Information-decision searching algorithm: Theory and applications for solving engineering optimization problems
The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of people acquiring favorable information, which is the society-based metaheuristic optimization mechanism, called the Information-Decision Search A...
Uložené v:
| Vydané v: | Information sciences Ročník 607; s. 1465 - 1531 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.08.2022
|
| Predmet: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of people acquiring favorable information, which is the society-based metaheuristic optimization mechanism, called the Information-Decision Search Algorithm(IDSE), aiming to provide a new optimization technology for solving real-world optimization problems. This optimization technology proposes special searching mechanisms of delivery behavior, approaching behavior, inheritance behavior, mutation behavior, interaction, and learning behavior, establishing corresponding mathematical models to develop an efficient optimization framework for solving constrained optimization. The performance of the proposed algorithm and 10 state-of-the-art optimizers is evaluated on 46 benchmarks, including convergence, solution accuracy, robustness, diversity, significance, and the dimensional-scalability on CEC 2017 benchmarks (50 Dim and 100 Dim). The statistical results suggest, with the dimensionality of the problem variable increasing, the computing efficiency of the proposed optimization technology keeps on the highest level at all times. The low-rank feature for IDSE on 46 benchmarks emphasizes the selective priority in solving the same optimization problem. In addition, IDSE also considers 7 real-world engineering problems. The comparison results suggest that IDSE is superior to competitive algorithms in improving solution accuracy and reducing optimization costs, indicating the significant performance for solving constraint optimization. |
|---|---|
| AbstractList | The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of people acquiring favorable information, which is the society-based metaheuristic optimization mechanism, called the Information-Decision Search Algorithm(IDSE), aiming to provide a new optimization technology for solving real-world optimization problems. This optimization technology proposes special searching mechanisms of delivery behavior, approaching behavior, inheritance behavior, mutation behavior, interaction, and learning behavior, establishing corresponding mathematical models to develop an efficient optimization framework for solving constrained optimization. The performance of the proposed algorithm and 10 state-of-the-art optimizers is evaluated on 46 benchmarks, including convergence, solution accuracy, robustness, diversity, significance, and the dimensional-scalability on CEC 2017 benchmarks (50 Dim and 100 Dim). The statistical results suggest, with the dimensionality of the problem variable increasing, the computing efficiency of the proposed optimization technology keeps on the highest level at all times. The low-rank feature for IDSE on 46 benchmarks emphasizes the selective priority in solving the same optimization problem. In addition, IDSE also considers 7 real-world engineering problems. The comparison results suggest that IDSE is superior to competitive algorithms in improving solution accuracy and reducing optimization costs, indicating the significant performance for solving constraint optimization. |
| Author | Li, Zhiqiang Wang, Kaiguang Guo, Min Dai, Cai |
| Author_xml | – sequence: 1 givenname: Kaiguang surname: Wang fullname: Wang, Kaiguang email: wangkg2020@snnu.edu.cn organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, School of Computer Science, Shaanxi Normal University, Xi’an 710119, China – sequence: 2 givenname: Min surname: Guo fullname: Guo, Min email: guomin@snnu.edu.cn organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, School of Computer Science, Shaanxi Normal University, Xi’an 710119, China – sequence: 3 givenname: Cai surname: Dai fullname: Dai, Cai email: cdai0320@snnu.edu.cn organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, School of Computer Science, Shaanxi Normal University, Xi’an 710119, China – sequence: 4 givenname: Zhiqiang surname: Li fullname: Li, Zhiqiang email: lizq@snnu.edu.cn organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, School of Computer Science, Shaanxi Normal University, Xi’an 710119, China |
| BookMark | eNp9kMtuwjAQRa2KSgXaD-jOP5B0bMAO7apCfSAhdcPecpwJDErsyI6Q6Nc3QFdddDV3cc9o5kzYyAePjD0KyAUI9XTIyadcgpQ5qByguGFjUWiZKbkUIzYGkJCBXCzu2CSlAwDMtVJjFta-DrG1PQWfVegoDYEntNHtye-4bXYhUr9vn_l2jyGeuPUVt13XkLtAiQ88T6E5nuvod-QR4zmHrqeWvi8t3sVQNtime3Zb2ybhw--csu3723b1mW2-Ptar103m5FL3mRWA5Uxr5YqqnNfaCamlKkCUWLkSqkK6paiFhdoWYEVR21INFVfaWroFzqZMXNe6GFKKWJsuUmvjyQgwZ2HmYAZh5izMgDKDsIHRfxhH_eX6Plpq_iVfriQOHx0Jo0mO0DusKKLrTRXoH_oHj7WMUg |
| CitedBy_id | crossref_primary_10_1038_s41598_022_27144_4 crossref_primary_10_1016_j_swevo_2025_102154 crossref_primary_10_1109_ACCESS_2023_3295242 crossref_primary_10_1016_j_ins_2023_120077 crossref_primary_10_3390_biomimetics10090628 crossref_primary_10_1007_s11227_025_07452_y crossref_primary_10_1007_s10586_025_05376_z crossref_primary_10_3390_en15155475 crossref_primary_10_3390_biomimetics10040233 crossref_primary_10_1007_s10586_025_05280_6 crossref_primary_10_1007_s42235_024_00510_w crossref_primary_10_1016_j_cma_2023_116307 crossref_primary_10_1016_j_ins_2022_08_021 crossref_primary_10_1007_s10586_025_05380_3 crossref_primary_10_1007_s10462_024_10946_5 crossref_primary_10_3390_biomimetics10020092 crossref_primary_10_1007_s10586_024_04447_x crossref_primary_10_1007_s12065_023_00861_z crossref_primary_10_1002_cpe_70282 crossref_primary_10_1016_j_cma_2023_116664 crossref_primary_10_1016_j_apm_2024_07_002 crossref_primary_10_1109_ACCESS_2023_3314514 crossref_primary_10_1111_exsy_70023 crossref_primary_10_1038_s41598_024_81144_0 crossref_primary_10_1007_s11227_025_07387_4 crossref_primary_10_1016_j_aei_2024_102464 crossref_primary_10_1016_j_eswa_2023_122732 crossref_primary_10_1016_j_cma_2025_117908 crossref_primary_10_1016_j_eswa_2023_120594 crossref_primary_10_1038_s41598_024_71828_y crossref_primary_10_3390_machines11020161 crossref_primary_10_1007_s00500_023_08468_3 crossref_primary_10_1007_s10489_025_06237_3 crossref_primary_10_1016_j_cma_2024_117429 |
| Cites_doi | 10.1504/IJBIC.2018.093328 10.1016/j.advengsoft.2015.01.010 10.1016/j.ins.2021.10.028 10.1109/4235.585893 10.1016/j.ins.2018.06.063 10.1016/j.ins.2021.02.039 10.1515/jaiscr-2015-0001 10.1109/TCYB.2019.2950779 10.1016/j.engappai.2018.04.021 10.1016/j.ins.2020.09.024 10.1109/TEVC.2017.2753538 10.1016/j.ins.2020.06.037 10.1007/s10898-007-9149-x 10.1007/s12559-018-9554-0 10.1016/j.ins.2015.09.051 10.1016/j.advengsoft.2013.12.007 10.1016/j.apm.2015.10.040 10.1007/s10462-017-9605-z 10.1007/s00521-015-1923-y 10.1016/j.ins.2019.08.069 10.1016/j.knosys.2018.11.024 10.1016/j.ins.2020.11.023 10.1016/j.future.2019.02.028 10.1007/s12293-016-0212-3 10.1016/j.apm.2018.06.036 10.1016/j.cnsns.2012.05.010 10.1007/s00500-018-3102-4 10.1007/s10489-020-01893-z 10.1016/j.future.2020.03.055 10.1002/acs.2866 10.3233/ICA-180594 10.1016/j.ins.2013.02.041 10.1007/s00521-015-1920-1 10.1016/j.knosys.2018.06.001 10.1177/003754970107600201 10.1016/j.advengsoft.2017.01.004 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2022.06.008 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 1531 |
| ExternalDocumentID | 10_1016_j_ins_2022_06_008 S0020025522005898 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-a10eb3776c8db4f7c12726801bedcb0d82c91f1a0fa80a18fab6127cbaf2c5e3 |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000834610600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 07:29:45 EST 2025 Tue Nov 18 21:12:35 EST 2025 Fri Feb 23 02:38:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Engineering design 68W20 Metaheuristic 68T20 68W50 68T05 Optimization mechanism Benchmark tests 68Q07 Constrained problems Statistical investigation Optimization problems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-a10eb3776c8db4f7c12726801bedcb0d82c91f1a0fa80a18fab6127cbaf2c5e3 |
| PageCount | 67 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2022_06_008 crossref_citationtrail_10_1016_j_ins_2022_06_008 elsevier_sciencedirect_doi_10_1016_j_ins_2022_06_008 |
| PublicationCentury | 2000 |
| PublicationDate | August 2022 2022-08-00 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b0055) 2021; 51 Liu, Wang, Huang (b0135) 2020; 509 Boussaid, Lepagnot, Siarry (b0120) 2013; 237 Wang, Li, Feng, Shen (b0225) 2021; 571 Morales-Castañeda, Zaldívar, Cuevas, Fausto, Rodríguez (b0030) 2020; 54 Dulebenets (b0155) 2021; 565 Sulaiman, Mustaffa, Saari, Daniyal (b0170) 2020; 87 Wang, Deb, Coelho (b0220) 2015 Dhiman, Kumar (b0250) 2018; 159 Mirjalili, Mirjalili, Lewis (b0095) 2014; 69 Abualigah, Diabat, Mirjalili, Elaziz, Gandomi (b0115) 2021; 376 Rodrigues-Jr, Gutierrez, Spadon, Brandoli, Amer-Yahia (b0165) 2021; 545 S. Cheng, Y.H. Shi, Q.D. Qin, Q.Y. Zhang, R.B. Bai, Population diversity maintenance in brain storm optimization algorithm. Journal of Artificial Intelligence and Soft Computing Research 4 (2) (2014) 83–97. URL:https://www.sciendo.com/article/10.1515/jaiscr-2015-0001. Poveda, Benosman, Teel (b0145) 2019; 33 Dokeroglu, Sevinc, Kucukyilmaz, Cosar (b0125) 2019; 137 Schranz, Caro, Schmickl, Elmenreich, Arvin, Şekercioğlu, Sende (b0065) 2021; 60 Wu (b0025) 2016; 329 Fathollahi-Fard, Dulebenets, Hajiaghaei Keshteli, Hajiaghaei Keshteli, Tavakkoli-Moghaddam, Safaeian, Mirzahosseinia (b0160) 2021; 50 Saremi, Mirjalili, Lewis (b0075) 2017; 105 Wolpert, Macready (b0080) 1997; 1 Pasha, Dulebenets, Fathollahi-Fard, Tian, Lau, Singh, Liang (b0150) 2021; 48 Wang, Deb, Cui (b0105) 2019; 31 Zhao, Zhang, Wang (b0230) 2020; 87 Tan, Li, Wang (b0085) 2021; 549 Dhiman, Kumar (b0235) 2019; 65 Zhao, Zhang (b0130) 2020; 509 Zervoudakis, Tsafarakis (b0005) 2020; 145 Corus, Dang, Eremeev, Lehre (b0045) 2017; 22 Cheraghalipour, Hajiaghaei-Keshteli, Paydar (b0090) 2018; 72 Karaboga, Basturk (b0205) 2007; 39 Hussain, Salleh, Cheng, Shi (b0020) 2019; 52 Yang (b0035) 2020; 46 Savsani, Savsani (b0245) 2016; 40 Li, Chen, Wang, Heidari, Mirjalili (b0195) 2020; 111 Wang (b0215) 2018; 10 Molina, LaTorre, Herrera (b0070) 2018; 10 Geem, Kim, Loganathan (b0060) 2001; 76 Mirjalili (b0100) 2016; 27 Mirjalili (b0175) 2015; 83 Pereira, Oliver, Francisco, Cunha, Gomes (b0140) 2022; 187 Zhang, Xiao, Gao, Pan (b0240) 2018; 63 Ahmadianfar, Bozorg-Haddad, Chu (b0110) 2020; 540 Gandomi, Alavi (b0200) 2012; 17 Sun, Cao, Zhu, Zhao (b0015) 2019; 50 Liu, Wang, Fan, Wei, Tong (b0010) 2019; 26 Wang, Deb, Coelho (b0210) 2018; 12 Arora, Singh (b0185) 2019; 23 Lacerda, Araujo-Pessoa, Lima-Neto, Ludermir, Kuchen (b0040) 2021; 60 Liu, Nishi (b0050) 2022; 582 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0190) 2019; 97 Heidari (10.1016/j.ins.2022.06.008_b0190) 2019; 97 Wang (10.1016/j.ins.2022.06.008_b0105) 2019; 31 Wang (10.1016/j.ins.2022.06.008_b0220) 2015 Dhiman (10.1016/j.ins.2022.06.008_b0250) 2018; 159 Hussain (10.1016/j.ins.2022.06.008_b0020) 2019; 52 Abualigah (10.1016/j.ins.2022.06.008_b0115) 2021; 376 Zervoudakis (10.1016/j.ins.2022.06.008_b0005) 2020; 145 Pasha (10.1016/j.ins.2022.06.008_b0150) 2021; 48 Sun (10.1016/j.ins.2022.06.008_b0015) 2019; 50 Wang (10.1016/j.ins.2022.06.008_b0225) 2021; 571 10.1016/j.ins.2022.06.008_b0180 Wolpert (10.1016/j.ins.2022.06.008_b0080) 1997; 1 Wu (10.1016/j.ins.2022.06.008_b0025) 2016; 329 Dhiman (10.1016/j.ins.2022.06.008_b0235) 2019; 65 Mirjalili (10.1016/j.ins.2022.06.008_b0095) 2014; 69 Gandomi (10.1016/j.ins.2022.06.008_b0200) 2012; 17 Lacerda (10.1016/j.ins.2022.06.008_b0040) 2021; 60 Molina (10.1016/j.ins.2022.06.008_b0070) 2018; 10 Yang (10.1016/j.ins.2022.06.008_b0035) 2020; 46 Poveda (10.1016/j.ins.2022.06.008_b0145) 2019; 33 Rodrigues-Jr (10.1016/j.ins.2022.06.008_b0165) 2021; 545 Wang (10.1016/j.ins.2022.06.008_b0210) 2018; 12 Savsani (10.1016/j.ins.2022.06.008_b0245) 2016; 40 Liu (10.1016/j.ins.2022.06.008_b0135) 2020; 509 Schranz (10.1016/j.ins.2022.06.008_b0065) 2021; 60 Karaboga (10.1016/j.ins.2022.06.008_b0205) 2007; 39 Geem (10.1016/j.ins.2022.06.008_b0060) 2001; 76 Ahmadianfar (10.1016/j.ins.2022.06.008_b0110) 2020; 540 Boussaid (10.1016/j.ins.2022.06.008_b0120) 2013; 237 Cheraghalipour (10.1016/j.ins.2022.06.008_b0090) 2018; 72 Tan (10.1016/j.ins.2022.06.008_b0085) 2021; 549 Dokeroglu (10.1016/j.ins.2022.06.008_b0125) 2019; 137 Sulaiman (10.1016/j.ins.2022.06.008_b0170) 2020; 87 Li (10.1016/j.ins.2022.06.008_b0195) 2020; 111 Fathollahi-Fard (10.1016/j.ins.2022.06.008_b0160) 2021; 50 Mirjalili (10.1016/j.ins.2022.06.008_b0175) 2015; 83 Corus (10.1016/j.ins.2022.06.008_b0045) 2017; 22 Zhang (10.1016/j.ins.2022.06.008_b0240) 2018; 63 Zhao (10.1016/j.ins.2022.06.008_b0230) 2020; 87 Mirjalili (10.1016/j.ins.2022.06.008_b0100) 2016; 27 Hashim (10.1016/j.ins.2022.06.008_b0055) 2021; 51 Liu (10.1016/j.ins.2022.06.008_b0050) 2022; 582 Liu (10.1016/j.ins.2022.06.008_b0010) 2019; 26 Pereira (10.1016/j.ins.2022.06.008_b0140) 2022; 187 Arora (10.1016/j.ins.2022.06.008_b0185) 2019; 23 Saremi (10.1016/j.ins.2022.06.008_b0075) 2017; 105 Dulebenets (10.1016/j.ins.2022.06.008_b0155) 2021; 565 Morales-Castañeda (10.1016/j.ins.2022.06.008_b0030) 2020; 54 Wang (10.1016/j.ins.2022.06.008_b0215) 2018; 10 Zhao (10.1016/j.ins.2022.06.008_b0130) 2020; 509 |
| References_xml | – volume: 509 start-page: 400 year: 2020 end-page: 419 ident: b0135 article-title: AnD: a many-objective evolutionary algorithm with angle-based selection and shift-based density estimation publication-title: Information Sciences – volume: 145 year: 2020 ident: b0005 article-title: A mayfly optimization algorithm publication-title: Computers & Industrial Engineering – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0080 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 60 year: 2021 ident: b0065 article-title: Swarm intelligence and cyber-physical systems: concepts, challenges and future trends publication-title: Swarm and Evolutionary Computation – reference: S. Cheng, Y.H. Shi, Q.D. Qin, Q.Y. Zhang, R.B. Bai, Population diversity maintenance in brain storm optimization algorithm. Journal of Artificial Intelligence and Soft Computing Research 4 (2) (2014) 83–97. URL:https://www.sciendo.com/article/10.1515/jaiscr-2015-0001. – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: b0200 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b0075 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Advances in Engineering Software – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b0205 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization – volume: 26 start-page: 159 year: 2019 end-page: 184 ident: b0010 article-title: A convergence-diversity balanced fitness evaluation mechanism for decomposition-based many-objective optimization algorithm publication-title: Integrated Computer-Aided Engineering – volume: 237 start-page: 82 year: 2013 end-page: 117 ident: b0120 article-title: A survey on optimization metaheuristics publication-title: Information sciences – volume: 31 start-page: 1995 year: 2019 end-page: 2014 ident: b0105 article-title: Monarch butterfly optimization publication-title: Neural Computing and Applications – volume: 33 start-page: 228 year: 2019 end-page: 261 ident: b0145 article-title: Hybrid online learning control in networked multiagent systems: a survey publication-title: International Journal of Adaptive Control and Signal Processing – volume: 10 start-page: 151 year: 2018 end-page: 164 ident: b0215 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Computing – volume: 23 start-page: 715 year: 2019 end-page: 734 ident: b0185 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Computing – volume: 51 start-page: 1531 year: 2021 end-page: 1551 ident: b0055 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Applied Intelligence – volume: 10 start-page: 517 year: 2018 end-page: 544 ident: b0070 article-title: An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions publication-title: Cognitive Computation – volume: 12 start-page: 1 year: 2018 end-page: 22 ident: b0210 article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems publication-title: International Journal of Bio-Inspired Computation – volume: 22 start-page: 707 year: 2017 end-page: 719 ident: b0045 article-title: Level-based analysis of genetic algorithms and other search processes publication-title: IEEE Transactions on Evolutionary Computation – volume: 540 start-page: 131 year: 2020 end-page: 159 ident: b0110 article-title: Gradient-based optimizer: a new metaheuristic optimization algorithm publication-title: Information Sciences – volume: 137 year: 2019 ident: b0125 article-title: A survey on new generation metaheuristic algorithms publication-title: Computers & Industrial Engineering – volume: 159 start-page: 20 year: 2018 end-page: 50 ident: b0250 article-title: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems publication-title: Knowledge-Based Systems – volume: 565 start-page: 390 year: 2021 end-page: 421 ident: b0155 article-title: An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal publication-title: Information Sciences – volume: 87 year: 2020 ident: b0230 article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications publication-title: Engineering Applications of Artificial Intelligence – volume: 545 start-page: 813 year: 2021 end-page: 827 ident: b0165 article-title: LIG-doctor: efficient patient trajectory prediction using bidirectional minimal gated-recurrent networks publication-title: Information Sciences – volume: 46 year: 2020 ident: b0035 article-title: Nature-inspired optimization algorithms: challenges and open problems publication-title: Journal of Computational Science – volume: 65 start-page: 169 year: 2019 end-page: 196 ident: b0235 article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems publication-title: Knowledge-Based Systems – volume: 52 start-page: 2191 year: 2019 end-page: 2233 ident: b0020 article-title: Metaheuristic research: a comprehensive survey publication-title: Artificial Intelligence Review – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0095 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 376 year: 2021 ident: b0115 article-title: The arithmetic optimization algorithm publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 63 start-page: 464 year: 2018 end-page: 490 ident: b0240 article-title: Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems publication-title: Applied Mathematical Modelling – volume: 571 start-page: 358 year: 2021 end-page: 374 ident: b0225 article-title: An adaptive fuzzy penalty method for constrained evolutionary optimization publication-title: Information Sciences – volume: 48 year: 2021 ident: b0150 article-title: An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations publication-title: Advanced Engineering Informatics – volume: 187 year: 2022 ident: b0140 article-title: Multi-objective lichtenberg algorithm: a hybrid physics-based meta-heuristic for solving engineering problems publication-title: Expert Systems with Applications – start-page: 1 year: 2015 end-page: 5 ident: b0220 article-title: Elephant herding optimization publication-title: International Symposium on Computational and Business Intelligence (ISCBI) – volume: 54 year: 2020 ident: b0030 article-title: A better balance in metaheuristic algorithms: does it exist? publication-title: Swarm and Evolutionary Computation – volume: 60 year: 2021 ident: b0040 article-title: A systematic literature review on general parameter control for evolutionary and swarm-based algorithms publication-title: Swarm and Evolutionary Computation – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b0175 article-title: The ant lion optimizer publication-title: Advances in Engineering Software – volume: 87 year: 2020 ident: b0170 article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems publication-title: Engineering Applications of Artificial Intelligence – volume: 329 start-page: 597 year: 2016 end-page: 618 ident: b0025 article-title: Across neighborhood search for numerical optimization publication-title: Information Sciences – volume: 582 start-page: 665 year: 2022 end-page: 703 ident: b0050 article-title: Strategy dynamics particle swarm optimizer publication-title: Information Sciences – volume: 40 start-page: 3951 year: 2016 end-page: 3978 ident: b0245 article-title: Passing vehicle search (PVS): a novel metaheuristic algorithm publication-title: Applied Mathematical Modelling – volume: 509 start-page: 1 year: 2020 end-page: 21 ident: b0130 article-title: An online-learning-based evolutionary many-objective algorithm publication-title: Information Sciences – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b0100 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications – volume: 549 start-page: 142 year: 2021 end-page: 163 ident: b0085 article-title: Differential evolution with adaptive mutation strategy based on fitness landscape analysis publication-title: Information Sciences – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: b0060 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation – volume: 111 start-page: 300 year: 2020 end-page: 323 ident: b0195 article-title: Slime mould algorithm: a new method for stochastic optimization publication-title: Future Generation Computer Systems – volume: 50 year: 2021 ident: b0160 article-title: Two hybrid meta-heuristic algorithms for a dual-channel closed-loop supply chain network design problem in the tire industry under uncertainty publication-title: Advanced Engineering Informatics – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b0190 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Generation Computer Systems – volume: 50 start-page: 3668 year: 2019 end-page: 3681 ident: b0015 article-title: A survey of optimization methods from a machine learning perspective publication-title: IEEE Transactions on Cybernetics – volume: 72 start-page: 393 year: 2018 end-page: 414 ident: b0090 article-title: Tree growth algorithm (TGA): a novel approach for solving optimization problems publication-title: Engineering Applications of Artificial Intelligence – volume: 12 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ins.2022.06.008_b0210 article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2018.093328 – volume: 83 start-page: 80 issue: 5 year: 2015 ident: 10.1016/j.ins.2022.06.008_b0175 article-title: The ant lion optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.01.010 – volume: 582 start-page: 665 issue: 1 year: 2022 ident: 10.1016/j.ins.2022.06.008_b0050 article-title: Strategy dynamics particle swarm optimizer publication-title: Information Sciences doi: 10.1016/j.ins.2021.10.028 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.ins.2022.06.008_b0080 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 509 start-page: 400 issue: 1 year: 2020 ident: 10.1016/j.ins.2022.06.008_b0135 article-title: AnD: a many-objective evolutionary algorithm with angle-based selection and shift-based density estimation publication-title: Information Sciences doi: 10.1016/j.ins.2018.06.063 – volume: 565 start-page: 390 issue: 7 year: 2021 ident: 10.1016/j.ins.2022.06.008_b0155 article-title: An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal publication-title: Information Sciences doi: 10.1016/j.ins.2021.02.039 – ident: 10.1016/j.ins.2022.06.008_b0180 doi: 10.1515/jaiscr-2015-0001 – volume: 50 start-page: 3668 issue: 8 year: 2019 ident: 10.1016/j.ins.2022.06.008_b0015 article-title: A survey of optimization methods from a machine learning perspective publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2019.2950779 – volume: 50 issue: 10 year: 2021 ident: 10.1016/j.ins.2022.06.008_b0160 article-title: Two hybrid meta-heuristic algorithms for a dual-channel closed-loop supply chain network design problem in the tire industry under uncertainty publication-title: Advanced Engineering Informatics – volume: 48 issue: 4 year: 2021 ident: 10.1016/j.ins.2022.06.008_b0150 article-title: An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations publication-title: Advanced Engineering Informatics – start-page: 1 year: 2015 ident: 10.1016/j.ins.2022.06.008_b0220 article-title: Elephant herding optimization – volume: 72 start-page: 393 issue: 6 year: 2018 ident: 10.1016/j.ins.2022.06.008_b0090 article-title: Tree growth algorithm (TGA): a novel approach for solving optimization problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2018.04.021 – volume: 545 start-page: 813 issue: 2 year: 2021 ident: 10.1016/j.ins.2022.06.008_b0165 article-title: LIG-doctor: efficient patient trajectory prediction using bidirectional minimal gated-recurrent networks publication-title: Information Sciences doi: 10.1016/j.ins.2020.09.024 – volume: 22 start-page: 707 issue: 5 year: 2017 ident: 10.1016/j.ins.2022.06.008_b0045 article-title: Level-based analysis of genetic algorithms and other search processes publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2017.2753538 – volume: 540 start-page: 131 issue: 12 year: 2020 ident: 10.1016/j.ins.2022.06.008_b0110 article-title: Gradient-based optimizer: a new metaheuristic optimization algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2020.06.037 – volume: 376 issue: 4 year: 2021 ident: 10.1016/j.ins.2022.06.008_b0115 article-title: The arithmetic optimization algorithm publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.ins.2022.06.008_b0205 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization doi: 10.1007/s10898-007-9149-x – volume: 10 start-page: 517 issue: 4 year: 2018 ident: 10.1016/j.ins.2022.06.008_b0070 article-title: An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions publication-title: Cognitive Computation doi: 10.1007/s12559-018-9554-0 – volume: 137 issue: 12 year: 2019 ident: 10.1016/j.ins.2022.06.008_b0125 article-title: A survey on new generation metaheuristic algorithms publication-title: Computers & Industrial Engineering – volume: 60 issue: 2 year: 2021 ident: 10.1016/j.ins.2022.06.008_b0065 article-title: Swarm intelligence and cyber-physical systems: concepts, challenges and future trends publication-title: Swarm and Evolutionary Computation – volume: 329 start-page: 597 issue: 2 year: 2016 ident: 10.1016/j.ins.2022.06.008_b0025 article-title: Across neighborhood search for numerical optimization publication-title: Information Sciences doi: 10.1016/j.ins.2015.09.051 – volume: 187 issue: 1 year: 2022 ident: 10.1016/j.ins.2022.06.008_b0140 article-title: Multi-objective lichtenberg algorithm: a hybrid physics-based meta-heuristic for solving engineering problems publication-title: Expert Systems with Applications – volume: 60 issue: 2 year: 2021 ident: 10.1016/j.ins.2022.06.008_b0040 article-title: A systematic literature review on general parameter control for evolutionary and swarm-based algorithms publication-title: Swarm and Evolutionary Computation – volume: 69 start-page: 46 issue: 3 year: 2014 ident: 10.1016/j.ins.2022.06.008_b0095 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 87 issue: 1 year: 2020 ident: 10.1016/j.ins.2022.06.008_b0170 article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems publication-title: Engineering Applications of Artificial Intelligence – volume: 40 start-page: 3951 issue: 5–6 year: 2016 ident: 10.1016/j.ins.2022.06.008_b0245 article-title: Passing vehicle search (PVS): a novel metaheuristic algorithm publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2015.10.040 – volume: 52 start-page: 2191 issue: 4 year: 2019 ident: 10.1016/j.ins.2022.06.008_b0020 article-title: Metaheuristic research: a comprehensive survey publication-title: Artificial Intelligence Review doi: 10.1007/s10462-017-9605-z – volume: 31 start-page: 1995 issue: 7 year: 2019 ident: 10.1016/j.ins.2022.06.008_b0105 article-title: Monarch butterfly optimization publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1923-y – volume: 46 issue: 10 year: 2020 ident: 10.1016/j.ins.2022.06.008_b0035 article-title: Nature-inspired optimization algorithms: challenges and open problems publication-title: Journal of Computational Science – volume: 54 issue: 5 year: 2020 ident: 10.1016/j.ins.2022.06.008_b0030 article-title: A better balance in metaheuristic algorithms: does it exist? publication-title: Swarm and Evolutionary Computation – volume: 509 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.ins.2022.06.008_b0130 article-title: An online-learning-based evolutionary many-objective algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2019.08.069 – volume: 65 start-page: 169 issue: 2 year: 2019 ident: 10.1016/j.ins.2022.06.008_b0235 article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.11.024 – volume: 571 start-page: 358 issue: 9 year: 2021 ident: 10.1016/j.ins.2022.06.008_b0225 article-title: An adaptive fuzzy penalty method for constrained evolutionary optimization publication-title: Information Sciences – volume: 549 start-page: 142 issue: 3 year: 2021 ident: 10.1016/j.ins.2022.06.008_b0085 article-title: Differential evolution with adaptive mutation strategy based on fitness landscape analysis publication-title: Information Sciences doi: 10.1016/j.ins.2020.11.023 – volume: 97 start-page: 849 issue: 8 year: 2019 ident: 10.1016/j.ins.2022.06.008_b0190 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – volume: 10 start-page: 151 issue: 2 year: 2018 ident: 10.1016/j.ins.2022.06.008_b0215 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Computing doi: 10.1007/s12293-016-0212-3 – volume: 63 start-page: 464 issue: 12 year: 2018 ident: 10.1016/j.ins.2022.06.008_b0240 article-title: Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2018.06.036 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 10.1016/j.ins.2022.06.008_b0200 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2012.05.010 – volume: 145 issue: 7 year: 2020 ident: 10.1016/j.ins.2022.06.008_b0005 article-title: A mayfly optimization algorithm publication-title: Computers & Industrial Engineering – volume: 23 start-page: 715 issue: 3 year: 2019 ident: 10.1016/j.ins.2022.06.008_b0185 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Computing doi: 10.1007/s00500-018-3102-4 – volume: 51 start-page: 1531 issue: 3 year: 2021 ident: 10.1016/j.ins.2022.06.008_b0055 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Applied Intelligence doi: 10.1007/s10489-020-01893-z – volume: 111 start-page: 300 issue: 10 year: 2020 ident: 10.1016/j.ins.2022.06.008_b0195 article-title: Slime mould algorithm: a new method for stochastic optimization publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2020.03.055 – volume: 33 start-page: 228 issue: 2 year: 2019 ident: 10.1016/j.ins.2022.06.008_b0145 article-title: Hybrid online learning control in networked multiagent systems: a survey publication-title: International Journal of Adaptive Control and Signal Processing doi: 10.1002/acs.2866 – volume: 26 start-page: 159 issue: 2 year: 2019 ident: 10.1016/j.ins.2022.06.008_b0010 article-title: A convergence-diversity balanced fitness evaluation mechanism for decomposition-based many-objective optimization algorithm publication-title: Integrated Computer-Aided Engineering doi: 10.3233/ICA-180594 – volume: 237 start-page: 82 issue: 10 year: 2013 ident: 10.1016/j.ins.2022.06.008_b0120 article-title: A survey on optimization metaheuristics publication-title: Information sciences doi: 10.1016/j.ins.2013.02.041 – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 10.1016/j.ins.2022.06.008_b0100 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1920-1 – volume: 87 issue: 1 year: 2020 ident: 10.1016/j.ins.2022.06.008_b0230 article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications publication-title: Engineering Applications of Artificial Intelligence – volume: 159 start-page: 20 issue: 12 year: 2018 ident: 10.1016/j.ins.2022.06.008_b0250 article-title: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.06.001 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 10.1016/j.ins.2022.06.008_b0060 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 105 start-page: 30 issue: 3 year: 2017 ident: 10.1016/j.ins.2022.06.008_b0075 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.01.004 |
| SSID | ssj0004766 |
| Score | 2.5401952 |
| Snippet | The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1465 |
| SubjectTerms | Benchmark tests Constrained problems Engineering design Metaheuristic Optimization mechanism Optimization problems Statistical investigation |
| Title | Information-decision searching algorithm: Theory and applications for solving engineering optimization problems |
| URI | https://dx.doi.org/10.1016/j.ins.2022.06.008 |
| Volume | 607 |
| WOSCitedRecordID | wos000834610600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEBRQC7TyAXFgZSlxsrHDrSqtClQVh5VYcYlsx2lTLUnZ7lb9DfxqxrGdWNW2ogcuUWTFj2S-zIw9L4Tex1mWU0E1kVxKkgqeEJEngpQZaCOaKSF5Fyh8wk5P-WyWfx-N_vhYmOs5axp-c5Nf_ldSQxsQ24TOPoDc_aDQAPdAdLgC2eH6T4R3AUZmAlK6CjpjZzEwAYnzs3ZRL8-9v4WxsXcJWwNLdud7CKvsDhv0kLFw3AKD-eUiN8euFs1VqN8Gk4-dcO2V9h_uaPqbqM9WwklM4_qzaq0Df4_Tz7ZG9oGofctJ1_DzvP5d-57uqAJ2ud5RbggdiIjZxITsN7NVbx0DBcY9CYQx8ON4LaO3Zw4XsDsxOdcp7ZKwRnyQat6Sf0vY9S6I3rvtooAhCjNE0Xn48Udok7JJDhxyc__L4ezrEGXLrOXbv4S3kXfegrfWsV7LCTSX6XP0zG058L6Fygs00s0WehokotxCuy58BX_AAQWxY_wvUbsOVLgHFe5B9QlbSGGAFA4hhaE_dpDCAaRwCCnsIfUKTY8OpwfHxJXqIIrmbElEHGmZMJYpXsq0YiqmjGag_UhdKhmVnKo8rmIRVYJHIuaVkKBaMyVFRdVEJ6_RRtM2ehthk7xUVCVVqTCqfiJ1LKsypZHgE6GqaAdF_ssWyqWxN9VU5sWdFN1BH_sulzaHy30Pp55chftPrHJZAPTu7vbmIXO8RU-G3-Md2lguVnoXPVbXy_pqsedw9xcQ264x |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information-decision+searching+algorithm%3A+Theory+and+applications+for+solving+engineering+optimization+problems&rft.jtitle=Information+sciences&rft.au=Wang%2C+Kaiguang&rft.au=Guo%2C+Min&rft.au=Dai%2C+Cai&rft.au=Li%2C+Zhiqiang&rft.date=2022-08-01&rft.issn=0020-0255&rft.volume=607&rft.spage=1465&rft.epage=1531&rft_id=info:doi/10.1016%2Fj.ins.2022.06.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_06_008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |