Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings
•Compared five models with respect to interpretability, accuracy, robustness, and efficiency.•Studied the influence of the training dataset on the prediction performance.•The average of the indicators under different problems is used to measure the model accuracy.•Serves as a reference for the effic...
Uložené v:
| Vydané v: | Sustainable cities and society Ročník 49; s. 101623 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.08.2019
|
| Predmet: | |
| ISSN: | 2210-6707, 2210-6715 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Compared five models with respect to interpretability, accuracy, robustness, and efficiency.•Studied the influence of the training dataset on the prediction performance.•The average of the indicators under different problems is used to measure the model accuracy.•Serves as a reference for the efficient implementation of an energy management system.
The increasing of building energy necessitates reliable energy consumption prediction. Certain research work is necessary to thoroughly illustrate and compare advantages and disadvantages of various models. Therefore, this study investigated comprehensive trade-off between performances of commonly used forecasting models based on multiple performance metrics. Considering the requirements of actual building energy system, the objectives included accuracy, interpretability, robustness, and efficiency. With actual heating energy, prediction models were established by applying extreme gradient boosting (XGBoost), random forest (RF), artificial neural network (ANN), gradient boosting decision tree (GBDT), and support vector regression (SVR). A comparison revealed the following: 1) RF exhibits optimal average accuracy (under different training datasets), whereas ANN exhibits contrary properties. 2) The robustness of RF is the highest from adaptation to different training datasets with minimum standard deviation of error; XGBoost and ANN exhibit contrary properties. 3) RF, GBDT, and XGBoost are rendered effectively interpretable. 4) At equivalent accuracy level, ANN and SVR require auxiliary algorithms, whereas other models can achieve reasonable accuracy no tuning required. BPNN's calculation time is of an order magnitude higher than those of other models. Overall, XGBoost exhibits the optimal efficiency. This study can provide guidance for effectively selecting prediction models for energy management. |
|---|---|
| AbstractList | •Compared five models with respect to interpretability, accuracy, robustness, and efficiency.•Studied the influence of the training dataset on the prediction performance.•The average of the indicators under different problems is used to measure the model accuracy.•Serves as a reference for the efficient implementation of an energy management system.
The increasing of building energy necessitates reliable energy consumption prediction. Certain research work is necessary to thoroughly illustrate and compare advantages and disadvantages of various models. Therefore, this study investigated comprehensive trade-off between performances of commonly used forecasting models based on multiple performance metrics. Considering the requirements of actual building energy system, the objectives included accuracy, interpretability, robustness, and efficiency. With actual heating energy, prediction models were established by applying extreme gradient boosting (XGBoost), random forest (RF), artificial neural network (ANN), gradient boosting decision tree (GBDT), and support vector regression (SVR). A comparison revealed the following: 1) RF exhibits optimal average accuracy (under different training datasets), whereas ANN exhibits contrary properties. 2) The robustness of RF is the highest from adaptation to different training datasets with minimum standard deviation of error; XGBoost and ANN exhibit contrary properties. 3) RF, GBDT, and XGBoost are rendered effectively interpretable. 4) At equivalent accuracy level, ANN and SVR require auxiliary algorithms, whereas other models can achieve reasonable accuracy no tuning required. BPNN's calculation time is of an order magnitude higher than those of other models. Overall, XGBoost exhibits the optimal efficiency. This study can provide guidance for effectively selecting prediction models for energy management. |
| ArticleNumber | 101623 |
| Author | Wang, Ran Lu, Shilei Li, Qiaoping |
| Author_xml | – sequence: 1 givenname: Ran surname: Wang fullname: Wang, Ran – sequence: 2 givenname: Shilei surname: Lu fullname: Lu, Shilei email: lvshilei@tju.edu.cn – sequence: 3 givenname: Qiaoping surname: Li fullname: Li, Qiaoping |
| BookMark | eNp9kMtOwzAQRS0EEqX0A9j5B1Ls1HmJFap4SUVsYB059qSZKrUr26mUv8ehiAWLejOe0T0jzbkhl8YaIOSOsyVnPL_fLb3yy5Tx6qdPVxdklqacJXnBs8u_PyuuycL7HYsvy3klshkZ34c-YKIcBnAoqbL7g4MOjMcjUB8GPVJraJxpVGGayX5rY7rbU9vSzg6uH2kHMqDZUjDgtmNcYvywPwSMZGsddeBRgwkoe9oM2OuY9bfkqpW9h8VvnZOv56fP9Wuy-Xh5Wz9uEpVWRUgk16KsZMkzJVibZWlRlKWQTSt01Yg8bXipdcOlqAQrlMpVw4ApyBsuRMkkrOaEn_YqZ7130NYHh3vpxpqzetJV7-qor5701Sd9kSn-MQqDnO4JTmJ_lnw4kRBPOiK4mEAwKupzoEKtLZ6hvwEg9Y_m |
| CitedBy_id | crossref_primary_10_1016_j_biortech_2025_133119 crossref_primary_10_1177_17442591251333144 crossref_primary_10_3390_modelling5020024 crossref_primary_10_1016_j_scs_2023_104892 crossref_primary_10_3390_buildings13020312 crossref_primary_10_1109_ACCESS_2021_3093094 crossref_primary_10_3390_buildings15142573 crossref_primary_10_1016_j_energy_2020_117714 crossref_primary_10_3390_s23094182 crossref_primary_10_1007_s10845_022_01912_5 crossref_primary_10_3390_en17040881 crossref_primary_10_1016_j_wace_2023_100595 crossref_primary_10_3390_en15072654 crossref_primary_10_1016_j_scs_2022_103723 crossref_primary_10_1016_j_apenergy_2020_114561 crossref_primary_10_1016_j_egyr_2022_01_162 crossref_primary_10_3390_su16125170 crossref_primary_10_1016_j_enbuild_2022_111943 crossref_primary_10_1080_23744731_2020_1787083 crossref_primary_10_1109_ACCESS_2022_3161654 crossref_primary_10_1016_j_enbuild_2022_112357 crossref_primary_10_1016_j_energy_2024_133639 crossref_primary_10_1016_j_heliyon_2024_e41507 crossref_primary_10_1016_j_enconman_2022_115507 crossref_primary_10_3390_en15217824 crossref_primary_10_1016_j_jobe_2025_113218 crossref_primary_10_3390_atmos12101341 crossref_primary_10_3390_jmse9020156 crossref_primary_10_3390_su132112302 crossref_primary_10_1016_j_energy_2019_116723 crossref_primary_10_1016_j_energy_2022_124179 crossref_primary_10_1007_s11760_025_04801_5 crossref_primary_10_1007_s10668_024_05263_4 crossref_primary_10_1051_itmconf_20246901009 crossref_primary_10_1177_0958305X231174000 crossref_primary_10_1016_j_asoc_2022_109520 crossref_primary_10_1186_s13638_020_01729_x crossref_primary_10_3390_en14217367 crossref_primary_10_5194_hess_26_2969_2022 crossref_primary_10_1016_j_ijrefrig_2025_03_033 crossref_primary_10_1016_j_enbuild_2020_110022 crossref_primary_10_1016_j_fuel_2020_118848 crossref_primary_10_3390_en16062844 crossref_primary_10_1016_j_ijrefrig_2024_01_025 crossref_primary_10_1016_j_energy_2023_127069 crossref_primary_10_11627_jksie_2023_46_3_186 crossref_primary_10_1016_j_enbuild_2023_113217 crossref_primary_10_1016_j_enbuild_2025_115517 crossref_primary_10_1016_j_jag_2023_103383 crossref_primary_10_1016_j_energy_2024_131726 crossref_primary_10_1186_s13717_024_00515_7 crossref_primary_10_1016_j_rineng_2025_106132 crossref_primary_10_1016_j_atmosenv_2019_116973 crossref_primary_10_1016_j_jobe_2023_106403 crossref_primary_10_1080_19401493_2021_1927189 crossref_primary_10_3390_en14185947 crossref_primary_10_3390_fi13100242 crossref_primary_10_1016_j_envpol_2020_115720 crossref_primary_10_1016_j_jobe_2023_107855 crossref_primary_10_1016_j_jobe_2025_111809 crossref_primary_10_1016_j_scs_2020_102654 crossref_primary_10_1016_j_apenergy_2021_118410 crossref_primary_10_1016_j_eswa_2025_126783 crossref_primary_10_1016_j_jobe_2024_110500 crossref_primary_10_1016_j_apenergy_2022_118947 crossref_primary_10_1016_j_jobe_2024_109657 crossref_primary_10_1016_j_energy_2022_124919 crossref_primary_10_1109_TEM_2024_3422821 crossref_primary_10_3233_JIFS_213176 crossref_primary_10_1016_j_apenergy_2020_114822 crossref_primary_10_1016_j_jobe_2025_112542 crossref_primary_10_3390_en16062574 crossref_primary_10_1016_j_enbuild_2025_115309 crossref_primary_10_34248_bsengineering_1700159 crossref_primary_10_1016_j_engappai_2023_106958 crossref_primary_10_1016_j_energy_2024_131318 crossref_primary_10_1016_j_apenergy_2024_123488 crossref_primary_10_1016_j_enbuild_2024_115001 crossref_primary_10_3390_en15217856 crossref_primary_10_1016_j_enbuild_2023_113321 crossref_primary_10_1016_j_energy_2023_127645 crossref_primary_10_1016_j_enbuild_2025_115589 crossref_primary_10_1016_j_energy_2020_118045 crossref_primary_10_3390_su12208738 crossref_primary_10_1007_s12273_020_0637_y crossref_primary_10_1016_j_energy_2022_123502 crossref_primary_10_1007_s00202_024_02611_5 crossref_primary_10_1007_s12273_024_1112_y crossref_primary_10_1371_journal_pone_0312573 |
| Cites_doi | 10.1016/j.rser.2014.05.056 10.1016/j.rser.2016.10.079 10.1016/j.scs.2017.05.012 10.1016/j.apenergy.2017.10.102 10.1016/j.enbuild.2014.07.036 10.1016/j.applthermaleng.2017.09.007 10.1016/j.rser.2014.08.039 10.1023/A:1010933404324 10.1016/j.enbuild.2012.08.018 10.1016/j.enbuild.2017.08.077 10.1145/2939672.2939785 10.1109/TII.2011.2158841 10.1016/j.energy.2018.03.169 10.1016/j.buildenv.2008.01.002 10.1016/j.enbuild.2017.04.038 10.1016/j.asoc.2013.12.001 10.1016/j.apenergy.2008.11.035 10.1016/j.enbuild.2011.09.012 10.1016/j.enbuild.2010.04.006 10.1016/j.scs.2018.12.013 10.1016/j.enbuild.2018.12.032 10.1007/s00158-001-0160-4 10.1016/j.scs.2019.101533 10.1214/aos/1013203451 10.1109/TMECH.2014.2301716 10.1016/j.scs.2016.12.001 10.1016/j.rser.2017.04.095 10.1016/j.enconman.2017.04.077 10.1016/j.enconman.2018.02.087 10.1016/j.advengsoft.2008.05.003 10.1016/j.enconman.2016.04.051 10.1016/j.enbuild.2004.09.009 10.1016/j.agrformet.2018.08.019 10.1016/j.scs.2019.101484 10.1016/j.jclepro.2018.10.013 10.1016/j.scs.2015.12.001 10.1214/aos/1032181158 10.1016/j.asoc.2009.11.034 10.1016/j.enbuild.2017.01.083 10.1109/34.58871 10.1080/19401493.2010.524711 10.1007/s00158-009-0420-2 10.1016/j.aap.2006.04.009 10.1016/j.enbuild.2018.04.008 10.1016/j.scs.2018.06.008 10.1016/j.enbuild.2015.11.045 10.1111/j.1600-0587.2012.07348.x 10.1016/j.enbuild.2015.09.002 10.1016/j.enbuild.2018.06.050 10.1016/j.enconman.2008.08.033 10.1016/j.buildenv.2012.07.009 10.1016/j.apenergy.2014.04.016 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.scs.2019.101623 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2210-6715 |
| ExternalDocumentID | 10_1016_j_scs_2019_101623 S2210670719309527 |
| GroupedDBID | --K --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AVARZ AXJTR BELTK BJAXD BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W JARJE JJJVA KCYFY KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSB SSJ SSO SSR SST SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-a1d489a815c40f55277884abf4d9b462b18ddb1a49407cc6cb0e0ce6b14480ae3 |
| ISICitedReferencesCount | 104 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475860700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6707 |
| IngestDate | Sat Nov 29 06:20:16 EST 2025 Tue Nov 18 22:28:01 EST 2025 Fri Feb 23 02:32:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Building energy prediction Accuracy Robustness Extreme gradient boosting Interpretability Efficiency |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-a1d489a815c40f55277884abf4d9b462b18ddb1a49407cc6cb0e0ce6b14480ae3 |
| ParticipantIDs | crossref_primary_10_1016_j_scs_2019_101623 crossref_citationtrail_10_1016_j_scs_2019_101623 elsevier_sciencedirect_doi_10_1016_j_scs_2019_101623 |
| PublicationCentury | 2000 |
| PublicationDate | August 2019 2019-08-00 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Sustainable cities and society |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kyrö, Heinonen, Säynäjoki (bib0210) 2011; 43 Shan, Wang (bib0320) 2010; 41 Ahmad, Chen, Shair (bib0020) 2018; 152 Jin (bib0195) 2001; 23 Dormann, Elith, Bacher (bib0125) 2013; 36 Ouyang, Zha, Qin (bib0270) 2017; 144 Ding (bib0110) 2018; 128 Candanedo, Feldheim, Deramaix (bib0055) 2017; 140 Safa (bib0295) 2017; 29 Ürge-Vorsatz (bib0335) 2015; 41 Chang, Wang (bib0070) 2006; 38 Chen, Guestrin (bib0075) 2016 Ahmad, Mourshed, Rezgui (bib0015) 2017; 147 Fan (bib0160) 2018; 164 Ekici, Aksoy (bib0135) 2009; 40 Doshi-Velez, Kim (bib0130) 2017 Østergård (bib0260) 2018; 211 Østergård, Jensen, Maagaard (bib0265) 2018; 211 Chakraborty, Elzarka (bib0065) 2019; 185 Dietterich (bib0100) 2000 Reynolds, Rezgui, Hippolyte (bib0290) 2017; 35 Bergstra, Bengio (bib0035) 2012; 13 Li (bib0230) 2010; 10 Li (bib0220) 2009; 50 Li, Wen (bib0215) 2014; 37 Li, Wen, Reviews (bib0235) 2014; 37 Reid (bib0285) 2007 Haykin (bib0180) 1994; Vol. 2 Seyedzadeh (bib0315) 2019 Sun (bib0325) 2016; 119 Fan, Xiao, Wang (bib0150) 2014; 127 Vellido, Martin-Guerroro, Lisboa (bib0340) 2012; 12 Breiman (bib0050) 2001; 45 Ke (bib0200) 2017 Safa (bib0300) 2017; 29 Harrell (bib0175) 2015 Ditterrich (bib0115) 1997; 4 Zhao, Liu (bib0370) 2018; 174 Nicol (bib0255) 1998; 104 Chou, Bui (bib0090) 2014; 82 Esen (bib0140) 2008; 43 Wang, Srinivasan (bib0345) 2016; 75 Li (bib0225) 2009; 86 Bourdeau (bib0040) 2019 Chae (bib0060) 2016; 111 Fan (bib0155) 2018; 263 Fabi (bib0145) 2012; 58 Yu, Haghighat, Fung (bib0365) 2016; 25 Li (bib0245) 2019; 207 Scholkopf, Smola (bib0305) 2001 Chen, Guestrin (bib0080) 2016 Keshtkarbanaeemoghadam, Dehghanbanadaki, Kaboli (bib0205) 2018; 41 Ma, Cooper, Daly (bib0250) 2012; 55 Selakov (bib0310) 2014; 16 Hohman, Kahng, Pienta (bib0185) 2018 Awad, Khanna (bib0030) 2007; 11 Dong, Cao, Lee (bib0120) 2005; 37 Friedman (bib0165) 2001; 29 Yu (bib0360) 2010; 42 Wang, Srinivasan (bib0350) 2017; 75 Jiang (bib0190) 2009; 10 Palensky, Dietrich (bib0275) 2011; 7 Breiman (bib0045) 1996; 24 Parys, Saelens, Hens (bib0280) 2011; 4 Ahmad, Mourshed, Rezgui (bib0010) 2017; 147 Wang (bib0355) 2018; 171 Amasyali, El-Gohary (bib0025) 2018; 81 Ding, Zhang, Yuan (bib0105) 2017; 154 Hansen, Salamon (bib0170) 1990 Chou, Bui (bib0095) 2014; 82 China Building Energy Conservation Annual Development Research Report (bib0085) 2015 Li (bib0240) 2015; 108 Ahmad, Chen (bib0005) 2019; 45 Suryadevara (bib0330) 2014; 20 Chang (10.1016/j.scs.2019.101623_bib0070) 2006; 38 Østergård (10.1016/j.scs.2019.101623_bib0260) 2018; 211 Wang (10.1016/j.scs.2019.101623_bib0345) 2016; 75 Amasyali (10.1016/j.scs.2019.101623_bib0025) 2018; 81 Ding (10.1016/j.scs.2019.101623_bib0105) 2017; 154 Ditterrich (10.1016/j.scs.2019.101623_bib0115) 1997; 4 Kyrö (10.1016/j.scs.2019.101623_bib0210) 2011; 43 Ma (10.1016/j.scs.2019.101623_bib0250) 2012; 55 Chou (10.1016/j.scs.2019.101623_bib0090) 2014; 82 Zhao (10.1016/j.scs.2019.101623_bib0370) 2018; 174 Yu (10.1016/j.scs.2019.101623_bib0360) 2010; 42 Chen (10.1016/j.scs.2019.101623_bib0080) 2016 Keshtkarbanaeemoghadam (10.1016/j.scs.2019.101623_bib0205) 2018; 41 Doshi-Velez (10.1016/j.scs.2019.101623_bib0130) 2017 Suryadevara (10.1016/j.scs.2019.101623_bib0330) 2014; 20 Seyedzadeh (10.1016/j.scs.2019.101623_bib0315) 2019 Ahmad (10.1016/j.scs.2019.101623_bib0010) 2017; 147 Li (10.1016/j.scs.2019.101623_bib0235) 2014; 37 Shan (10.1016/j.scs.2019.101623_bib0320) 2010; 41 Bergstra (10.1016/j.scs.2019.101623_bib0035) 2012; 13 Ahmad (10.1016/j.scs.2019.101623_bib0020) 2018; 152 Jin (10.1016/j.scs.2019.101623_bib0195) 2001; 23 Friedman (10.1016/j.scs.2019.101623_bib0165) 2001; 29 Nicol (10.1016/j.scs.2019.101623_bib0255) 1998; 104 Hansen (10.1016/j.scs.2019.101623_bib0170) 1990 Fabi (10.1016/j.scs.2019.101623_bib0145) 2012; 58 Fan (10.1016/j.scs.2019.101623_bib0160) 2018; 164 Vellido (10.1016/j.scs.2019.101623_bib0340) 2012; 12 Reynolds (10.1016/j.scs.2019.101623_bib0290) 2017; 35 Ke (10.1016/j.scs.2019.101623_bib0200) 2017 China Building Energy Conservation Annual Development Research Report (10.1016/j.scs.2019.101623_bib0085) 2015 Jiang (10.1016/j.scs.2019.101623_bib0190) 2009; 10 Fan (10.1016/j.scs.2019.101623_bib0155) 2018; 263 Fan (10.1016/j.scs.2019.101623_bib0150) 2014; 127 Chae (10.1016/j.scs.2019.101623_bib0060) 2016; 111 Chen (10.1016/j.scs.2019.101623_bib0075) 2016 Ding (10.1016/j.scs.2019.101623_bib0110) 2018; 128 Wang (10.1016/j.scs.2019.101623_bib0355) 2018; 171 Wang (10.1016/j.scs.2019.101623_bib0350) 2017; 75 Haykin (10.1016/j.scs.2019.101623_bib0180) 1994; Vol. 2 Breiman (10.1016/j.scs.2019.101623_bib0045) 1996; 24 Li (10.1016/j.scs.2019.101623_bib0245) 2019; 207 Esen (10.1016/j.scs.2019.101623_bib0140) 2008; 43 Ahmad (10.1016/j.scs.2019.101623_bib0005) 2019; 45 Dormann (10.1016/j.scs.2019.101623_bib0125) 2013; 36 Safa (10.1016/j.scs.2019.101623_bib0295) 2017; 29 Awad (10.1016/j.scs.2019.101623_bib0030) 2007; 11 Parys (10.1016/j.scs.2019.101623_bib0280) 2011; 4 Candanedo (10.1016/j.scs.2019.101623_bib0055) 2017; 140 Chou (10.1016/j.scs.2019.101623_bib0095) 2014; 82 Palensky (10.1016/j.scs.2019.101623_bib0275) 2011; 7 Li (10.1016/j.scs.2019.101623_bib0215) 2014; 37 Yu (10.1016/j.scs.2019.101623_bib0365) 2016; 25 Hohman (10.1016/j.scs.2019.101623_bib0185) 2018 Li (10.1016/j.scs.2019.101623_bib0230) 2010; 10 Li (10.1016/j.scs.2019.101623_bib0225) 2009; 86 Reid (10.1016/j.scs.2019.101623_bib0285) 2007 Bourdeau (10.1016/j.scs.2019.101623_bib0040) 2019 Sun (10.1016/j.scs.2019.101623_bib0325) 2016; 119 Safa (10.1016/j.scs.2019.101623_bib0300) 2017; 29 Dong (10.1016/j.scs.2019.101623_bib0120) 2005; 37 Scholkopf (10.1016/j.scs.2019.101623_bib0305) 2001 Ekici (10.1016/j.scs.2019.101623_bib0135) 2009; 40 Ürge-Vorsatz (10.1016/j.scs.2019.101623_bib0335) 2015; 41 Breiman (10.1016/j.scs.2019.101623_bib0050) 2001; 45 Li (10.1016/j.scs.2019.101623_bib0240) 2015; 108 Dietterich (10.1016/j.scs.2019.101623_bib0100) 2000 Ouyang (10.1016/j.scs.2019.101623_bib0270) 2017; 144 Selakov (10.1016/j.scs.2019.101623_bib0310) 2014; 16 Li (10.1016/j.scs.2019.101623_bib0220) 2009; 50 Ahmad (10.1016/j.scs.2019.101623_bib0015) 2017; 147 Harrell (10.1016/j.scs.2019.101623_bib0175) 2015 Chakraborty (10.1016/j.scs.2019.101623_bib0065) 2019; 185 Østergård (10.1016/j.scs.2019.101623_bib0265) 2018; 211 |
| References_xml | – volume: 111 start-page: 184 year: 2016 end-page: 194 ident: bib0060 article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings publication-title: Energy and Buildings – volume: 152 start-page: 788 year: 2018 end-page: 803 ident: bib0020 article-title: Water source heat pump energy demand prognosticate using disparate data-mining based approaches publication-title: Energy – year: 2015 ident: bib0175 article-title: Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis – volume: 4 start-page: 339 year: 2011 end-page: 358 ident: bib0280 article-title: Coupling of dynamic building simulation with stochastic modelling of occupant behaviour in offices–a review-based integrated methodology publication-title: Journal of Building Performance Simulation – volume: 16 start-page: 80 year: 2014 end-page: 88 ident: bib0310 article-title: Hybrid PSO–SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank publication-title: Applied Soft Computing – volume: 43 start-page: 2178 year: 2008 end-page: 2187 ident: bib0140 article-title: Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS publication-title: Building and Environment – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0050 article-title: Random forest publication-title: Machine Learning – volume: 211 start-page: 89 year: 2018 end-page: 103 ident: bib0265 article-title: A comparison of six metamodeling techniques applied to building performance simulations publication-title: Applied Energy – volume: 24 start-page: 2350 year: 1996 end-page: 2383 ident: bib0045 article-title: Heuristics of instability and stabilization in model selection publication-title: Annals of Statistics – volume: 86 start-page: 2249 year: 2009 end-page: 2256 ident: bib0225 article-title: Applying support vector machine to predict hourly cooling load in the building publication-title: Applied Energy – start-page: 993 year: 1990 end-page: 1001 ident: bib0170 article-title: Neural network ensembles publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 55 start-page: 889 year: 2012 end-page: 902 ident: bib0250 article-title: Existing building retrofits: Methodology and state-of-the-art publication-title: Energy and Buildings – volume: 263 start-page: 225 year: 2018 end-page: 241 ident: bib0155 article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China publication-title: Agricultural and Forest Meteorology – volume: 12 start-page: 163 year: 2012 end-page: 172 ident: bib0340 article-title: Making machine learning models interpretable publication-title: ESANN – year: 2016 ident: bib0075 article-title: Xgboost: A scalable tree boosting system publication-title: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining – year: 2017 ident: bib0130 article-title: Towards a rigorous science of interpretable machine learning – volume: 144 start-page: 361 year: 2017 end-page: 373 ident: bib0270 article-title: A combined multivariate model for wind power prediction publication-title: Energy Conversion and Management – volume: 75 start-page: 796 year: 2017 end-page: 808 ident: bib0350 article-title: A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models publication-title: Renewable and Sustainable Energy Reviews – volume: 41 start-page: 85 year: 2015 end-page: 98 ident: bib0335 article-title: Heating and cooling energy trends and drivers in buildings publication-title: Renewable and Sustainable Energy Reviews – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: bib0165 article-title: Greedy function approximation: A gradient boosting machine publication-title: Annals of Statistics – volume: 42 start-page: 1637 year: 2010 end-page: 1646 ident: bib0360 article-title: A decision tree method for building energy demand modeling publication-title: Energy and Buildings – volume: 171 year: 2018 ident: bib0355 article-title: Random forest based hourly building energy prediction publication-title: Energy and Buildings – volume: 154 year: 2017 ident: bib0105 article-title: Research on short-term and ultra-short-term cooling load prediction models for office buildings publication-title: Energy and Buildings – year: 2018 ident: bib0185 article-title: Visual analytics in deep learning: An interrogative survey for the next frontiers publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 50 start-page: 90 year: 2009 end-page: 96 ident: bib0220 article-title: Predicting hourly cooling load in the building: A comparison of support vector machine and different artificial neural networks publication-title: Energy Conversion and Management – volume: 140 year: 2017 ident: bib0055 article-title: Data driven prediction models of energy use of appliances in a low-energy house publication-title: Energy and Buildings – volume: 108 start-page: 106 year: 2015 end-page: 113 ident: bib0240 article-title: Building’s electricity consumption prediction using optimized artificial neural networks and principal component analysis publication-title: Energy and Buildings – year: 2019 ident: bib0040 article-title: Modelling and forecasting building energy consumption: A review of data-driven techniques publication-title: Sustainable Cities and Society – year: 2007 ident: bib0285 article-title: A review of heterogeneous ensemble methods – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: bib0035 article-title: Random search for hyper-parameter optimization publication-title: Journal of Machine Learning Research – volume: 164 start-page: 102 year: 2018 end-page: 111 ident: bib0160 article-title: Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China publication-title: Energy Conversion and Management – volume: 10 start-page: 1257 year: 2010 end-page: 1273 ident: bib0230 article-title: A systematic comparison of metamodeling techniques for simulation optimization in decision support systems publication-title: Applied Soft Computing – volume: 4 start-page: 97 year: 1997 end-page: 136 ident: bib0115 article-title: Machine learning research: Four current direction publication-title: Artificial Intelligence Magzine – volume: 40 start-page: 356 year: 2009 end-page: 362 ident: bib0135 article-title: Prediction of building energy consumption by using artificial neural networks publication-title: Advances in Engineering Software – volume: 29 start-page: 107 year: 2017 end-page: 117 ident: bib0295 article-title: Improving sustainable office building operation by using historical data and linear models to predict energy usage publication-title: Sustainable Cities and Society – volume: 58 start-page: 188 year: 2012 end-page: 198 ident: bib0145 article-title: Occupants’ window opening behaviour: A literature review of factors influencing occupant behaviour and models publication-title: Building and Environment – volume: 207 start-page: 728 year: 2019 end-page: 742 ident: bib0245 article-title: Analysis of the impacts of heating emissions on the environment and human health in North China publication-title: Journal of Cleaner Production – volume: 20 start-page: 564 year: 2014 end-page: 571 ident: bib0330 article-title: WSN-based smart sensors and actuator for power management in intelligent buildings publication-title: IEEE/ASME Transactions on Mechatronics – volume: 185 start-page: 326 year: 2019 end-page: 344 ident: bib0065 article-title: Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold publication-title: Energy and Buildings – volume: 37 start-page: 517 year: 2014 end-page: 537 ident: bib0215 article-title: Review of building energy modeling for control and operation publication-title: Renewable and Sustainable Energy Reviews – volume: 23 start-page: 1 year: 2001 end-page: 13 ident: bib0195 article-title: Comparative studies of metamodelling techniques under multiple modelling criteria publication-title: Structural and Multidisciplinary Optimization – volume: 119 start-page: 121 year: 2016 end-page: 129 ident: bib0325 article-title: Assessing the potential of random forest method for estimating solar radiation using air pollution index publication-title: Energy Conversion and Management – volume: 10 start-page: 1 year: 2009 end-page: 12 ident: bib0190 article-title: A random forest approach to the detection of epistatic interactions in case-control studies publication-title: BMC Bioinformatics – volume: 43 start-page: 3484 year: 2011 end-page: 3490 ident: bib0210 article-title: Occupants have little influence on the overall energy consumption in district heated apartment buildings publication-title: Energy and Buildings – volume: 29 start-page: 107 year: 2017 end-page: 117 ident: bib0300 article-title: Improving sustainable office building operation by using historical data and linear models to predict energy usage publication-title: Sustainable Cities and Society – volume: 147 start-page: 77 year: 2017 end-page: 89 ident: bib0010 article-title: Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy and Buildings – year: 2001 ident: bib0305 article-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond – year: 2016 ident: bib0080 article-title: XGBoost: A scalable tree boosting system publication-title: ACM SIGKDD International Conference on knowledge discovery and data mining – volume: 128 year: 2018 ident: bib0110 article-title: Effect of input variables on cooling load prediction accuracy of an office building publication-title: Applied Thermal Engineering – volume: 36 start-page: 27 year: 2013 end-page: 46 ident: bib0125 article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance publication-title: Ecography – volume: 75 year: 2016 ident: bib0345 article-title: A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models publication-title: Renewable and Sustainable Energy Reviews – volume: 35 start-page: 816 year: 2017 end-page: 829 ident: bib0290 article-title: Upscaling energy control from building to districts: Current limitations and future perspectives publication-title: Sustainable Cities and Society – year: 2019 ident: bib0315 article-title: Tuning machine learning models for prediction of building energy loads publication-title: Sustainable Cities and Society – volume: 211 start-page: 89 year: 2018 end-page: 103 ident: bib0260 article-title: A comparison of six metamodeling techniques applied to building performance simulations publication-title: Applied Energy – volume: 82 start-page: 437 year: 2014 end-page: 446 ident: bib0090 article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design publication-title: Energy and Buildings – volume: 127 start-page: 1 year: 2014 end-page: 10 ident: bib0150 article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques publication-title: Applied Energy – volume: 37 start-page: 517 year: 2014 end-page: 537 ident: bib0235 article-title: Review of building energy modeling for control and operation publication-title: Renewable and Sustainable Energy Reviews – volume: 82 start-page: 437 year: 2014 end-page: 446 ident: bib0095 article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design publication-title: Energy and Buildings – volume: 11 start-page: 203 year: 2007 end-page: 224 ident: bib0030 article-title: Support vector regression publication-title: Neural Information Processing Letters and Reviews – volume: 38 start-page: 1019 year: 2006 end-page: 1027 ident: bib0070 article-title: Analysis of traffic injury severity: An application of non-parametric classification tree techniques publication-title: Accident; Analysis and Prevention – year: 2015 ident: bib0085 article-title: China building energy conservation annual development research report – volume: 7 start-page: 381 year: 2011 end-page: 388 ident: bib0275 article-title: Demand side management: Demand response, intelligent energy systems, and smart loads publication-title: IEEE Transactions on Industrial Informatics – volume: 147 year: 2017 ident: bib0015 article-title: Trees vs Neurons: Comparison between Random Forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy and Buildings – volume: Vol. 2 year: 1994 ident: bib0180 publication-title: Neural networks – volume: 45 start-page: 460 year: 2019 end-page: 473 ident: bib0005 article-title: Nonlinear autoregressive and random forest approaches to forecasting electricity load for utility energy management systems publication-title: Sustainable Cities and Society – volume: 174 start-page: 293 year: 2018 end-page: 308 ident: bib0370 article-title: A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis publication-title: Energy and Buildings – volume: 25 start-page: 33 year: 2016 end-page: 38 ident: bib0365 article-title: Advances and challenges in building engineering and data mining applications for energy-efficient communities publication-title: Sustainable Cities and Society – year: 2017 ident: bib0200 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Advances in neural information processing systems – volume: 41 start-page: 219 year: 2010 end-page: 241 ident: bib0320 article-title: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions publication-title: Structural and Multidisciplinary Optimization – year: 2000 ident: bib0100 article-title: Ensemble methods in machine learning publication-title: International workshop on multiple classifier systems – volume: 41 start-page: 728 year: 2018 end-page: 748 ident: bib0205 article-title: Estimation and optimization of heating energy demand of a mountain shelter by soft computing techniques publication-title: Sustainable Cities and Society – volume: 81 start-page: 1192 year: 2018 end-page: 1205 ident: bib0025 article-title: A review of data-driven building energy consumption prediction studies publication-title: Renewable and Sustainable Energy Reviews – volume: 37 start-page: 545 year: 2005 end-page: 553 ident: bib0120 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy and Buildings – volume: 104 start-page: 991 year: 1998 end-page: 1004 ident: bib0255 article-title: Understanding the adaptive approach to thermal comfort publication-title: ASHRAE Transactions – volume: 37 start-page: 517 year: 2014 ident: 10.1016/j.scs.2019.101623_bib0235 article-title: Review of building energy modeling for control and operation publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2014.05.056 – volume: 75 start-page: 796 year: 2017 ident: 10.1016/j.scs.2019.101623_bib0350 article-title: A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2016.10.079 – year: 2015 ident: 10.1016/j.scs.2019.101623_bib0085 – volume: 35 start-page: 816 year: 2017 ident: 10.1016/j.scs.2019.101623_bib0290 article-title: Upscaling energy control from building to districts: Current limitations and future perspectives publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2017.05.012 – volume: 211 start-page: 89 year: 2018 ident: 10.1016/j.scs.2019.101623_bib0260 article-title: A comparison of six metamodeling techniques applied to building performance simulations publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.10.102 – volume: 82 start-page: 437 year: 2014 ident: 10.1016/j.scs.2019.101623_bib0090 article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2014.07.036 – volume: 128 year: 2018 ident: 10.1016/j.scs.2019.101623_bib0110 article-title: Effect of input variables on cooling load prediction accuracy of an office building publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2017.09.007 – volume: 41 start-page: 85 issue: 41 year: 2015 ident: 10.1016/j.scs.2019.101623_bib0335 article-title: Heating and cooling energy trends and drivers in buildings publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2014.08.039 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.scs.2019.101623_bib0050 article-title: Random forest publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 55 start-page: 889 year: 2012 ident: 10.1016/j.scs.2019.101623_bib0250 article-title: Existing building retrofits: Methodology and state-of-the-art publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2012.08.018 – year: 2007 ident: 10.1016/j.scs.2019.101623_bib0285 – volume: 104 start-page: 991 year: 1998 ident: 10.1016/j.scs.2019.101623_bib0255 article-title: Understanding the adaptive approach to thermal comfort publication-title: ASHRAE Transactions – volume: 154 year: 2017 ident: 10.1016/j.scs.2019.101623_bib0105 article-title: Research on short-term and ultra-short-term cooling load prediction models for office buildings publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2017.08.077 – year: 2016 ident: 10.1016/j.scs.2019.101623_bib0075 article-title: Xgboost: A scalable tree boosting system publication-title: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining doi: 10.1145/2939672.2939785 – volume: Vol. 2 year: 1994 ident: 10.1016/j.scs.2019.101623_bib0180 – volume: 7 start-page: 381 issue: 3 year: 2011 ident: 10.1016/j.scs.2019.101623_bib0275 article-title: Demand side management: Demand response, intelligent energy systems, and smart loads publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2011.2158841 – volume: 152 start-page: 788 year: 2018 ident: 10.1016/j.scs.2019.101623_bib0020 article-title: Water source heat pump energy demand prognosticate using disparate data-mining based approaches publication-title: Energy doi: 10.1016/j.energy.2018.03.169 – volume: 43 start-page: 2178 issue: 12 year: 2008 ident: 10.1016/j.scs.2019.101623_bib0140 article-title: Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS publication-title: Building and Environment doi: 10.1016/j.buildenv.2008.01.002 – volume: 147 year: 2017 ident: 10.1016/j.scs.2019.101623_bib0015 article-title: Trees vs Neurons: Comparison between Random Forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2017.04.038 – volume: 16 start-page: 80 year: 2014 ident: 10.1016/j.scs.2019.101623_bib0310 article-title: Hybrid PSO–SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.12.001 – volume: 86 start-page: 2249 issue: 10 year: 2009 ident: 10.1016/j.scs.2019.101623_bib0225 article-title: Applying support vector machine to predict hourly cooling load in the building publication-title: Applied Energy doi: 10.1016/j.apenergy.2008.11.035 – volume: 43 start-page: 3484 issue: 12 year: 2011 ident: 10.1016/j.scs.2019.101623_bib0210 article-title: Occupants have little influence on the overall energy consumption in district heated apartment buildings publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2011.09.012 – volume: 42 start-page: 1637 issue: 10 year: 2010 ident: 10.1016/j.scs.2019.101623_bib0360 article-title: A decision tree method for building energy demand modeling publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2010.04.006 – volume: 45 start-page: 460 year: 2019 ident: 10.1016/j.scs.2019.101623_bib0005 article-title: Nonlinear autoregressive and random forest approaches to forecasting electricity load for utility energy management systems publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2018.12.013 – volume: 185 start-page: 326 year: 2019 ident: 10.1016/j.scs.2019.101623_bib0065 article-title: Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2018.12.032 – year: 2000 ident: 10.1016/j.scs.2019.101623_bib0100 article-title: Ensemble methods in machine learning – volume: 23 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.scs.2019.101623_bib0195 article-title: Comparative studies of metamodelling techniques under multiple modelling criteria publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-001-0160-4 – year: 2019 ident: 10.1016/j.scs.2019.101623_bib0040 article-title: Modelling and forecasting building energy consumption: A review of data-driven techniques publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2019.101533 – volume: 82 start-page: 437 year: 2014 ident: 10.1016/j.scs.2019.101623_bib0095 article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2014.07.036 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.scs.2019.101623_bib0165 article-title: Greedy function approximation: A gradient boosting machine publication-title: Annals of Statistics doi: 10.1214/aos/1013203451 – year: 2017 ident: 10.1016/j.scs.2019.101623_bib0200 article-title: Lightgbm: A highly efficient gradient boosting decision tree – volume: 20 start-page: 564 issue: 2 year: 2014 ident: 10.1016/j.scs.2019.101623_bib0330 article-title: WSN-based smart sensors and actuator for power management in intelligent buildings publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2014.2301716 – volume: 29 start-page: 107 year: 2017 ident: 10.1016/j.scs.2019.101623_bib0300 article-title: Improving sustainable office building operation by using historical data and linear models to predict energy usage publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2016.12.001 – volume: 81 start-page: 1192 year: 2018 ident: 10.1016/j.scs.2019.101623_bib0025 article-title: A review of data-driven building energy consumption prediction studies publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2017.04.095 – volume: 4 start-page: 97 year: 1997 ident: 10.1016/j.scs.2019.101623_bib0115 article-title: Machine learning research: Four current direction publication-title: Artificial Intelligence Magzine – volume: 144 start-page: 361 year: 2017 ident: 10.1016/j.scs.2019.101623_bib0270 article-title: A combined multivariate model for wind power prediction publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2017.04.077 – volume: 164 start-page: 102 year: 2018 ident: 10.1016/j.scs.2019.101623_bib0160 article-title: Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.02.087 – volume: 11 start-page: 203 issue: 10 year: 2007 ident: 10.1016/j.scs.2019.101623_bib0030 article-title: Support vector regression publication-title: Neural Information Processing Letters and Reviews – volume: 40 start-page: 356 issue: 5 year: 2009 ident: 10.1016/j.scs.2019.101623_bib0135 article-title: Prediction of building energy consumption by using artificial neural networks publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2008.05.003 – volume: 119 start-page: 121 year: 2016 ident: 10.1016/j.scs.2019.101623_bib0325 article-title: Assessing the potential of random forest method for estimating solar radiation using air pollution index publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2016.04.051 – volume: 37 start-page: 545 issue: 5 year: 2005 ident: 10.1016/j.scs.2019.101623_bib0120 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2004.09.009 – volume: 263 start-page: 225 year: 2018 ident: 10.1016/j.scs.2019.101623_bib0155 article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2018.08.019 – year: 2019 ident: 10.1016/j.scs.2019.101623_bib0315 article-title: Tuning machine learning models for prediction of building energy loads publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2019.101484 – volume: 207 start-page: 728 year: 2019 ident: 10.1016/j.scs.2019.101623_bib0245 article-title: Analysis of the impacts of heating emissions on the environment and human health in North China publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.10.013 – volume: 25 start-page: 33 year: 2016 ident: 10.1016/j.scs.2019.101623_bib0365 article-title: Advances and challenges in building engineering and data mining applications for energy-efficient communities publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2015.12.001 – volume: 24 start-page: 2350 issue: 6 year: 1996 ident: 10.1016/j.scs.2019.101623_bib0045 article-title: Heuristics of instability and stabilization in model selection publication-title: Annals of Statistics doi: 10.1214/aos/1032181158 – volume: 37 start-page: 517 year: 2014 ident: 10.1016/j.scs.2019.101623_bib0215 article-title: Review of building energy modeling for control and operation publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2014.05.056 – volume: 10 start-page: 1257 issue: 4 year: 2010 ident: 10.1016/j.scs.2019.101623_bib0230 article-title: A systematic comparison of metamodeling techniques for simulation optimization in decision support systems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.11.034 – volume: 140 year: 2017 ident: 10.1016/j.scs.2019.101623_bib0055 article-title: Data driven prediction models of energy use of appliances in a low-energy house publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2017.01.083 – start-page: 993 issue: 10 year: 1990 ident: 10.1016/j.scs.2019.101623_bib0170 article-title: Neural network ensembles publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.58871 – volume: 4 start-page: 339 issue: 4 year: 2011 ident: 10.1016/j.scs.2019.101623_bib0280 article-title: Coupling of dynamic building simulation with stochastic modelling of occupant behaviour in offices–a review-based integrated methodology publication-title: Journal of Building Performance Simulation doi: 10.1080/19401493.2010.524711 – volume: 41 start-page: 219 issue: 2 year: 2010 ident: 10.1016/j.scs.2019.101623_bib0320 article-title: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-009-0420-2 – volume: 38 start-page: 1019 issue: 5 year: 2006 ident: 10.1016/j.scs.2019.101623_bib0070 article-title: Analysis of traffic injury severity: An application of non-parametric classification tree techniques publication-title: Accident; Analysis and Prevention doi: 10.1016/j.aap.2006.04.009 – year: 2016 ident: 10.1016/j.scs.2019.101623_bib0080 article-title: XGBoost: A scalable tree boosting system – volume: 75 year: 2016 ident: 10.1016/j.scs.2019.101623_bib0345 article-title: A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models publication-title: Renewable and Sustainable Energy Reviews – volume: 171 year: 2018 ident: 10.1016/j.scs.2019.101623_bib0355 article-title: Random forest based hourly building energy prediction publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2018.04.008 – volume: 41 start-page: 728 year: 2018 ident: 10.1016/j.scs.2019.101623_bib0205 article-title: Estimation and optimization of heating energy demand of a mountain shelter by soft computing techniques publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2018.06.008 – volume: 111 start-page: 184 year: 2016 ident: 10.1016/j.scs.2019.101623_bib0060 article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2015.11.045 – year: 2018 ident: 10.1016/j.scs.2019.101623_bib0185 article-title: Visual analytics in deep learning: An interrogative survey for the next frontiers publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 36 start-page: 27 issue: 1 year: 2013 ident: 10.1016/j.scs.2019.101623_bib0125 article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance publication-title: Ecography doi: 10.1111/j.1600-0587.2012.07348.x – volume: 147 start-page: 77 year: 2017 ident: 10.1016/j.scs.2019.101623_bib0010 article-title: Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2017.04.038 – volume: 108 start-page: 106 year: 2015 ident: 10.1016/j.scs.2019.101623_bib0240 article-title: Building’s electricity consumption prediction using optimized artificial neural networks and principal component analysis publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2015.09.002 – volume: 10 start-page: 1 issue: Suppl 1 year: 2009 ident: 10.1016/j.scs.2019.101623_bib0190 article-title: A random forest approach to the detection of epistatic interactions in case-control studies publication-title: BMC Bioinformatics – volume: 174 start-page: 293 year: 2018 ident: 10.1016/j.scs.2019.101623_bib0370 article-title: A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2018.06.050 – volume: 50 start-page: 90 issue: 1 year: 2009 ident: 10.1016/j.scs.2019.101623_bib0220 article-title: Predicting hourly cooling load in the building: A comparison of support vector machine and different artificial neural networks publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2008.08.033 – volume: 12 start-page: 163 year: 2012 ident: 10.1016/j.scs.2019.101623_bib0340 article-title: Making machine learning models interpretable publication-title: ESANN – volume: 58 start-page: 188 year: 2012 ident: 10.1016/j.scs.2019.101623_bib0145 article-title: Occupants’ window opening behaviour: A literature review of factors influencing occupant behaviour and models publication-title: Building and Environment doi: 10.1016/j.buildenv.2012.07.009 – volume: 29 start-page: 107 year: 2017 ident: 10.1016/j.scs.2019.101623_bib0295 article-title: Improving sustainable office building operation by using historical data and linear models to predict energy usage publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2016.12.001 – year: 2001 ident: 10.1016/j.scs.2019.101623_bib0305 – year: 2015 ident: 10.1016/j.scs.2019.101623_bib0175 – volume: 127 start-page: 1 issue: 6 year: 2014 ident: 10.1016/j.scs.2019.101623_bib0150 article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques publication-title: Applied Energy doi: 10.1016/j.apenergy.2014.04.016 – volume: 13 start-page: 281 issue: February year: 2012 ident: 10.1016/j.scs.2019.101623_bib0035 article-title: Random search for hyper-parameter optimization publication-title: Journal of Machine Learning Research – year: 2017 ident: 10.1016/j.scs.2019.101623_bib0130 – volume: 211 start-page: 89 year: 2018 ident: 10.1016/j.scs.2019.101623_bib0265 article-title: A comparison of six metamodeling techniques applied to building performance simulations publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.10.102 |
| SSID | ssj0000561945 |
| Score | 2.4766128 |
| Snippet | •Compared five models with respect to interpretability, accuracy, robustness, and efficiency.•Studied the influence of the training dataset on the prediction... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101623 |
| SubjectTerms | Accuracy Building energy prediction Efficiency Extreme gradient boosting Interpretability Robustness |
| Title | Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings |
| URI | https://dx.doi.org/10.1016/j.scs.2019.101623 |
| Volume | 49 |
| WOSCitedRecordID | wos000475860700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2210-6715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000561945 issn: 2210-6707 databaseCode: AIEXJ dateStart: 20110201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYo9NAeqj5V6EM-9FRk5ARvbB9RBaI9oFJA2ltkO97uom12tVkq-PeMH_EaWlBbqZcosuw48nwejcffzCD0oeDUwE7TRKhSEtiJiigpFKGWUmUazilrfLEJfnQkhkP5NV4XdL6cAG9bcXkp5_9V1NAGwnahs38h7vRRaIB3EDo8Qezw_CPB-5BaAsrAZWFWnjO-sOPIU-9CDmnHy3I3NJ43pKbfZ9B7_MMbjjDF9MrZj54PbUNooPGBmvPES4Qz-sRH-IKAdSys3eV27kkWl2V80tbt3kMfE48EL37QNN8yYtCF98eOQVlNUptnHBxPlA_uyv0ULjRK5H6KFECzYiuBjivhxEkqHgrf7ti8LUR59ko65DX9Rd8H18P5Tmdc6vVC-pYQwHwrjfaJ-6ybCSxWMCtL_gBtlHwgQZlv7H3eH35Jnjl3ppK-unX6u_463BMDb831e4MmM1JOn6In8XSB9wIqnqE12z5Hj7Ocky_Q1U184Bv4wB4feNbiFT5wwgeejXDAB474wAEfOMMHBnzgDB844eMlOjvYP_10SGL9DWJKyZdEFQ0TUoliYBgduVR9XAimHLVTalaVuhBNowvFJKPcmMpo2OHGVhoO6YIqu_sKrbez1r5GeCQ43-VcG6lhpFUSOrOK8cYOzADGbCLaL2JtYnJ6VyNlWvcsxPMa1r12616Hdd9EH9OQecjMcl9n1kumjqZlMBlrQNLdw7b-bdgb9Gi1A96i9eXiwr5DD83P5aRbvI94uwZL-KOh |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-criteria+comprehensive+study+on+predictive+algorithm+of+hourly+heating+energy+consumption+for+residential+buildings&rft.jtitle=Sustainable+cities+and+society&rft.au=Wang%2C+Ran&rft.au=Lu%2C+Shilei&rft.au=Li%2C+Qiaoping&rft.date=2019-08-01&rft.pub=Elsevier+Ltd&rft.issn=2210-6707&rft.eissn=2210-6715&rft.volume=49&rft_id=info:doi/10.1016%2Fj.scs.2019.101623&rft.externalDocID=S2210670719309527 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6707&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6707&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6707&client=summon |