Superconvergence results for hypersingular integral equation of first kind by Chebyshev spectral projection methods
In this article, we propose Chebyshev spectral projection methods to solve the hypersingular integral equation of first kind. The presence of strong singularity in Hadamard sense in the first part of the integral equation makes it challenging to get superconvergence results. To overcome this, we tra...
Saved in:
| Published in: | Applied mathematics and computation Vol. 487; p. 129093 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
15.02.2025
|
| Subjects: | |
| ISSN: | 0096-3003 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this article, we propose Chebyshev spectral projection methods to solve the hypersingular integral equation of first kind. The presence of strong singularity in Hadamard sense in the first part of the integral equation makes it challenging to get superconvergence results. To overcome this, we transform the first kind hypersingular integral equation into a second kind integral equation. This is achieved by defining a bounded inverse of the hypersingular integral operator in some suitable Hilbert space. Using iterated Chebyshev spectral Galerkin method on the equivalent second kind integral equation, we obtain improved convergence of O(N−2r), where N is the highest degree of Chebyshev polynomials employed in the approximation space and r is the smoothness of the solution. Further, using commutativity of projection operator and inverse of the hypersingular integral operator, we are able to obtain superconvergence of O(N−3r) and O(N−4r), by Chebyshev spectral multi-Galerkin method (CSMGM) and iterated CSMGM, respectively. Finally, numerical examples are presented to verify our theoretical results.
•Developed Chebyshev spectral projection methods for hypersingular integral equations.•Established error bounds and convergence rates for all the proposed methods.•Obtained superconvergence of O(N−4r) using iterated spectral multi-Galerkin method.•Verified theoretical superconvergence results through numerical examples. |
|---|---|
| AbstractList | In this article, we propose Chebyshev spectral projection methods to solve the hypersingular integral equation of first kind. The presence of strong singularity in Hadamard sense in the first part of the integral equation makes it challenging to get superconvergence results. To overcome this, we transform the first kind hypersingular integral equation into a second kind integral equation. This is achieved by defining a bounded inverse of the hypersingular integral operator in some suitable Hilbert space. Using iterated Chebyshev spectral Galerkin method on the equivalent second kind integral equation, we obtain improved convergence of O(N−2r), where N is the highest degree of Chebyshev polynomials employed in the approximation space and r is the smoothness of the solution. Further, using commutativity of projection operator and inverse of the hypersingular integral operator, we are able to obtain superconvergence of O(N−3r) and O(N−4r), by Chebyshev spectral multi-Galerkin method (CSMGM) and iterated CSMGM, respectively. Finally, numerical examples are presented to verify our theoretical results.
•Developed Chebyshev spectral projection methods for hypersingular integral equations.•Established error bounds and convergence rates for all the proposed methods.•Obtained superconvergence of O(N−4r) using iterated spectral multi-Galerkin method.•Verified theoretical superconvergence results through numerical examples. |
| ArticleNumber | 129093 |
| Author | Mandal, Moumita Kayal, Arnab Gupta, Saloni |
| Author_xml | – sequence: 1 givenname: Saloni orcidid: 0009-0003-0213-4002 surname: Gupta fullname: Gupta, Saloni email: p22ma003@iitj.ac.in – sequence: 2 givenname: Arnab orcidid: 0009-0004-1568-2750 surname: Kayal fullname: Kayal, Arnab email: kayal.1@iitj.ac.in – sequence: 3 givenname: Moumita surname: Mandal fullname: Mandal, Moumita email: moumita@iitj.ac.in |
| BookMark | eNp9kMtOwzAQRb0oEm3hA9j5BxLsPBuxQhWPSpVYAGvLsSeNQ2oH26mUv8ehrFh0NjPSzBnde1dooY0GhO4oiSmhxX0X86OIE5JkMU0qUqULtCSkKqKUkPQarZzrCCFlQbMlcu_jAFYYfQJ7AC0AW3Bj7x1ujMXtFJZO6cPYc4uV9nCwvMfwPXKvjMamwY2yzuMvpSWuJ7xtoZ5cCyfsBhB-Ph6s6cI4nx_Bt0a6G3TV8N7B7V9fo8_np4_ta7R_e9ltH_eRSKrSR5zIKm9EKnI62wIosqxKE55zkdR5CVmR0bKQuZB1uslqvqGzv00ZSkJZQLpG5fmvsMY5Cw0Tyv8KD8JUzyhh82PWsZAXm_Ni57wCSf-Rg1VHbqeLzMOZgWDppMAyJ9ScqFQ2-GfSqAv0DyOQihU |
| CitedBy_id | crossref_primary_10_3934_math_2025132 |
| Cites_doi | 10.1016/j.na.2004.12.036 10.1093/imanum/20.4.601 10.1016/j.cam.2008.04.006 10.1016/0141-1187(94)90024-8 10.1016/j.apnum.2008.08.004 10.1016/j.asej.2017.04.010 10.1016/j.apnum.2010.03.003 10.1017/S0004972700037916 10.1016/S0020-7225(02)00134-9 10.1090/qam/885173 10.1016/0141-1187(92)90035-I 10.1016/j.cam.2014.03.014 10.1002/(SICI)1097-0207(19960229)39:4<687::AID-NME876>3.0.CO;2-S 10.1016/j.aml.2010.11.028 10.1016/j.aml.2006.01.013 10.1016/j.amc.2007.02.058 10.1016/0096-3003(87)90017-8 10.1016/j.cam.2018.04.055 10.1115/1.2892004 10.1155/2013/974751 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Inc. |
| Copyright_xml | – notice: 2024 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.amc.2024.129093 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_amc_2024_129093 S009630032400554X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABAOU ABFNM ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSH SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS 9DU AAQXK AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEUPX AFFNX AFPUW AGQPQ AI. AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- TAE VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c297t-a0d95fc3c511016ee644932a5ac2b57e464176d5cdb384ba81300387777de76e3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001334718800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Sat Nov 29 07:59:01 EST 2025 Tue Nov 18 21:55:52 EST 2025 Sat Jun 07 17:00:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spectral projection method Superconvergence Chebyshev polynomial Hypersingular integral equation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-a0d95fc3c511016ee644932a5ac2b57e464176d5cdb384ba81300387777de76e3 |
| ORCID | 0009-0004-1568-2750 0009-0003-0213-4002 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_amc_2024_129093 crossref_primary_10_1016_j_amc_2024_129093 elsevier_sciencedirect_doi_10_1016_j_amc_2024_129093 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-15 |
| PublicationDateYYYYMMDD | 2025-02-15 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Obaiys (br0170) 2013; 2013 Chapko, Kress, Mönch (br0020) 2000; 20 Golberg (br0140) 1987; 21 Canuto, Hussaini, Quarteroni, Zang (br0270) 2007 Novin, Araghi, Mahmoudi (br0210) 2018; 343 Mason, Handscomb (br0250) 2002 Boykov, Ventsel, Boykova (br0220) 2010; 60 Mandal, Bhattacharya (br0230) 2007; 190 Kaya, Erdogan (br0050) 1987; 45 Mandal, Bera (br0160) 2006; 19 Farina, Martin, Péron (br0120) 2014; 269 Boykov, Ventsel, Boykova (br0180) 2009; 59 Golberg (br0130) 1983 Chen, Zhou (br0190) 2011; 24 Golberg, Bowman (br0150) 1998; 96 Monegato (br0090) 2009; 229 Martin, Rizzo (br0080) 1996; 39 Parsons, Martin (br0110) 1994; 16 Milton Abramowitz (br0280) 1970 John (br0040) 1998 Eshkuvatov, Zulkarnain, Long, Muminov (br0200) 2018; 9 Parsons, Martin (br0100) 1992; 14 Krishnasamy, Schmerr, Rudolphi, Rizzo (br0060) 1990; 57 Chan, Fannjiang, Paulino (br0010) 2003; 41 Martin (br0070) 1991; 432 De Klerk (br0030) 2005; 63 Kulkarni (br0240) 2003; 68 Atkinson (br0260) 1997 Eshkuvatov (10.1016/j.amc.2024.129093_br0200) 2018; 9 Monegato (10.1016/j.amc.2024.129093_br0090) 2009; 229 Canuto (10.1016/j.amc.2024.129093_br0270) 2007 Chen (10.1016/j.amc.2024.129093_br0190) 2011; 24 Parsons (10.1016/j.amc.2024.129093_br0100) 1992; 14 Golberg (10.1016/j.amc.2024.129093_br0150) 1998; 96 De Klerk (10.1016/j.amc.2024.129093_br0030) 2005; 63 Boykov (10.1016/j.amc.2024.129093_br0220) 2010; 60 Kaya (10.1016/j.amc.2024.129093_br0050) 1987; 45 Golberg (10.1016/j.amc.2024.129093_br0130) 1983 Martin (10.1016/j.amc.2024.129093_br0080) 1996; 39 Milton Abramowitz (10.1016/j.amc.2024.129093_br0280) 1970 Boykov (10.1016/j.amc.2024.129093_br0180) 2009; 59 Parsons (10.1016/j.amc.2024.129093_br0110) 1994; 16 Kulkarni (10.1016/j.amc.2024.129093_br0240) 2003; 68 Mandal (10.1016/j.amc.2024.129093_br0160) 2006; 19 Mason (10.1016/j.amc.2024.129093_br0250) 2002 John (10.1016/j.amc.2024.129093_br0040) 1998 Chan (10.1016/j.amc.2024.129093_br0010) 2003; 41 Mandal (10.1016/j.amc.2024.129093_br0230) 2007; 190 Novin (10.1016/j.amc.2024.129093_br0210) 2018; 343 Krishnasamy (10.1016/j.amc.2024.129093_br0060) 1990; 57 Obaiys (10.1016/j.amc.2024.129093_br0170) 2013; 2013 Farina (10.1016/j.amc.2024.129093_br0120) 2014; 269 Martin (10.1016/j.amc.2024.129093_br0070) 1991; 432 Golberg (10.1016/j.amc.2024.129093_br0140) 1987; 21 Chapko (10.1016/j.amc.2024.129093_br0020) 2000; 20 Atkinson (10.1016/j.amc.2024.129093_br0260) 1997 |
| References_xml | – volume: 190 start-page: 1707 year: 2007 end-page: 1716 ident: br0230 article-title: Numerical solution of some classes of integral equations using Bernstein polynomials publication-title: Appl. Math. Comput. – volume: 269 start-page: 118 year: 2014 end-page: 131 ident: br0120 article-title: Hypersingular integral equations over a disc: convergence of a spectral method and connection with Tranter's method publication-title: J. Comput. Appl. Math. – volume: 343 start-page: 619 year: 2018 end-page: 634 ident: br0210 article-title: A novel fast modification of the Adomian decomposition method to solve integral equations of the first kind with hypersingular kernels publication-title: J. Comput. Appl. Math. – year: 2007 ident: br0270 article-title: Spectral Methods: Fundamentals in Single Domains – volume: 57 year: 1990 ident: br0060 article-title: Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering publication-title: Trans. ASME J. Appl. Mech. – volume: 45 start-page: 105 year: 1987 end-page: 122 ident: br0050 article-title: On the solution of integral equations with strongly singular kernels publication-title: Q. Appl. Math. – volume: 14 start-page: 313 year: 1992 end-page: 321 ident: br0100 article-title: Scattering of water waves by submerged plates using hypersingular integral equations publication-title: Appl. Ocean Res. – volume: 96 start-page: 237 year: 1998 end-page: 271 ident: br0150 article-title: Optimal convergence rates for some discrete projection methods publication-title: Appl. Math. Comput. – year: 1970 ident: br0280 article-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table – start-page: 329 year: 1983 end-page: 340 ident: br0130 article-title: The convergence of several algorithms for solving integral equations with finite-part integrals publication-title: J. Integral Equ. – volume: 229 start-page: 425 year: 2009 end-page: 439 ident: br0090 article-title: Definitions, properties and applications of finite-part integrals publication-title: J. Comput. Appl. Math. – volume: 9 start-page: 3359 year: 2018 end-page: 3363 ident: br0200 article-title: Homotopy perturbation method for the hypersingular integral equations of the first kind publication-title: Ain Shams Eng. J. – year: 1997 ident: br0260 article-title: The Numerical Solution of Integral Equations of the Second Kind, vol. 4 – volume: 16 start-page: 129 year: 1994 end-page: 139 ident: br0110 article-title: Scattering of water waves by submerged curved plates and by surface-piercing flat plates publication-title: Appl. Ocean Res. – volume: 432 start-page: 301 year: 1991 end-page: 320 ident: br0070 article-title: End-point behaviour of solutions to hypersingular integral equations publication-title: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. – volume: 41 start-page: 683 year: 2003 end-page: 720 ident: br0010 article-title: Integral equations with hypersingular kernels theory and applications to fracture mechanics publication-title: Int. J. Eng. Sci. – volume: 24 start-page: 636 year: 2011 end-page: 641 ident: br0190 article-title: A new method for solving hypersingular integral equations of the first kind publication-title: Appl. Math. Lett. – volume: 60 start-page: 607 year: 2010 end-page: 628 ident: br0220 article-title: An approximate solution of hypersingular integral equations publication-title: Appl. Numer. Math. – volume: 19 start-page: 1286 year: 2006 end-page: 1290 ident: br0160 article-title: Approximate solution for a class of hypersingular integral equations publication-title: Appl. Math. Lett. – volume: 68 start-page: 517 year: 2003 end-page: 528 ident: br0240 article-title: A superconvergence result for solutions of compact operator equations publication-title: Bull. Aust. Math. Soc. – volume: 2013 year: 2013 ident: br0170 article-title: On the convergence problem of one-dimensional hypersingular integral equations publication-title: Math. Probl. Eng. – year: 2002 ident: br0250 article-title: Chebyshev Polynomials – volume: 63 start-page: 533 year: 2005 end-page: 540 ident: br0030 article-title: Hypersingular integral equations-past, present, future publication-title: Nonlinear Anal., Theory Methods Appl. – year: 1998 ident: br0040 article-title: The Solution of Hypersingular Integral Equations with Applications in Acoustics and Fracture Mechanics – volume: 21 start-page: 283 year: 1987 end-page: 293 ident: br0140 article-title: The convergence of several algorithms for solving integral equations with finite part integrals. II publication-title: Appl. Math. Comput. – volume: 39 start-page: 687 year: 1996 end-page: 704 ident: br0080 article-title: Hypersingular integrals: how smooth must the density be? publication-title: Int. J. Numer. Methods Eng. – volume: 59 start-page: 1366 year: 2009 end-page: 1385 ident: br0180 article-title: Accuracy optimal methods for evaluating hypersingular integrals publication-title: Appl. Numer. Math. – volume: 20 start-page: 601 year: 2000 end-page: 619 ident: br0020 article-title: On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack publication-title: IMA J. Numer. Anal. – volume: 63 start-page: 533 issue: 5–7 year: 2005 ident: 10.1016/j.amc.2024.129093_br0030 article-title: Hypersingular integral equations-past, present, future publication-title: Nonlinear Anal., Theory Methods Appl. doi: 10.1016/j.na.2004.12.036 – volume: 20 start-page: 601 issue: 4 year: 2000 ident: 10.1016/j.amc.2024.129093_br0020 article-title: On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/20.4.601 – volume: 96 start-page: 237 issue: 2–3 year: 1998 ident: 10.1016/j.amc.2024.129093_br0150 article-title: Optimal convergence rates for some discrete projection methods publication-title: Appl. Math. Comput. – volume: 229 start-page: 425 issue: 2 year: 2009 ident: 10.1016/j.amc.2024.129093_br0090 article-title: Definitions, properties and applications of finite-part integrals publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.04.006 – volume: 16 start-page: 129 issue: 3 year: 1994 ident: 10.1016/j.amc.2024.129093_br0110 article-title: Scattering of water waves by submerged curved plates and by surface-piercing flat plates publication-title: Appl. Ocean Res. doi: 10.1016/0141-1187(94)90024-8 – volume: 59 start-page: 1366 issue: 6 year: 2009 ident: 10.1016/j.amc.2024.129093_br0180 article-title: Accuracy optimal methods for evaluating hypersingular integrals publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2008.08.004 – volume: 9 start-page: 3359 issue: 4 year: 2018 ident: 10.1016/j.amc.2024.129093_br0200 article-title: Homotopy perturbation method for the hypersingular integral equations of the first kind publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2017.04.010 – volume: 60 start-page: 607 issue: 6 year: 2010 ident: 10.1016/j.amc.2024.129093_br0220 article-title: An approximate solution of hypersingular integral equations publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2010.03.003 – volume: 68 start-page: 517 issue: 3 year: 2003 ident: 10.1016/j.amc.2024.129093_br0240 article-title: A superconvergence result for solutions of compact operator equations publication-title: Bull. Aust. Math. Soc. doi: 10.1017/S0004972700037916 – volume: 41 start-page: 683 issue: 7 year: 2003 ident: 10.1016/j.amc.2024.129093_br0010 article-title: Integral equations with hypersingular kernels theory and applications to fracture mechanics publication-title: Int. J. Eng. Sci. doi: 10.1016/S0020-7225(02)00134-9 – year: 1970 ident: 10.1016/j.amc.2024.129093_br0280 – volume: 45 start-page: 105 issue: 1 year: 1987 ident: 10.1016/j.amc.2024.129093_br0050 article-title: On the solution of integral equations with strongly singular kernels publication-title: Q. Appl. Math. doi: 10.1090/qam/885173 – year: 1997 ident: 10.1016/j.amc.2024.129093_br0260 – volume: 14 start-page: 313 issue: 5 year: 1992 ident: 10.1016/j.amc.2024.129093_br0100 article-title: Scattering of water waves by submerged plates using hypersingular integral equations publication-title: Appl. Ocean Res. doi: 10.1016/0141-1187(92)90035-I – volume: 269 start-page: 118 year: 2014 ident: 10.1016/j.amc.2024.129093_br0120 article-title: Hypersingular integral equations over a disc: convergence of a spectral method and connection with Tranter's method publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.03.014 – year: 2007 ident: 10.1016/j.amc.2024.129093_br0270 – year: 1998 ident: 10.1016/j.amc.2024.129093_br0040 – volume: 39 start-page: 687 issue: 4 year: 1996 ident: 10.1016/j.amc.2024.129093_br0080 article-title: Hypersingular integrals: how smooth must the density be? publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(SICI)1097-0207(19960229)39:4<687::AID-NME876>3.0.CO;2-S – year: 2002 ident: 10.1016/j.amc.2024.129093_br0250 – volume: 24 start-page: 636 issue: 5 year: 2011 ident: 10.1016/j.amc.2024.129093_br0190 article-title: A new method for solving hypersingular integral equations of the first kind publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2010.11.028 – volume: 19 start-page: 1286 issue: 11 year: 2006 ident: 10.1016/j.amc.2024.129093_br0160 article-title: Approximate solution for a class of hypersingular integral equations publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2006.01.013 – volume: 190 start-page: 1707 issue: 2 year: 2007 ident: 10.1016/j.amc.2024.129093_br0230 article-title: Numerical solution of some classes of integral equations using Bernstein polynomials publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.02.058 – volume: 21 start-page: 283 issue: 4 year: 1987 ident: 10.1016/j.amc.2024.129093_br0140 article-title: The convergence of several algorithms for solving integral equations with finite part integrals. II publication-title: Appl. Math. Comput. doi: 10.1016/0096-3003(87)90017-8 – volume: 343 start-page: 619 year: 2018 ident: 10.1016/j.amc.2024.129093_br0210 article-title: A novel fast modification of the Adomian decomposition method to solve integral equations of the first kind with hypersingular kernels publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.04.055 – start-page: 329 year: 1983 ident: 10.1016/j.amc.2024.129093_br0130 article-title: The convergence of several algorithms for solving integral equations with finite-part integrals publication-title: J. Integral Equ. – volume: 432 start-page: 301 issue: 1885 year: 1991 ident: 10.1016/j.amc.2024.129093_br0070 article-title: End-point behaviour of solutions to hypersingular integral equations publication-title: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. – volume: 57 year: 1990 ident: 10.1016/j.amc.2024.129093_br0060 article-title: Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering publication-title: Trans. ASME J. Appl. Mech. doi: 10.1115/1.2892004 – volume: 2013 year: 2013 ident: 10.1016/j.amc.2024.129093_br0170 article-title: On the convergence problem of one-dimensional hypersingular integral equations publication-title: Math. Probl. Eng. doi: 10.1155/2013/974751 |
| SSID | ssj0007614 |
| Score | 2.4528933 |
| Snippet | In this article, we propose Chebyshev spectral projection methods to solve the hypersingular integral equation of first kind. The presence of strong... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 129093 |
| SubjectTerms | Chebyshev polynomial Hypersingular integral equation Spectral projection method Superconvergence |
| Title | Superconvergence results for hypersingular integral equation of first kind by Chebyshev spectral projection methods |
| URI | https://dx.doi.org/10.1016/j.amc.2024.129093 |
| Volume | 487 |
| WOSCitedRecordID | wos001334718800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007614 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLag5QAHxCrKUvnAiVGqEDtxcqyqtlDRCmkKmlvkOB512plMmCRV--95z0tmYREgcYlGlu1J_D7Z33t-CyFvdSZLUBzSALitCngZF0FWlCIoJN6Zwf6nTSqlr5_E2Vk6GmWfnSm7MeUERFWlNzdZ_V9FDW0gbAyd_Qtx95NCA_wGocMTxA7PPxL8sKv1wjiTL2yiTVCou2lr8i4MLkDtNOYB631qc0VMB_pb11PH8QQI4eAKdHWkpgcXGi3Y-npgYjKxszPeYHdbf7pZZbie1s76fLCNj52ru_V7_-Outtx1KKewtfR7v7yV1nUAPrZYmsyr0jafzrvZpJWr9orIxH_biE1rRPOBNGt-nqhJBSwM2erGzO1R_MMmb-0Nl3tyhjkoI76HtjRbZ3Ejd_YQ58Vp0VMWiNPoLtmORJzB9re9__FwdNIf2iKxaeD9e_gLcOMKuPFHP6cwK7Tk_BF56PQJum9x8Jjc0dUT8uB0ufhPSbOJCOoQQQERdA0R1COCekTQ-ZgaRFBEBC1uaY8I6hFBl4igDhHPyJejw_ODD4GrtRGoKBNtIMMyi8eKKSDg8NFaA08Gai9jqaIiFpon_L1IyliVBUt5IVO8BmWYTFKUWiSaPSdb1bzSLwjF8vWY-JOxWHM-TtJUiYgpOHpLHYaS75DQL1-uXCJ6rIcyzb3H4WUOK57jiud2xXfIu35IbbOw_K4z9zLJHY209DAHAP162Mt_G_aK3F-i_DXZahedfkPuqet20ix2Hcy-AxKJnFg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superconvergence+results+for+hypersingular+integral+equation+of+first+kind+by+Chebyshev+spectral+projection+methods&rft.jtitle=Applied+mathematics+and+computation&rft.au=Gupta%2C+Saloni&rft.au=Kayal%2C+Arnab&rft.au=Mandal%2C+Moumita&rft.date=2025-02-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.volume=487&rft_id=info:doi/10.1016%2Fj.amc.2024.129093&rft.externalDocID=S009630032400554X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |