Information-decision searching algorithm: Theory and applications for solving engineering optimization problems

The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of people acquiring favorable information, which is the society-based metaheuristic optimization mechanism, called the Information-Decision Search A...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 607; s. 1465 - 1531
Hlavní autori: Wang, Kaiguang, Guo, Min, Dai, Cai, Li, Zhiqiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.08.2022
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of people acquiring favorable information, which is the society-based metaheuristic optimization mechanism, called the Information-Decision Search Algorithm(IDSE), aiming to provide a new optimization technology for solving real-world optimization problems. This optimization technology proposes special searching mechanisms of delivery behavior, approaching behavior, inheritance behavior, mutation behavior, interaction, and learning behavior, establishing corresponding mathematical models to develop an efficient optimization framework for solving constrained optimization. The performance of the proposed algorithm and 10 state-of-the-art optimizers is evaluated on 46 benchmarks, including convergence, solution accuracy, robustness, diversity, significance, and the dimensional-scalability on CEC 2017 benchmarks (50 Dim and 100 Dim). The statistical results suggest, with the dimensionality of the problem variable increasing, the computing efficiency of the proposed optimization technology keeps on the highest level at all times. The low-rank feature for IDSE on 46 benchmarks emphasizes the selective priority in solving the same optimization problem. In addition, IDSE also considers 7 real-world engineering problems. The comparison results suggest that IDSE is superior to competitive algorithms in improving solution accuracy and reducing optimization costs, indicating the significant performance for solving constraint optimization.
AbstractList The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of people acquiring favorable information, which is the society-based metaheuristic optimization mechanism, called the Information-Decision Search Algorithm(IDSE), aiming to provide a new optimization technology for solving real-world optimization problems. This optimization technology proposes special searching mechanisms of delivery behavior, approaching behavior, inheritance behavior, mutation behavior, interaction, and learning behavior, establishing corresponding mathematical models to develop an efficient optimization framework for solving constrained optimization. The performance of the proposed algorithm and 10 state-of-the-art optimizers is evaluated on 46 benchmarks, including convergence, solution accuracy, robustness, diversity, significance, and the dimensional-scalability on CEC 2017 benchmarks (50 Dim and 100 Dim). The statistical results suggest, with the dimensionality of the problem variable increasing, the computing efficiency of the proposed optimization technology keeps on the highest level at all times. The low-rank feature for IDSE on 46 benchmarks emphasizes the selective priority in solving the same optimization problem. In addition, IDSE also considers 7 real-world engineering problems. The comparison results suggest that IDSE is superior to competitive algorithms in improving solution accuracy and reducing optimization costs, indicating the significant performance for solving constraint optimization.
Author Li, Zhiqiang
Wang, Kaiguang
Guo, Min
Dai, Cai
Author_xml – sequence: 1
  givenname: Kaiguang
  surname: Wang
  fullname: Wang, Kaiguang
  email: wangkg2020@snnu.edu.cn
  organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
– sequence: 2
  givenname: Min
  surname: Guo
  fullname: Guo, Min
  email: guomin@snnu.edu.cn
  organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
– sequence: 3
  givenname: Cai
  surname: Dai
  fullname: Dai, Cai
  email: cdai0320@snnu.edu.cn
  organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
– sequence: 4
  givenname: Zhiqiang
  surname: Li
  fullname: Li, Zhiqiang
  email: lizq@snnu.edu.cn
  organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
BookMark eNp9kMtuwjAQRa2KSgXaD-jOP5B0bMAO7apCfSAhdcPecpwJDErsyI6Q6Nc3QFdddDV3cc9o5kzYyAePjD0KyAUI9XTIyadcgpQ5qByguGFjUWiZKbkUIzYGkJCBXCzu2CSlAwDMtVJjFta-DrG1PQWfVegoDYEntNHtye-4bXYhUr9vn_l2jyGeuPUVt13XkLtAiQ88T6E5nuvod-QR4zmHrqeWvi8t3sVQNtime3Zb2ybhw--csu3723b1mW2-Ptar103m5FL3mRWA5Uxr5YqqnNfaCamlKkCUWLkSqkK6paiFhdoWYEVR21INFVfaWroFzqZMXNe6GFKKWJsuUmvjyQgwZ2HmYAZh5izMgDKDsIHRfxhH_eX6Plpq_iVfriQOHx0Jo0mO0DusKKLrTRXoH_oHj7WMUg
CitedBy_id crossref_primary_10_1038_s41598_022_27144_4
crossref_primary_10_1016_j_swevo_2025_102154
crossref_primary_10_1109_ACCESS_2023_3295242
crossref_primary_10_1016_j_ins_2023_120077
crossref_primary_10_3390_biomimetics10090628
crossref_primary_10_1007_s11227_025_07452_y
crossref_primary_10_1007_s10586_025_05376_z
crossref_primary_10_3390_en15155475
crossref_primary_10_3390_biomimetics10040233
crossref_primary_10_1007_s10586_025_05280_6
crossref_primary_10_1007_s42235_024_00510_w
crossref_primary_10_1016_j_cma_2023_116307
crossref_primary_10_1016_j_ins_2022_08_021
crossref_primary_10_1007_s10586_025_05380_3
crossref_primary_10_1007_s10462_024_10946_5
crossref_primary_10_3390_biomimetics10020092
crossref_primary_10_1007_s10586_024_04447_x
crossref_primary_10_1007_s12065_023_00861_z
crossref_primary_10_1002_cpe_70282
crossref_primary_10_1016_j_cma_2023_116664
crossref_primary_10_1016_j_apm_2024_07_002
crossref_primary_10_1109_ACCESS_2023_3314514
crossref_primary_10_1111_exsy_70023
crossref_primary_10_1038_s41598_024_81144_0
crossref_primary_10_1007_s11227_025_07387_4
crossref_primary_10_1016_j_aei_2024_102464
crossref_primary_10_1016_j_eswa_2023_122732
crossref_primary_10_1016_j_cma_2025_117908
crossref_primary_10_1016_j_eswa_2023_120594
crossref_primary_10_1038_s41598_024_71828_y
crossref_primary_10_3390_machines11020161
crossref_primary_10_1007_s00500_023_08468_3
crossref_primary_10_1007_s10489_025_06237_3
crossref_primary_10_1016_j_cma_2024_117429
Cites_doi 10.1504/IJBIC.2018.093328
10.1016/j.advengsoft.2015.01.010
10.1016/j.ins.2021.10.028
10.1109/4235.585893
10.1016/j.ins.2018.06.063
10.1016/j.ins.2021.02.039
10.1515/jaiscr-2015-0001
10.1109/TCYB.2019.2950779
10.1016/j.engappai.2018.04.021
10.1016/j.ins.2020.09.024
10.1109/TEVC.2017.2753538
10.1016/j.ins.2020.06.037
10.1007/s10898-007-9149-x
10.1007/s12559-018-9554-0
10.1016/j.ins.2015.09.051
10.1016/j.advengsoft.2013.12.007
10.1016/j.apm.2015.10.040
10.1007/s10462-017-9605-z
10.1007/s00521-015-1923-y
10.1016/j.ins.2019.08.069
10.1016/j.knosys.2018.11.024
10.1016/j.ins.2020.11.023
10.1016/j.future.2019.02.028
10.1007/s12293-016-0212-3
10.1016/j.apm.2018.06.036
10.1016/j.cnsns.2012.05.010
10.1007/s00500-018-3102-4
10.1007/s10489-020-01893-z
10.1016/j.future.2020.03.055
10.1002/acs.2866
10.3233/ICA-180594
10.1016/j.ins.2013.02.041
10.1007/s00521-015-1920-1
10.1016/j.knosys.2018.06.001
10.1177/003754970107600201
10.1016/j.advengsoft.2017.01.004
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.06.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 1531
ExternalDocumentID 10_1016_j_ins_2022_06_008
S0020025522005898
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-a10eb3776c8db4f7c12726801bedcb0d82c91f1a0fa80a18fab6127cbaf2c5e3
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000834610600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:29:45 EST 2025
Tue Nov 18 21:12:35 EST 2025
Fri Feb 23 02:38:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Engineering design
68W20
Metaheuristic
68T20
68W50
68T05
Optimization mechanism
Benchmark tests
68Q07
Constrained problems
Statistical investigation
Optimization problems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-a10eb3776c8db4f7c12726801bedcb0d82c91f1a0fa80a18fab6127cbaf2c5e3
PageCount 67
ParticipantIDs crossref_primary_10_1016_j_ins_2022_06_008
crossref_citationtrail_10_1016_j_ins_2022_06_008
elsevier_sciencedirect_doi_10_1016_j_ins_2022_06_008
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b0055) 2021; 51
Liu, Wang, Huang (b0135) 2020; 509
Boussaid, Lepagnot, Siarry (b0120) 2013; 237
Wang, Li, Feng, Shen (b0225) 2021; 571
Morales-Castañeda, Zaldívar, Cuevas, Fausto, Rodríguez (b0030) 2020; 54
Dulebenets (b0155) 2021; 565
Sulaiman, Mustaffa, Saari, Daniyal (b0170) 2020; 87
Wang, Deb, Coelho (b0220) 2015
Dhiman, Kumar (b0250) 2018; 159
Mirjalili, Mirjalili, Lewis (b0095) 2014; 69
Abualigah, Diabat, Mirjalili, Elaziz, Gandomi (b0115) 2021; 376
Rodrigues-Jr, Gutierrez, Spadon, Brandoli, Amer-Yahia (b0165) 2021; 545
S. Cheng, Y.H. Shi, Q.D. Qin, Q.Y. Zhang, R.B. Bai, Population diversity maintenance in brain storm optimization algorithm. Journal of Artificial Intelligence and Soft Computing Research 4 (2) (2014) 83–97. URL:https://www.sciendo.com/article/10.1515/jaiscr-2015-0001.
Poveda, Benosman, Teel (b0145) 2019; 33
Dokeroglu, Sevinc, Kucukyilmaz, Cosar (b0125) 2019; 137
Schranz, Caro, Schmickl, Elmenreich, Arvin, Şekercioğlu, Sende (b0065) 2021; 60
Wu (b0025) 2016; 329
Fathollahi-Fard, Dulebenets, Hajiaghaei Keshteli, Hajiaghaei Keshteli, Tavakkoli-Moghaddam, Safaeian, Mirzahosseinia (b0160) 2021; 50
Saremi, Mirjalili, Lewis (b0075) 2017; 105
Wolpert, Macready (b0080) 1997; 1
Pasha, Dulebenets, Fathollahi-Fard, Tian, Lau, Singh, Liang (b0150) 2021; 48
Wang, Deb, Cui (b0105) 2019; 31
Zhao, Zhang, Wang (b0230) 2020; 87
Tan, Li, Wang (b0085) 2021; 549
Dhiman, Kumar (b0235) 2019; 65
Zhao, Zhang (b0130) 2020; 509
Zervoudakis, Tsafarakis (b0005) 2020; 145
Corus, Dang, Eremeev, Lehre (b0045) 2017; 22
Cheraghalipour, Hajiaghaei-Keshteli, Paydar (b0090) 2018; 72
Karaboga, Basturk (b0205) 2007; 39
Hussain, Salleh, Cheng, Shi (b0020) 2019; 52
Yang (b0035) 2020; 46
Savsani, Savsani (b0245) 2016; 40
Li, Chen, Wang, Heidari, Mirjalili (b0195) 2020; 111
Wang (b0215) 2018; 10
Molina, LaTorre, Herrera (b0070) 2018; 10
Geem, Kim, Loganathan (b0060) 2001; 76
Mirjalili (b0100) 2016; 27
Mirjalili (b0175) 2015; 83
Pereira, Oliver, Francisco, Cunha, Gomes (b0140) 2022; 187
Zhang, Xiao, Gao, Pan (b0240) 2018; 63
Ahmadianfar, Bozorg-Haddad, Chu (b0110) 2020; 540
Gandomi, Alavi (b0200) 2012; 17
Sun, Cao, Zhu, Zhao (b0015) 2019; 50
Liu, Wang, Fan, Wei, Tong (b0010) 2019; 26
Wang, Deb, Coelho (b0210) 2018; 12
Arora, Singh (b0185) 2019; 23
Lacerda, Araujo-Pessoa, Lima-Neto, Ludermir, Kuchen (b0040) 2021; 60
Liu, Nishi (b0050) 2022; 582
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0190) 2019; 97
Heidari (10.1016/j.ins.2022.06.008_b0190) 2019; 97
Wang (10.1016/j.ins.2022.06.008_b0105) 2019; 31
Wang (10.1016/j.ins.2022.06.008_b0220) 2015
Dhiman (10.1016/j.ins.2022.06.008_b0250) 2018; 159
Hussain (10.1016/j.ins.2022.06.008_b0020) 2019; 52
Abualigah (10.1016/j.ins.2022.06.008_b0115) 2021; 376
Zervoudakis (10.1016/j.ins.2022.06.008_b0005) 2020; 145
Pasha (10.1016/j.ins.2022.06.008_b0150) 2021; 48
Sun (10.1016/j.ins.2022.06.008_b0015) 2019; 50
Wang (10.1016/j.ins.2022.06.008_b0225) 2021; 571
10.1016/j.ins.2022.06.008_b0180
Wolpert (10.1016/j.ins.2022.06.008_b0080) 1997; 1
Wu (10.1016/j.ins.2022.06.008_b0025) 2016; 329
Dhiman (10.1016/j.ins.2022.06.008_b0235) 2019; 65
Mirjalili (10.1016/j.ins.2022.06.008_b0095) 2014; 69
Gandomi (10.1016/j.ins.2022.06.008_b0200) 2012; 17
Lacerda (10.1016/j.ins.2022.06.008_b0040) 2021; 60
Molina (10.1016/j.ins.2022.06.008_b0070) 2018; 10
Yang (10.1016/j.ins.2022.06.008_b0035) 2020; 46
Poveda (10.1016/j.ins.2022.06.008_b0145) 2019; 33
Rodrigues-Jr (10.1016/j.ins.2022.06.008_b0165) 2021; 545
Wang (10.1016/j.ins.2022.06.008_b0210) 2018; 12
Savsani (10.1016/j.ins.2022.06.008_b0245) 2016; 40
Liu (10.1016/j.ins.2022.06.008_b0135) 2020; 509
Schranz (10.1016/j.ins.2022.06.008_b0065) 2021; 60
Karaboga (10.1016/j.ins.2022.06.008_b0205) 2007; 39
Geem (10.1016/j.ins.2022.06.008_b0060) 2001; 76
Ahmadianfar (10.1016/j.ins.2022.06.008_b0110) 2020; 540
Boussaid (10.1016/j.ins.2022.06.008_b0120) 2013; 237
Cheraghalipour (10.1016/j.ins.2022.06.008_b0090) 2018; 72
Tan (10.1016/j.ins.2022.06.008_b0085) 2021; 549
Dokeroglu (10.1016/j.ins.2022.06.008_b0125) 2019; 137
Sulaiman (10.1016/j.ins.2022.06.008_b0170) 2020; 87
Li (10.1016/j.ins.2022.06.008_b0195) 2020; 111
Fathollahi-Fard (10.1016/j.ins.2022.06.008_b0160) 2021; 50
Mirjalili (10.1016/j.ins.2022.06.008_b0175) 2015; 83
Corus (10.1016/j.ins.2022.06.008_b0045) 2017; 22
Zhang (10.1016/j.ins.2022.06.008_b0240) 2018; 63
Zhao (10.1016/j.ins.2022.06.008_b0230) 2020; 87
Mirjalili (10.1016/j.ins.2022.06.008_b0100) 2016; 27
Hashim (10.1016/j.ins.2022.06.008_b0055) 2021; 51
Liu (10.1016/j.ins.2022.06.008_b0050) 2022; 582
Liu (10.1016/j.ins.2022.06.008_b0010) 2019; 26
Pereira (10.1016/j.ins.2022.06.008_b0140) 2022; 187
Arora (10.1016/j.ins.2022.06.008_b0185) 2019; 23
Saremi (10.1016/j.ins.2022.06.008_b0075) 2017; 105
Dulebenets (10.1016/j.ins.2022.06.008_b0155) 2021; 565
Morales-Castañeda (10.1016/j.ins.2022.06.008_b0030) 2020; 54
Wang (10.1016/j.ins.2022.06.008_b0215) 2018; 10
Zhao (10.1016/j.ins.2022.06.008_b0130) 2020; 509
References_xml – volume: 509
  start-page: 400
  year: 2020
  end-page: 419
  ident: b0135
  article-title: AnD: a many-objective evolutionary algorithm with angle-based selection and shift-based density estimation
  publication-title: Information Sciences
– volume: 145
  year: 2020
  ident: b0005
  article-title: A mayfly optimization algorithm
  publication-title: Computers & Industrial Engineering
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0080
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 60
  year: 2021
  ident: b0065
  article-title: Swarm intelligence and cyber-physical systems: concepts, challenges and future trends
  publication-title: Swarm and Evolutionary Computation
– reference: S. Cheng, Y.H. Shi, Q.D. Qin, Q.Y. Zhang, R.B. Bai, Population diversity maintenance in brain storm optimization algorithm. Journal of Artificial Intelligence and Soft Computing Research 4 (2) (2014) 83–97. URL:https://www.sciendo.com/article/10.1515/jaiscr-2015-0001.
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4845
  ident: b0200
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b0075
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Advances in Engineering Software
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b0205
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
– volume: 26
  start-page: 159
  year: 2019
  end-page: 184
  ident: b0010
  article-title: A convergence-diversity balanced fitness evaluation mechanism for decomposition-based many-objective optimization algorithm
  publication-title: Integrated Computer-Aided Engineering
– volume: 237
  start-page: 82
  year: 2013
  end-page: 117
  ident: b0120
  article-title: A survey on optimization metaheuristics
  publication-title: Information sciences
– volume: 31
  start-page: 1995
  year: 2019
  end-page: 2014
  ident: b0105
  article-title: Monarch butterfly optimization
  publication-title: Neural Computing and Applications
– volume: 33
  start-page: 228
  year: 2019
  end-page: 261
  ident: b0145
  article-title: Hybrid online learning control in networked multiagent systems: a survey
  publication-title: International Journal of Adaptive Control and Signal Processing
– volume: 10
  start-page: 151
  year: 2018
  end-page: 164
  ident: b0215
  article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Computing
– volume: 23
  start-page: 715
  year: 2019
  end-page: 734
  ident: b0185
  article-title: Butterfly optimization algorithm: a novel approach for global optimization
  publication-title: Soft Computing
– volume: 51
  start-page: 1531
  year: 2021
  end-page: 1551
  ident: b0055
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Applied Intelligence
– volume: 10
  start-page: 517
  year: 2018
  end-page: 544
  ident: b0070
  article-title: An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions
  publication-title: Cognitive Computation
– volume: 12
  start-page: 1
  year: 2018
  end-page: 22
  ident: b0210
  article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems
  publication-title: International Journal of Bio-Inspired Computation
– volume: 22
  start-page: 707
  year: 2017
  end-page: 719
  ident: b0045
  article-title: Level-based analysis of genetic algorithms and other search processes
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 540
  start-page: 131
  year: 2020
  end-page: 159
  ident: b0110
  article-title: Gradient-based optimizer: a new metaheuristic optimization algorithm
  publication-title: Information Sciences
– volume: 137
  year: 2019
  ident: b0125
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Computers & Industrial Engineering
– volume: 159
  start-page: 20
  year: 2018
  end-page: 50
  ident: b0250
  article-title: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems
  publication-title: Knowledge-Based Systems
– volume: 565
  start-page: 390
  year: 2021
  end-page: 421
  ident: b0155
  article-title: An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal
  publication-title: Information Sciences
– volume: 87
  year: 2020
  ident: b0230
  article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 545
  start-page: 813
  year: 2021
  end-page: 827
  ident: b0165
  article-title: LIG-doctor: efficient patient trajectory prediction using bidirectional minimal gated-recurrent networks
  publication-title: Information Sciences
– volume: 46
  year: 2020
  ident: b0035
  article-title: Nature-inspired optimization algorithms: challenges and open problems
  publication-title: Journal of Computational Science
– volume: 65
  start-page: 169
  year: 2019
  end-page: 196
  ident: b0235
  article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems
  publication-title: Knowledge-Based Systems
– volume: 52
  start-page: 2191
  year: 2019
  end-page: 2233
  ident: b0020
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artificial Intelligence Review
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0095
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 376
  year: 2021
  ident: b0115
  article-title: The arithmetic optimization algorithm
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 63
  start-page: 464
  year: 2018
  end-page: 490
  ident: b0240
  article-title: Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems
  publication-title: Applied Mathematical Modelling
– volume: 571
  start-page: 358
  year: 2021
  end-page: 374
  ident: b0225
  article-title: An adaptive fuzzy penalty method for constrained evolutionary optimization
  publication-title: Information Sciences
– volume: 48
  year: 2021
  ident: b0150
  article-title: An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations
  publication-title: Advanced Engineering Informatics
– volume: 187
  year: 2022
  ident: b0140
  article-title: Multi-objective lichtenberg algorithm: a hybrid physics-based meta-heuristic for solving engineering problems
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2015
  end-page: 5
  ident: b0220
  article-title: Elephant herding optimization
  publication-title: International Symposium on Computational and Business Intelligence (ISCBI)
– volume: 54
  year: 2020
  ident: b0030
  article-title: A better balance in metaheuristic algorithms: does it exist?
  publication-title: Swarm and Evolutionary Computation
– volume: 60
  year: 2021
  ident: b0040
  article-title: A systematic literature review on general parameter control for evolutionary and swarm-based algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: b0175
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
– volume: 87
  year: 2020
  ident: b0170
  article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 329
  start-page: 597
  year: 2016
  end-page: 618
  ident: b0025
  article-title: Across neighborhood search for numerical optimization
  publication-title: Information Sciences
– volume: 582
  start-page: 665
  year: 2022
  end-page: 703
  ident: b0050
  article-title: Strategy dynamics particle swarm optimizer
  publication-title: Information Sciences
– volume: 40
  start-page: 3951
  year: 2016
  end-page: 3978
  ident: b0245
  article-title: Passing vehicle search (PVS): a novel metaheuristic algorithm
  publication-title: Applied Mathematical Modelling
– volume: 509
  start-page: 1
  year: 2020
  end-page: 21
  ident: b0130
  article-title: An online-learning-based evolutionary many-objective algorithm
  publication-title: Information Sciences
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b0100
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
– volume: 549
  start-page: 142
  year: 2021
  end-page: 163
  ident: b0085
  article-title: Differential evolution with adaptive mutation strategy based on fitness landscape analysis
  publication-title: Information Sciences
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: b0060
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation
– volume: 111
  start-page: 300
  year: 2020
  end-page: 323
  ident: b0195
  article-title: Slime mould algorithm: a new method for stochastic optimization
  publication-title: Future Generation Computer Systems
– volume: 50
  year: 2021
  ident: b0160
  article-title: Two hybrid meta-heuristic algorithms for a dual-channel closed-loop supply chain network design problem in the tire industry under uncertainty
  publication-title: Advanced Engineering Informatics
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b0190
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Generation Computer Systems
– volume: 50
  start-page: 3668
  year: 2019
  end-page: 3681
  ident: b0015
  article-title: A survey of optimization methods from a machine learning perspective
  publication-title: IEEE Transactions on Cybernetics
– volume: 72
  start-page: 393
  year: 2018
  end-page: 414
  ident: b0090
  article-title: Tree growth algorithm (TGA): a novel approach for solving optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 12
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ins.2022.06.008_b0210
  article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems
  publication-title: International Journal of Bio-Inspired Computation
  doi: 10.1504/IJBIC.2018.093328
– volume: 83
  start-page: 80
  issue: 5
  year: 2015
  ident: 10.1016/j.ins.2022.06.008_b0175
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 582
  start-page: 665
  issue: 1
  year: 2022
  ident: 10.1016/j.ins.2022.06.008_b0050
  article-title: Strategy dynamics particle swarm optimizer
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.10.028
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.ins.2022.06.008_b0080
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 509
  start-page: 400
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2022.06.008_b0135
  article-title: AnD: a many-objective evolutionary algorithm with angle-based selection and shift-based density estimation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.06.063
– volume: 565
  start-page: 390
  issue: 7
  year: 2021
  ident: 10.1016/j.ins.2022.06.008_b0155
  article-title: An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.02.039
– ident: 10.1016/j.ins.2022.06.008_b0180
  doi: 10.1515/jaiscr-2015-0001
– volume: 50
  start-page: 3668
  issue: 8
  year: 2019
  ident: 10.1016/j.ins.2022.06.008_b0015
  article-title: A survey of optimization methods from a machine learning perspective
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2950779
– volume: 50
  issue: 10
  year: 2021
  ident: 10.1016/j.ins.2022.06.008_b0160
  article-title: Two hybrid meta-heuristic algorithms for a dual-channel closed-loop supply chain network design problem in the tire industry under uncertainty
  publication-title: Advanced Engineering Informatics
– volume: 48
  issue: 4
  year: 2021
  ident: 10.1016/j.ins.2022.06.008_b0150
  article-title: An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations
  publication-title: Advanced Engineering Informatics
– start-page: 1
  year: 2015
  ident: 10.1016/j.ins.2022.06.008_b0220
  article-title: Elephant herding optimization
– volume: 72
  start-page: 393
  issue: 6
  year: 2018
  ident: 10.1016/j.ins.2022.06.008_b0090
  article-title: Tree growth algorithm (TGA): a novel approach for solving optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2018.04.021
– volume: 545
  start-page: 813
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2022.06.008_b0165
  article-title: LIG-doctor: efficient patient trajectory prediction using bidirectional minimal gated-recurrent networks
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.09.024
– volume: 22
  start-page: 707
  issue: 5
  year: 2017
  ident: 10.1016/j.ins.2022.06.008_b0045
  article-title: Level-based analysis of genetic algorithms and other search processes
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2753538
– volume: 540
  start-page: 131
  issue: 12
  year: 2020
  ident: 10.1016/j.ins.2022.06.008_b0110
  article-title: Gradient-based optimizer: a new metaheuristic optimization algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.06.037
– volume: 376
  issue: 4
  year: 2021
  ident: 10.1016/j.ins.2022.06.008_b0115
  article-title: The arithmetic optimization algorithm
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.ins.2022.06.008_b0205
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-007-9149-x
– volume: 10
  start-page: 517
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2022.06.008_b0070
  article-title: An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-018-9554-0
– volume: 137
  issue: 12
  year: 2019
  ident: 10.1016/j.ins.2022.06.008_b0125
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Computers & Industrial Engineering
– volume: 60
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2022.06.008_b0065
  article-title: Swarm intelligence and cyber-physical systems: concepts, challenges and future trends
  publication-title: Swarm and Evolutionary Computation
– volume: 329
  start-page: 597
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2022.06.008_b0025
  article-title: Across neighborhood search for numerical optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.09.051
– volume: 187
  issue: 1
  year: 2022
  ident: 10.1016/j.ins.2022.06.008_b0140
  article-title: Multi-objective lichtenberg algorithm: a hybrid physics-based meta-heuristic for solving engineering problems
  publication-title: Expert Systems with Applications
– volume: 60
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2022.06.008_b0040
  article-title: A systematic literature review on general parameter control for evolutionary and swarm-based algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 69
  start-page: 46
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2022.06.008_b0095
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 87
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2022.06.008_b0170
  article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 40
  start-page: 3951
  issue: 5–6
  year: 2016
  ident: 10.1016/j.ins.2022.06.008_b0245
  article-title: Passing vehicle search (PVS): a novel metaheuristic algorithm
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2015.10.040
– volume: 52
  start-page: 2191
  issue: 4
  year: 2019
  ident: 10.1016/j.ins.2022.06.008_b0020
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-017-9605-z
– volume: 31
  start-page: 1995
  issue: 7
  year: 2019
  ident: 10.1016/j.ins.2022.06.008_b0105
  article-title: Monarch butterfly optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1923-y
– volume: 46
  issue: 10
  year: 2020
  ident: 10.1016/j.ins.2022.06.008_b0035
  article-title: Nature-inspired optimization algorithms: challenges and open problems
  publication-title: Journal of Computational Science
– volume: 54
  issue: 5
  year: 2020
  ident: 10.1016/j.ins.2022.06.008_b0030
  article-title: A better balance in metaheuristic algorithms: does it exist?
  publication-title: Swarm and Evolutionary Computation
– volume: 509
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2022.06.008_b0130
  article-title: An online-learning-based evolutionary many-objective algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.08.069
– volume: 65
  start-page: 169
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2022.06.008_b0235
  article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.11.024
– volume: 571
  start-page: 358
  issue: 9
  year: 2021
  ident: 10.1016/j.ins.2022.06.008_b0225
  article-title: An adaptive fuzzy penalty method for constrained evolutionary optimization
  publication-title: Information Sciences
– volume: 549
  start-page: 142
  issue: 3
  year: 2021
  ident: 10.1016/j.ins.2022.06.008_b0085
  article-title: Differential evolution with adaptive mutation strategy based on fitness landscape analysis
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.11.023
– volume: 97
  start-page: 849
  issue: 8
  year: 2019
  ident: 10.1016/j.ins.2022.06.008_b0190
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– volume: 10
  start-page: 151
  issue: 2
  year: 2018
  ident: 10.1016/j.ins.2022.06.008_b0215
  article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Computing
  doi: 10.1007/s12293-016-0212-3
– volume: 63
  start-page: 464
  issue: 12
  year: 2018
  ident: 10.1016/j.ins.2022.06.008_b0240
  article-title: Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2018.06.036
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 10.1016/j.ins.2022.06.008_b0200
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 145
  issue: 7
  year: 2020
  ident: 10.1016/j.ins.2022.06.008_b0005
  article-title: A mayfly optimization algorithm
  publication-title: Computers & Industrial Engineering
– volume: 23
  start-page: 715
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2022.06.008_b0185
  article-title: Butterfly optimization algorithm: a novel approach for global optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3102-4
– volume: 51
  start-page: 1531
  issue: 3
  year: 2021
  ident: 10.1016/j.ins.2022.06.008_b0055
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-020-01893-z
– volume: 111
  start-page: 300
  issue: 10
  year: 2020
  ident: 10.1016/j.ins.2022.06.008_b0195
  article-title: Slime mould algorithm: a new method for stochastic optimization
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.03.055
– volume: 33
  start-page: 228
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2022.06.008_b0145
  article-title: Hybrid online learning control in networked multiagent systems: a survey
  publication-title: International Journal of Adaptive Control and Signal Processing
  doi: 10.1002/acs.2866
– volume: 26
  start-page: 159
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2022.06.008_b0010
  article-title: A convergence-diversity balanced fitness evaluation mechanism for decomposition-based many-objective optimization algorithm
  publication-title: Integrated Computer-Aided Engineering
  doi: 10.3233/ICA-180594
– volume: 237
  start-page: 82
  issue: 10
  year: 2013
  ident: 10.1016/j.ins.2022.06.008_b0120
  article-title: A survey on optimization metaheuristics
  publication-title: Information sciences
  doi: 10.1016/j.ins.2013.02.041
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 10.1016/j.ins.2022.06.008_b0100
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1920-1
– volume: 87
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2022.06.008_b0230
  article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 159
  start-page: 20
  issue: 12
  year: 2018
  ident: 10.1016/j.ins.2022.06.008_b0250
  article-title: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.06.001
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.ins.2022.06.008_b0060
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 105
  start-page: 30
  issue: 3
  year: 2017
  ident: 10.1016/j.ins.2022.06.008_b0075
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.01.004
SSID ssj0004766
Score 2.5401952
Snippet The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1465
SubjectTerms Benchmark tests
Constrained problems
Engineering design
Metaheuristic
Optimization mechanism
Optimization problems
Statistical investigation
Title Information-decision searching algorithm: Theory and applications for solving engineering optimization problems
URI https://dx.doi.org/10.1016/j.ins.2022.06.008
Volume 607
WOSCitedRecordID wos000834610600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEBRQC7TyAXFgZSlxsrHDrSqtClQVh5VYcYlsx2lTLUnZ7lb9DfxqxrGdWNW2ogcuUWTFj2S-zIw9L4Tex1mWU0E1kVxKkgqeEJEngpQZaCOaKSF5Fyh8wk5P-WyWfx-N_vhYmOs5axp-c5Nf_ldSQxsQ24TOPoDc_aDQAPdAdLgC2eH6T4R3AUZmAlK6CjpjZzEwAYnzs3ZRL8-9v4WxsXcJWwNLdud7CKvsDhv0kLFw3AKD-eUiN8euFs1VqN8Gk4-dcO2V9h_uaPqbqM9WwklM4_qzaq0Df4_Tz7ZG9oGofctJ1_DzvP5d-57uqAJ2ud5RbggdiIjZxITsN7NVbx0DBcY9CYQx8ON4LaO3Zw4XsDsxOdcp7ZKwRnyQat6Sf0vY9S6I3rvtooAhCjNE0Xn48Udok7JJDhxyc__L4ezrEGXLrOXbv4S3kXfegrfWsV7LCTSX6XP0zG058L6Fygs00s0WehokotxCuy58BX_AAQWxY_wvUbsOVLgHFe5B9QlbSGGAFA4hhaE_dpDCAaRwCCnsIfUKTY8OpwfHxJXqIIrmbElEHGmZMJYpXsq0YiqmjGag_UhdKhmVnKo8rmIRVYJHIuaVkKBaMyVFRdVEJ6_RRtM2ehthk7xUVCVVqTCqfiJ1LKsypZHgE6GqaAdF_ssWyqWxN9VU5sWdFN1BH_sulzaHy30Pp55chftPrHJZAPTu7vbmIXO8RU-G3-Md2lguVnoXPVbXy_pqsedw9xcQ264x
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information-decision+searching+algorithm%3A+Theory+and+applications+for+solving+engineering+optimization+problems&rft.jtitle=Information+sciences&rft.au=Wang%2C+Kaiguang&rft.au=Guo%2C+Min&rft.au=Dai%2C+Cai&rft.au=Li%2C+Zhiqiang&rft.date=2022-08-01&rft.issn=0020-0255&rft.volume=607&rft.spage=1465&rft.epage=1531&rft_id=info:doi/10.1016%2Fj.ins.2022.06.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_06_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon