Impact of the fear effect in a prey-predator model incorporating a prey refuge

•A prey-predator model incorporating fear factor is developed.•A globally stable theorem of coexistence equilibrium is established.•The existences of Hopf bifurcation and limit cycle are shown.•The fear effect can not only reduce the population density of predator, but also stabilize the system by e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 356; s. 328 - 337
Hlavní autoři: Zhang, Huisen, Cai, Yongli, Fu, Shengmao, Wang, Weiming
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.09.2019
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•A prey-predator model incorporating fear factor is developed.•A globally stable theorem of coexistence equilibrium is established.•The existences of Hopf bifurcation and limit cycle are shown.•The fear effect can not only reduce the population density of predator, but also stabilize the system by excluding the existence of periodic solutions. In this paper, we investigate the influence of anti-predator behaviour due to the fear of predators with a Holling-type-II prey-predator model incorporating a prey refuge. We first provide the existence and stability of equilibria of the model. Next, we give the existence of Hopf bifurcation and limit cycle. In addition, we study the impact of the fear effect on the model analytically and numerically, and find that the fear effect can not only reduce the population density of predator at the positive equilibrium, but also stabilize the system by excluding the existence of periodic solutions. Moreover, we also find that prey refuge has great impact on the persistence of the predator.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2019.03.034