La, Lim, Parvardeh (b0170) 2016; 13 Otsu (b0255) 1979; 9 Kwon, Kim, Kim, Suh, Kim, Kim (b0035) 2017 Omar, Ngadi, Jebur (b0030) 2013; 79 Bao, Tang, Li, Zhang (b0080) 2019; 18 Verma, Bhadauria, Akhtar (b0005) 2013; 834572 Yeum, Choi, Dyke (b0025) 2018; 18 Yeum, Choi, Dyke (b0015) 2017; 26 Li, Zhao (b0205) 2019 Lin, Li, Wang, Shu, Niu (b0215) 2019; 30 Tsai (b0260) 1985; 29 Chen, Jahanshahi (b0175) 2018; 65 Rafiei, Adeli (b0090) 2017; 26 O’Byrne (10.1016/j.aei.2020.101105_b0160) 2013; 28 10.1016/j.aei.2020.101105_b0105 Chen (10.1016/j.aei.2020.101105_b0175) 2018; 65 Tsai (10.1016/j.aei.2020.101105_b0260) 1985; 29 Prasanna (10.1016/j.aei.2020.101105_b0170) 2016; 13 Li (10.1016/j.aei.2020.101105_b0205) 2019 Verma (10.1016/j.aei.2020.101105_b0005) 2013; 834572 Haselmann (10.1016/j.aei.2020.101105_b0075) 2019; 33 10.1016/j.aei.2020.101105_b0155 Lin (10.1016/j.aei.2020.101105_b0215) 2019; 30 Ronneberger (10.1016/j.aei.2020.101105_b0245) 2015 Napoletano (10.1016/j.aei.2020.101105_b0070) 2018; 18 Gopalakrishnan (10.1016/j.aei.2020.101105_b0195) 2018; 8 Cha (10.1016/j.aei.2020.101105_b0180) 2017; 32 Kapur (10.1016/j.aei.2020.101105_b0265) 1985; 29 Rafiei (10.1016/j.aei.2020.101105_b0090) 2017; 26 Yokoyama (10.1016/j.aei.2020.101105_b0185) 2017; 171 Ke (10.1016/j.aei.2020.101105_b0110) 2017 Otsu (10.1016/j.aei.2020.101105_b0255) 1979; 9 Yamaguchi (10.1016/j.aei.2020.101105_b0145) 2008; 3 Chandola (10.1016/j.aei.2020.101105_b0095) 2009; 41 Dung (10.1016/j.aei.2020.101105_b0200) 2019; 99 Baur (10.1016/j.aei.2020.101105_b0050) 2018 Omar (10.1016/j.aei.2020.101105_b0030) 2013; 79 Litjens (10.1016/j.aei.2020.101105_b0045) 2017; 42 Yamaguchi (10.1016/j.aei.2020.101105_b0150) 2010; 21 Fisher (10.1016/j.aei.2020.101105_b0085) 2017; 20 Mohammadi (10.1016/j.aei.2020.101105_b0100) 2017; 20 Bao (10.1016/j.aei.2020.101105_b0080) 2019; 18 Yeum (10.1016/j.aei.2020.101105_b0015) 2017; 26 Lattanzi (10.1016/j.aei.2020.101105_b0165) 2012; 28 Abdel-Qader (10.1016/j.aei.2020.101105_b0125) 2003; 17 Hüthwohl (10.1016/j.aei.2020.101105_b0020) 2018; 37 Adewumi (10.1016/j.aei.2020.101105_b0040) 2017; 8 Bergmann (10.1016/j.aei.2020.101105_b0220) 2019 Yeum (10.1016/j.aei.2020.101105_b0025) 2018; 18 Bengio (10.1016/j.aei.2020.101105_b0235) 2019; 2 Koch (10.1016/j.aei.2020.101105_b0010) 2015; 29 Géron (10.1016/j.aei.2020.101105_b0230) 2017 10.1016/j.aei.2020.101105_b0120 10.1016/j.aei.2020.101105_b0240 10.1016/j.aei.2020.101105_b0055 Haselmann (10.1016/j.aei.2020.101105_b0065) 2018 10.1016/j.aei.2020.101105_b0135 Dorafshan (10.1016/j.aei.2020.101105_b0190) 2018; 186 Fujita (10.1016/j.aei.2020.101105_b0130) 2006 Ball (10.1016/j.aei.2020.101105_b0060) 2017; 11 Kim (10.1016/j.aei.2020.101105_b0210) 2018; 18 Sato (10.1016/j.aei.2020.101105_b0140) 2018; 8 Goodfellow (10.1016/j.aei.2020.101105_b0225) 2016 Kiran (10.1016/j.aei.2020.101105_b0115) 2018; 4 Kwon (10.1016/j.aei.2020.101105_b0035) 2017 10.1016/j.aei.2020.101105_b0250 |
| References_xml | – reference: R. Chalapathy, S. Chawla, Deep learning for anomaly detection: A survey, arXiv preprint arXiv:1901.03407 (2019). – volume: 8 start-page: 1 year: 2018 end-page: 6 ident: b0140 article-title: Crack detection on concrete surfaces using V-shaped features publication-title: World of Computer Science & Information Technology Journal – volume: 13 start-page: 591 year: 2016 end-page: 599 ident: b0170 article-title: Automated crack detection on concrete bridges publication-title: IEEE Trans. Autom. Sci. Eng. – year: 2016 ident: b0225 article-title: Deep Learning – volume: 18 start-page: 401 year: 2019 end-page: 421 ident: b0080 article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring publication-title: Structural Health Monitoring – volume: 41 start-page: 1 year: 2009 end-page: 72 ident: b0095 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. – volume: 99 start-page: 52 year: 2019 end-page: 58 ident: b0200 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Autom. Constr. – reference: S. Akcay, A. Atapour-Abarghouei, T.P. Breckon, Ganomaly: Semi-supervised anomaly detection via adversarial training, in: C. Jawahar, H. Li, G. Mori, K. Schindler (Eds.), Computer Vision – ACCV 2018, Springer, Cham, 2018. pp. 622-637. https://doi.org/10.1007/978-3-030-20893-6_39. – volume: 37 start-page: 150 year: 2018 end-page: 162 ident: b0020 article-title: Detecting healthy concrete surfaces publication-title: Adv. Eng. Inf. – volume: 26 year: 2017 ident: b0015 article-title: Autonomous image localization for visual inspection of civil infrastructure publication-title: Smart Mater. Struct. – volume: 3 start-page: 128 year: 2008 end-page: 135 ident: b0145 article-title: Image-based crack detection for real concrete surfaces publication-title: IEEJ Trans. Electr. Electron. Eng. – volume: 28 start-page: 253 year: 2012 end-page: 262 ident: b0165 article-title: Robust automated concrete damage detection algorithms for field applications publication-title: J. Comput. Civil Eng. – start-page: 901 year: 2006 end-page: 904 ident: b0130 article-title: A method for crack detection on a concrete structure publication-title: in: 18th International Conference on Pattern Recognition (ICPR'06), IEEE – volume: 20 start-page: 143 year: 2017 end-page: 153 ident: b0085 article-title: Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection publication-title: Journal of Computational Science – volume: 4 start-page: 36 year: 2018 ident: b0115 article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos publication-title: Journal of Imaging – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: b0045 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. – reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014). – reference: Y. Lu, P. Xu, Anomaly detection for skin disease images using variational autoencoder, arXiv preprint arXiv:1807.01349 (2018). – volume: 65 start-page: 4392 year: 2018 end-page: 4400 ident: b0175 article-title: NB-CNN: Deep learning-based crack detection using convolutional neural network and naïve bayes data fusion publication-title: IEEE Trans. Ind. Electron. – volume: 32 start-page: 361 year: 2017 end-page: 378 ident: b0180 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput.-Aided Civ. Infrastruct. Eng. – year: 2019 ident: b0205 article-title: Image-based concrete crack detection using convolutional neural network and exhaustive search technique, Advance publication-title: Civ. Eng. – reference: Y. Noh, D. Koo, Y.M. Kang, D. Park, D. Lee, Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering, in: May (Ed.), Proceedings of 2017 International Conference on Applied System Innovation, IEEE, 2017, pp. 877-880, https://doi.org/10.1109/ICASI.2017.7988574. – volume: 17 start-page: 255 year: 2003 end-page: 263 ident: b0125 article-title: Analysis of edge-detection techniques for crack identification in bridges publication-title: J. Comput. Civil Eng. – start-page: 234 year: 2015 end-page: 241 ident: b0245 publication-title: U-Net: Convolutional networks for biomedical image segmentation – volume: 8 start-page: 937 year: 2017 end-page: 953 ident: b0040 article-title: A survey of machine-learning and nature-inspired based credit card fraud detection publication-title: International of Journal of System Assurance Engineering and Management – volume: 21 start-page: 797 year: 2010 end-page: 809 ident: b0150 article-title: Fast crack detection method for large-size concrete surface images using percolation-based image processing publication-title: Mach. Vis. Appl. – start-page: 1 year: 2017 end-page: 13 ident: b0035 article-title: A survey of deep learning-based network anomaly detection publication-title: Cluster Computing – volume: 28 start-page: 162 year: 2013 end-page: 177 ident: b0160 article-title: Texture analysis based damage detection of ageing infrastructural elements publication-title: Comput.-Aided Civ. Infrastruct. Eng. – year: 2017 ident: b0230 article-title: Hands-on machine learning with Scikit-Learn & TensorFlow – start-page: 1 year: 2018 end-page: 6 ident: b0065 article-title: Anomaly detection using deep learning based image completion publication-title: in: Proceedings of the 2018 17 – volume: 30 start-page: 2525 year: 2019 end-page: 2534 ident: b0215 article-title: Automated defect inspection of LED chip using deep convolutional neural network publication-title: J. Intell. Manuf. – reference: M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: European Conference on Computer Vision, Springer, Cham, 2014, pp. 818-833. https://doi.org/10.1007/978-3-319-10590-1_53. – volume: 8 start-page: 1 year: 2018 end-page: 14 ident: b0195 article-title: Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre-trained deep learning model publication-title: International Journal for Traffic and Transport Engineering – volume: 2 start-page: 1 year: 2019 end-page: 127 ident: b0235 article-title: Learning Deep Architectures for AI, Foundations and Trends® publication-title: Machine Learning – volume: 186 start-page: 1031 year: 2018 end-page: 1045 ident: b0190 article-title: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete publication-title: Constr. Build. Mater. – volume: 26 start-page: 1400 year: 2017 ident: b0090 article-title: A novel machine learning-based algorithm to detect damage in high-rise building structures publication-title: The Structural Design of Tall and Special Buildings – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: b0255 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 18 start-page: 675 year: 2018 end-page: 689 ident: b0025 article-title: Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure publication-title: Structural Health Monitoring – volume: 29 start-page: 377 year: 1985 end-page: 393 ident: b0260 article-title: Moment-preserving thresholding: a new approach publication-title: Computer Vision, Graphics, and Image Processing – volume: 18 start-page: 3452 year: 2018 ident: b0210 article-title: Automated vision-based detection of cracks on concrete surfaces using a deep learning technique publication-title: Sensors – volume: 79 start-page: 33 year: 2013 end-page: 41 ident: b0030 article-title: Machine learning techniques for anomaly detection: An overview publication-title: International Journal of Computer Applications – volume: 171 start-page: 1250 year: 2017 end-page: 1255 ident: b0185 article-title: Development of an automatic detector of cracks in concrete using machine learning publication-title: Procedia Eng. – start-page: 9592 year: 2019 end-page: 9600 ident: b0220 article-title: MVTec AD – A comprehensive real-world dataset for unsupervised anomaly detection publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – volume: 29 start-page: 196 year: 2015 end-page: 210 ident: b0010 article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure publication-title: Adv. Eng. Inf. – volume: 834572 year: 2013 ident: b0005 article-title: Review of non-destructive testing methods for condition monitoring of concrete structures publication-title: Journal of Construction Engineering – volume: 29 start-page: 273 year: 1985 end-page: 285 ident: b0265 article-title: A new method for gray-Level picture thresholding using the entropy of the histogram publication-title: Graphical Models and Image Processing – volume: 18 start-page: 209 year: 2018 ident: b0070 article-title: Anomaly detection in nanofibrous materials by CNN-based self-similarity publication-title: Sensors – volume: 33 start-page: 548 year: 2019 end-page: 566 ident: b0075 article-title: Pixel-Wise Defect Detection by CNNs without Manually Labeled Training Data publication-title: Applied Artificial Intelligence – start-page: 1163 year: 2017 end-page: 1168 ident: b0110 article-title: Anomaly detection of logo images in the mobile phone using convolutional autoencoder publication-title: in: Proceedings of the 2017 4th International Conference on Systems and Informatics, IEEE – reference: T.C., Hutchinson, Z. Chen, Improved image analysis for evaluating concrete damage, Journal of Computing in Civil Engineering 20 (3) (2006) 210-216, https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(210). – start-page: 161 year: 2018 end-page: 169 ident: b0050 article-title: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries – volume: 20 start-page: 2923 year: 2017 end-page: 2960 ident: b0100 article-title: Deep learning for IoT big data and streaming analytics: A survey publication-title: IEEE Commun. Surv. Tutorials – volume: 11 year: 2017 ident: b0060 article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community publication-title: J. Appl. Remote Sens. – volume: 18 start-page: 675 issue: 3 year: 2018 ident: 10.1016/j.aei.2020.101105_b0025 article-title: Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure publication-title: Structural Health Monitoring doi: 10.1177/1475921718765419 – ident: 10.1016/j.aei.2020.101105_b0155 doi: 10.1109/ICASI.2017.7988574 – volume: 37 start-page: 150 year: 2018 ident: 10.1016/j.aei.2020.101105_b0020 article-title: Detecting healthy concrete surfaces publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2018.05.004 – volume: 29 start-page: 273 issue: 3 year: 1985 ident: 10.1016/j.aei.2020.101105_b0265 article-title: A new method for gray-Level picture thresholding using the entropy of the histogram publication-title: Graphical Models and Image Processing doi: 10.1016/0734-189X(85)90125-2 – volume: 79 start-page: 33 issue: 2 year: 2013 ident: 10.1016/j.aei.2020.101105_b0030 article-title: Machine learning techniques for anomaly detection: An overview publication-title: International Journal of Computer Applications doi: 10.5120/13715-1478 – volume: 18 start-page: 401 issue: 2 year: 2019 ident: 10.1016/j.aei.2020.101105_b0080 article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring publication-title: Structural Health Monitoring doi: 10.1177/1475921718757405 – volume: 26 start-page: 1400 issue: 18 year: 2017 ident: 10.1016/j.aei.2020.101105_b0090 article-title: A novel machine learning-based algorithm to detect damage in high-rise building structures publication-title: The Structural Design of Tall and Special Buildings doi: 10.1002/tal.1400 – ident: 10.1016/j.aei.2020.101105_b0120 doi: 10.1007/978-3-030-20893-6_39 – ident: 10.1016/j.aei.2020.101105_b0135 doi: 10.1061/(ASCE)0887-3801(2006)20:3(210) – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.aei.2020.101105_b0255 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 41 start-page: 1 issue: 3 year: 2009 ident: 10.1016/j.aei.2020.101105_b0095 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – volume: 29 start-page: 196 year: 2015 ident: 10.1016/j.aei.2020.101105_b0010 article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2015.01.008 – volume: 99 start-page: 52 year: 2019 ident: 10.1016/j.aei.2020.101105_b0200 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.11.028 – volume: 26 issue: 3 year: 2017 ident: 10.1016/j.aei.2020.101105_b0015 article-title: Autonomous image localization for visual inspection of civil infrastructure publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa510e – volume: 33 start-page: 548 issue: 6 year: 2019 ident: 10.1016/j.aei.2020.101105_b0075 article-title: Pixel-Wise Defect Detection by CNNs without Manually Labeled Training Data publication-title: Applied Artificial Intelligence doi: 10.1080/08839514.2019.1583862 – start-page: 1 year: 2018 ident: 10.1016/j.aei.2020.101105_b0065 article-title: Anomaly detection using deep learning based image completion – ident: 10.1016/j.aei.2020.101105_b0240 doi: 10.1007/978-3-319-10590-1_53 – start-page: 9592 year: 2019 ident: 10.1016/j.aei.2020.101105_b0220 article-title: MVTec AD – A comprehensive real-world dataset for unsupervised anomaly detection publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.aei.2020.101105_b0045 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – year: 2019 ident: 10.1016/j.aei.2020.101105_b0205 article-title: Image-based concrete crack detection using convolutional neural network and exhaustive search technique, Advance publication-title: Civ. Eng. – start-page: 1 year: 2017 ident: 10.1016/j.aei.2020.101105_b0035 article-title: A survey of deep learning-based network anomaly detection publication-title: Cluster Computing – volume: 4 start-page: 36 issue: 2 year: 2018 ident: 10.1016/j.aei.2020.101105_b0115 article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos publication-title: Journal of Imaging doi: 10.3390/jimaging4020036 – start-page: 234 year: 2015 ident: 10.1016/j.aei.2020.101105_b0245 – volume: 18 start-page: 209 issue: 1 year: 2018 ident: 10.1016/j.aei.2020.101105_b0070 article-title: Anomaly detection in nanofibrous materials by CNN-based self-similarity publication-title: Sensors doi: 10.3390/s18010209 – ident: 10.1016/j.aei.2020.101105_b0055 – volume: 20 start-page: 143 year: 2017 ident: 10.1016/j.aei.2020.101105_b0085 article-title: Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2016.11.016 – volume: 11 issue: 4 year: 2017 ident: 10.1016/j.aei.2020.101105_b0060 article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.11.042609 – start-page: 901 year: 2006 ident: 10.1016/j.aei.2020.101105_b0130 article-title: A method for crack detection on a concrete structure – ident: 10.1016/j.aei.2020.101105_b0105 – volume: 186 start-page: 1031 year: 2018 ident: 10.1016/j.aei.2020.101105_b0190 article-title: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.08.011 – volume: 18 start-page: 3452 year: 2018 ident: 10.1016/j.aei.2020.101105_b0210 article-title: Automated vision-based detection of cracks on concrete surfaces using a deep learning technique publication-title: Sensors doi: 10.3390/s18103452 – volume: 30 start-page: 2525 year: 2019 ident: 10.1016/j.aei.2020.101105_b0215 article-title: Automated defect inspection of LED chip using deep convolutional neural network publication-title: J. Intell. Manuf. doi: 10.1007/s10845-018-1415-x – year: 2017 ident: 10.1016/j.aei.2020.101105_b0230 – volume: 171 start-page: 1250 year: 2017 ident: 10.1016/j.aei.2020.101105_b0185 article-title: Development of an automatic detector of cracks in concrete using machine learning publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.01.418 – volume: 3 start-page: 128 issue: 1 year: 2008 ident: 10.1016/j.aei.2020.101105_b0145 article-title: Image-based crack detection for real concrete surfaces publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.20244 – volume: 21 start-page: 797 issue: 5 year: 2010 ident: 10.1016/j.aei.2020.101105_b0150 article-title: Fast crack detection method for large-size concrete surface images using percolation-based image processing publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-009-0189-8 – volume: 13 start-page: 591 issue: 2 year: 2016 ident: 10.1016/j.aei.2020.101105_b0170 article-title: Automated crack detection on concrete bridges publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2014.2354314 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.aei.2020.101105_b0140 article-title: Crack detection on concrete surfaces using V-shaped features publication-title: World of Computer Science & Information Technology Journal – year: 2016 ident: 10.1016/j.aei.2020.101105_b0225 – volume: 65 start-page: 4392 issue: 5 year: 2018 ident: 10.1016/j.aei.2020.101105_b0175 article-title: NB-CNN: Deep learning-based crack detection using convolutional neural network and naïve bayes data fusion publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2764844 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.aei.2020.101105_b0195 article-title: Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre-trained deep learning model publication-title: International Journal for Traffic and Transport Engineering doi: 10.7708/ijtte.2018.8(1).01 – volume: 29 start-page: 377 year: 1985 ident: 10.1016/j.aei.2020.101105_b0260 article-title: Moment-preserving thresholding: a new approach publication-title: Computer Vision, Graphics, and Image Processing doi: 10.1016/0734-189X(85)90133-1 – volume: 8 start-page: 937 issue: 2 year: 2017 ident: 10.1016/j.aei.2020.101105_b0040 article-title: A survey of machine-learning and nature-inspired based credit card fraud detection publication-title: International of Journal of System Assurance Engineering and Management – volume: 28 start-page: 162 issue: 3 year: 2013 ident: 10.1016/j.aei.2020.101105_b0160 article-title: Texture analysis based damage detection of ageing infrastructural elements publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2012.00790.x – volume: 2 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.aei.2020.101105_b0235 article-title: Learning Deep Architectures for AI, Foundations and Trends® publication-title: Machine Learning – volume: 32 start-page: 361 year: 2017 ident: 10.1016/j.aei.2020.101105_b0180 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12263 – volume: 20 start-page: 2923 issue: 4 year: 2017 ident: 10.1016/j.aei.2020.101105_b0100 article-title: Deep learning for IoT big data and streaming analytics: A survey publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2018.2844341 – volume: 17 start-page: 255 issue: 4 year: 2003 ident: 10.1016/j.aei.2020.101105_b0125 article-title: Analysis of edge-detection techniques for crack identification in bridges publication-title: J. Comput. Civil Eng. doi: 10.1061/(ASCE)0887-3801(2003)17:4(255) – start-page: 1163 year: 2017 ident: 10.1016/j.aei.2020.101105_b0110 article-title: Anomaly detection of logo images in the mobile phone using convolutional autoencoder – ident: 10.1016/j.aei.2020.101105_b0250 – volume: 834572 year: 2013 ident: 10.1016/j.aei.2020.101105_b0005 article-title: Review of non-destructive testing methods for condition monitoring of concrete structures publication-title: Journal of Construction Engineering – volume: 28 start-page: 253 issue: 2 year: 2012 ident: 10.1016/j.aei.2020.101105_b0165 article-title: Robust automated concrete damage detection algorithms for field applications publication-title: J. Comput. Civil Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000257 – start-page: 161 year: 2018 ident: 10.1016/j.aei.2020.101105_b0050 article-title: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images |
| SSID | ssj0016897 |
| Score | 2.6387668 |
| Snippet | •Deep learning model is applied for the anomaly detection of concrete defects.•The model training is in the unsupervised mode, with no label needed.•This... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101105 |
| SubjectTerms | Anomaly detection Concrete structure Convolutional autoencoder Cracking Spalling Unsupervised learning |
| Title | Anomaly detection of defects on concrete structures with the convolutional autoencoder |
| URI | https://dx.doi.org/10.1016/j.aei.2020.101105 |
| Volume | 45 |
| WOSCitedRecordID | wos000552715300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5320 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016897 issn: 1474-0346 databaseCode: AIEXJ dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb5wwELXapIdemn6q-WjlQ0-NQIAN2McoStWmVRSpabs3ZPCgJErZqMtGyb_PGMZAoqRqDr0gQMZ4mccwM377zNgHqEBZk6VBpFUWyDSp8Z1DLBuFn-fcCBmVnYjrt_zgQM1m-pAImYtuOYG8adTlpT7_r6bGc2hs99fZB5h76BRP4D4aHbdodtz-k-Exof9tzq62LbRQ-XjQAtE2HOu8wUixdcqyTjp2ifk2VWOPO-b6BY3OiQgs27kTurRE4fVqtZ43AKOY4TYpsLYT9vzucT9xtB9-DcfJp246ZDj-texbjBWEzg0eht_DaUEiGelw3ofKXAaRoMoiOVmZTrxk7IKO9E4H3tcSTkMDJ6HrPBzb3hTLvvURG6iFnrV2WmAXheui6Lt4zFaTPNXo-VZ3vuzN9oe5pkz1S_D4Yfu5744FeGscd0cvk4jk6Dl7RqkE3-kh8II9guYlW6O0gpPTXrxiPwkRfEAEn9ecEMHxyCOCj4jgDhEcEcFvIIJPEPGa_fi0d7T7OaDlNIIq0XkbGJG6iK62la3BKTOkoEphwGSYAtRSWPyZMSZcZVbGosRWWlrQpTI4nBiiWrxhK828gbeMayVUlFmZOjov6FgBBqa1gNLmBkAl6yzyj6moSGveLXlyVtxrnnX2cbjkvBda-Vtj6Z99QZFiHwEWiKP7L9t4yD022dMR3VtsBS0A79iT6qI9Wfx5TyC6BrhriA4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+of+defects+on+concrete+structures+with+the+convolutional+autoencoder&rft.jtitle=Advanced+engineering+informatics&rft.au=Chow%2C+J.K.&rft.au=Su%2C+Z.&rft.au=Wu%2C+J.&rft.au=Tan%2C+P.S.&rft.date=2020-08-01&rft.issn=1474-0346&rft.volume=45&rft.spage=101105&rft_id=info:doi/10.1016%2Fj.aei.2020.101105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aei_2020_101105 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon |