Information-decision searching algorithm: Theory and applications for solving engineering optimization problems

The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of people acquiring favorable information, which is the society-based metaheuristic optimization mechanism, called the Information-Decision Search A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 607; S. 1465 - 1531
Hauptverfasser: Wang, Kaiguang, Guo, Min, Dai, Cai, Li, Zhiqiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.08.2022
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of people acquiring favorable information, which is the society-based metaheuristic optimization mechanism, called the Information-Decision Search Algorithm(IDSE), aiming to provide a new optimization technology for solving real-world optimization problems. This optimization technology proposes special searching mechanisms of delivery behavior, approaching behavior, inheritance behavior, mutation behavior, interaction, and learning behavior, establishing corresponding mathematical models to develop an efficient optimization framework for solving constrained optimization. The performance of the proposed algorithm and 10 state-of-the-art optimizers is evaluated on 46 benchmarks, including convergence, solution accuracy, robustness, diversity, significance, and the dimensional-scalability on CEC 2017 benchmarks (50 Dim and 100 Dim). The statistical results suggest, with the dimensionality of the problem variable increasing, the computing efficiency of the proposed optimization technology keeps on the highest level at all times. The low-rank feature for IDSE on 46 benchmarks emphasizes the selective priority in solving the same optimization problem. In addition, IDSE also considers 7 real-world engineering problems. The comparison results suggest that IDSE is superior to competitive algorithms in improving solution accuracy and reducing optimization costs, indicating the significant performance for solving constraint optimization.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2022.06.008