Superconvergence results for hypersingular integral equation of first kind by Chebyshev spectral projection methods

In this article, we propose Chebyshev spectral projection methods to solve the hypersingular integral equation of first kind. The presence of strong singularity in Hadamard sense in the first part of the integral equation makes it challenging to get superconvergence results. To overcome this, we tra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 487; s. 129093
Hlavní autoři: Gupta, Saloni, Kayal, Arnab, Mandal, Moumita
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.02.2025
Témata:
ISSN:0096-3003
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, we propose Chebyshev spectral projection methods to solve the hypersingular integral equation of first kind. The presence of strong singularity in Hadamard sense in the first part of the integral equation makes it challenging to get superconvergence results. To overcome this, we transform the first kind hypersingular integral equation into a second kind integral equation. This is achieved by defining a bounded inverse of the hypersingular integral operator in some suitable Hilbert space. Using iterated Chebyshev spectral Galerkin method on the equivalent second kind integral equation, we obtain improved convergence of O(N−2r), where N is the highest degree of Chebyshev polynomials employed in the approximation space and r is the smoothness of the solution. Further, using commutativity of projection operator and inverse of the hypersingular integral operator, we are able to obtain superconvergence of O(N−3r) and O(N−4r), by Chebyshev spectral multi-Galerkin method (CSMGM) and iterated CSMGM, respectively. Finally, numerical examples are presented to verify our theoretical results. •Developed Chebyshev spectral projection methods for hypersingular integral equations.•Established error bounds and convergence rates for all the proposed methods.•Obtained superconvergence of O(N−4r) using iterated spectral multi-Galerkin method.•Verified theoretical superconvergence results through numerical examples.
AbstractList In this article, we propose Chebyshev spectral projection methods to solve the hypersingular integral equation of first kind. The presence of strong singularity in Hadamard sense in the first part of the integral equation makes it challenging to get superconvergence results. To overcome this, we transform the first kind hypersingular integral equation into a second kind integral equation. This is achieved by defining a bounded inverse of the hypersingular integral operator in some suitable Hilbert space. Using iterated Chebyshev spectral Galerkin method on the equivalent second kind integral equation, we obtain improved convergence of O(N−2r), where N is the highest degree of Chebyshev polynomials employed in the approximation space and r is the smoothness of the solution. Further, using commutativity of projection operator and inverse of the hypersingular integral operator, we are able to obtain superconvergence of O(N−3r) and O(N−4r), by Chebyshev spectral multi-Galerkin method (CSMGM) and iterated CSMGM, respectively. Finally, numerical examples are presented to verify our theoretical results. •Developed Chebyshev spectral projection methods for hypersingular integral equations.•Established error bounds and convergence rates for all the proposed methods.•Obtained superconvergence of O(N−4r) using iterated spectral multi-Galerkin method.•Verified theoretical superconvergence results through numerical examples.
ArticleNumber 129093
Author Mandal, Moumita
Kayal, Arnab
Gupta, Saloni
Author_xml – sequence: 1
  givenname: Saloni
  orcidid: 0009-0003-0213-4002
  surname: Gupta
  fullname: Gupta, Saloni
  email: p22ma003@iitj.ac.in
– sequence: 2
  givenname: Arnab
  orcidid: 0009-0004-1568-2750
  surname: Kayal
  fullname: Kayal, Arnab
  email: kayal.1@iitj.ac.in
– sequence: 3
  givenname: Moumita
  surname: Mandal
  fullname: Mandal, Moumita
  email: moumita@iitj.ac.in
BookMark eNp9kMtOwzAQRb0oEm3hA9j5BxLsPBuxQhWPSpVYAGvLsSeNQ2oH26mUv8ehrFh0NjPSzBnde1dooY0GhO4oiSmhxX0X86OIE5JkMU0qUqULtCSkKqKUkPQarZzrCCFlQbMlcu_jAFYYfQJ7AC0AW3Bj7x1ujMXtFJZO6cPYc4uV9nCwvMfwPXKvjMamwY2yzuMvpSWuJ7xtoZ5cCyfsBhB-Ph6s6cI4nx_Bt0a6G3TV8N7B7V9fo8_np4_ta7R_e9ltH_eRSKrSR5zIKm9EKnI62wIosqxKE55zkdR5CVmR0bKQuZB1uslqvqGzv00ZSkJZQLpG5fmvsMY5Cw0Tyv8KD8JUzyhh82PWsZAXm_Ni57wCSf-Rg1VHbqeLzMOZgWDppMAyJ9ScqFQ2-GfSqAv0DyOQihU
CitedBy_id crossref_primary_10_3934_math_2025132
Cites_doi 10.1016/j.na.2004.12.036
10.1093/imanum/20.4.601
10.1016/j.cam.2008.04.006
10.1016/0141-1187(94)90024-8
10.1016/j.apnum.2008.08.004
10.1016/j.asej.2017.04.010
10.1016/j.apnum.2010.03.003
10.1017/S0004972700037916
10.1016/S0020-7225(02)00134-9
10.1090/qam/885173
10.1016/0141-1187(92)90035-I
10.1016/j.cam.2014.03.014
10.1002/(SICI)1097-0207(19960229)39:4<687::AID-NME876>3.0.CO;2-S
10.1016/j.aml.2010.11.028
10.1016/j.aml.2006.01.013
10.1016/j.amc.2007.02.058
10.1016/0096-3003(87)90017-8
10.1016/j.cam.2018.04.055
10.1115/1.2892004
10.1155/2013/974751
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2024.129093
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_amc_2024_129093
S009630032400554X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSH
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQXK
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGQPQ
AI.
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c297t-a0d95fc3c511016ee644932a5ac2b57e464176d5cdb384ba81300387777de76e3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001334718800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Nov 29 07:59:01 EST 2025
Tue Nov 18 21:55:52 EST 2025
Sat Jun 07 17:00:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Spectral projection method
Superconvergence
Chebyshev polynomial
Hypersingular integral equation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-a0d95fc3c511016ee644932a5ac2b57e464176d5cdb384ba81300387777de76e3
ORCID 0009-0004-1568-2750
0009-0003-0213-4002
ParticipantIDs crossref_citationtrail_10_1016_j_amc_2024_129093
crossref_primary_10_1016_j_amc_2024_129093
elsevier_sciencedirect_doi_10_1016_j_amc_2024_129093
PublicationCentury 2000
PublicationDate 2025-02-15
PublicationDateYYYYMMDD 2025-02-15
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Obaiys (br0170) 2013; 2013
Chapko, Kress, Mönch (br0020) 2000; 20
Golberg (br0140) 1987; 21
Canuto, Hussaini, Quarteroni, Zang (br0270) 2007
Novin, Araghi, Mahmoudi (br0210) 2018; 343
Mason, Handscomb (br0250) 2002
Boykov, Ventsel, Boykova (br0220) 2010; 60
Mandal, Bhattacharya (br0230) 2007; 190
Kaya, Erdogan (br0050) 1987; 45
Mandal, Bera (br0160) 2006; 19
Farina, Martin, Péron (br0120) 2014; 269
Boykov, Ventsel, Boykova (br0180) 2009; 59
Golberg (br0130) 1983
Chen, Zhou (br0190) 2011; 24
Golberg, Bowman (br0150) 1998; 96
Monegato (br0090) 2009; 229
Martin, Rizzo (br0080) 1996; 39
Parsons, Martin (br0110) 1994; 16
Milton Abramowitz (br0280) 1970
John (br0040) 1998
Eshkuvatov, Zulkarnain, Long, Muminov (br0200) 2018; 9
Parsons, Martin (br0100) 1992; 14
Krishnasamy, Schmerr, Rudolphi, Rizzo (br0060) 1990; 57
Chan, Fannjiang, Paulino (br0010) 2003; 41
Martin (br0070) 1991; 432
De Klerk (br0030) 2005; 63
Kulkarni (br0240) 2003; 68
Atkinson (br0260) 1997
Eshkuvatov (10.1016/j.amc.2024.129093_br0200) 2018; 9
Monegato (10.1016/j.amc.2024.129093_br0090) 2009; 229
Canuto (10.1016/j.amc.2024.129093_br0270) 2007
Chen (10.1016/j.amc.2024.129093_br0190) 2011; 24
Parsons (10.1016/j.amc.2024.129093_br0100) 1992; 14
Golberg (10.1016/j.amc.2024.129093_br0150) 1998; 96
De Klerk (10.1016/j.amc.2024.129093_br0030) 2005; 63
Boykov (10.1016/j.amc.2024.129093_br0220) 2010; 60
Kaya (10.1016/j.amc.2024.129093_br0050) 1987; 45
Golberg (10.1016/j.amc.2024.129093_br0130) 1983
Martin (10.1016/j.amc.2024.129093_br0080) 1996; 39
Milton Abramowitz (10.1016/j.amc.2024.129093_br0280) 1970
Boykov (10.1016/j.amc.2024.129093_br0180) 2009; 59
Parsons (10.1016/j.amc.2024.129093_br0110) 1994; 16
Kulkarni (10.1016/j.amc.2024.129093_br0240) 2003; 68
Mandal (10.1016/j.amc.2024.129093_br0160) 2006; 19
Mason (10.1016/j.amc.2024.129093_br0250) 2002
John (10.1016/j.amc.2024.129093_br0040) 1998
Chan (10.1016/j.amc.2024.129093_br0010) 2003; 41
Mandal (10.1016/j.amc.2024.129093_br0230) 2007; 190
Novin (10.1016/j.amc.2024.129093_br0210) 2018; 343
Krishnasamy (10.1016/j.amc.2024.129093_br0060) 1990; 57
Obaiys (10.1016/j.amc.2024.129093_br0170) 2013; 2013
Farina (10.1016/j.amc.2024.129093_br0120) 2014; 269
Martin (10.1016/j.amc.2024.129093_br0070) 1991; 432
Golberg (10.1016/j.amc.2024.129093_br0140) 1987; 21
Chapko (10.1016/j.amc.2024.129093_br0020) 2000; 20
Atkinson (10.1016/j.amc.2024.129093_br0260) 1997
References_xml – volume: 190
  start-page: 1707
  year: 2007
  end-page: 1716
  ident: br0230
  article-title: Numerical solution of some classes of integral equations using Bernstein polynomials
  publication-title: Appl. Math. Comput.
– volume: 269
  start-page: 118
  year: 2014
  end-page: 131
  ident: br0120
  article-title: Hypersingular integral equations over a disc: convergence of a spectral method and connection with Tranter's method
  publication-title: J. Comput. Appl. Math.
– volume: 343
  start-page: 619
  year: 2018
  end-page: 634
  ident: br0210
  article-title: A novel fast modification of the Adomian decomposition method to solve integral equations of the first kind with hypersingular kernels
  publication-title: J. Comput. Appl. Math.
– year: 2007
  ident: br0270
  article-title: Spectral Methods: Fundamentals in Single Domains
– volume: 57
  year: 1990
  ident: br0060
  article-title: Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering
  publication-title: Trans. ASME J. Appl. Mech.
– volume: 45
  start-page: 105
  year: 1987
  end-page: 122
  ident: br0050
  article-title: On the solution of integral equations with strongly singular kernels
  publication-title: Q. Appl. Math.
– volume: 14
  start-page: 313
  year: 1992
  end-page: 321
  ident: br0100
  article-title: Scattering of water waves by submerged plates using hypersingular integral equations
  publication-title: Appl. Ocean Res.
– volume: 96
  start-page: 237
  year: 1998
  end-page: 271
  ident: br0150
  article-title: Optimal convergence rates for some discrete projection methods
  publication-title: Appl. Math. Comput.
– year: 1970
  ident: br0280
  article-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table
– start-page: 329
  year: 1983
  end-page: 340
  ident: br0130
  article-title: The convergence of several algorithms for solving integral equations with finite-part integrals
  publication-title: J. Integral Equ.
– volume: 229
  start-page: 425
  year: 2009
  end-page: 439
  ident: br0090
  article-title: Definitions, properties and applications of finite-part integrals
  publication-title: J. Comput. Appl. Math.
– volume: 9
  start-page: 3359
  year: 2018
  end-page: 3363
  ident: br0200
  article-title: Homotopy perturbation method for the hypersingular integral equations of the first kind
  publication-title: Ain Shams Eng. J.
– year: 1997
  ident: br0260
  article-title: The Numerical Solution of Integral Equations of the Second Kind, vol. 4
– volume: 16
  start-page: 129
  year: 1994
  end-page: 139
  ident: br0110
  article-title: Scattering of water waves by submerged curved plates and by surface-piercing flat plates
  publication-title: Appl. Ocean Res.
– volume: 432
  start-page: 301
  year: 1991
  end-page: 320
  ident: br0070
  article-title: End-point behaviour of solutions to hypersingular integral equations
  publication-title: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci.
– volume: 41
  start-page: 683
  year: 2003
  end-page: 720
  ident: br0010
  article-title: Integral equations with hypersingular kernels theory and applications to fracture mechanics
  publication-title: Int. J. Eng. Sci.
– volume: 24
  start-page: 636
  year: 2011
  end-page: 641
  ident: br0190
  article-title: A new method for solving hypersingular integral equations of the first kind
  publication-title: Appl. Math. Lett.
– volume: 60
  start-page: 607
  year: 2010
  end-page: 628
  ident: br0220
  article-title: An approximate solution of hypersingular integral equations
  publication-title: Appl. Numer. Math.
– volume: 19
  start-page: 1286
  year: 2006
  end-page: 1290
  ident: br0160
  article-title: Approximate solution for a class of hypersingular integral equations
  publication-title: Appl. Math. Lett.
– volume: 68
  start-page: 517
  year: 2003
  end-page: 528
  ident: br0240
  article-title: A superconvergence result for solutions of compact operator equations
  publication-title: Bull. Aust. Math. Soc.
– volume: 2013
  year: 2013
  ident: br0170
  article-title: On the convergence problem of one-dimensional hypersingular integral equations
  publication-title: Math. Probl. Eng.
– year: 2002
  ident: br0250
  article-title: Chebyshev Polynomials
– volume: 63
  start-page: 533
  year: 2005
  end-page: 540
  ident: br0030
  article-title: Hypersingular integral equations-past, present, future
  publication-title: Nonlinear Anal., Theory Methods Appl.
– year: 1998
  ident: br0040
  article-title: The Solution of Hypersingular Integral Equations with Applications in Acoustics and Fracture Mechanics
– volume: 21
  start-page: 283
  year: 1987
  end-page: 293
  ident: br0140
  article-title: The convergence of several algorithms for solving integral equations with finite part integrals. II
  publication-title: Appl. Math. Comput.
– volume: 39
  start-page: 687
  year: 1996
  end-page: 704
  ident: br0080
  article-title: Hypersingular integrals: how smooth must the density be?
  publication-title: Int. J. Numer. Methods Eng.
– volume: 59
  start-page: 1366
  year: 2009
  end-page: 1385
  ident: br0180
  article-title: Accuracy optimal methods for evaluating hypersingular integrals
  publication-title: Appl. Numer. Math.
– volume: 20
  start-page: 601
  year: 2000
  end-page: 619
  ident: br0020
  article-title: On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack
  publication-title: IMA J. Numer. Anal.
– volume: 63
  start-page: 533
  issue: 5–7
  year: 2005
  ident: 10.1016/j.amc.2024.129093_br0030
  article-title: Hypersingular integral equations-past, present, future
  publication-title: Nonlinear Anal., Theory Methods Appl.
  doi: 10.1016/j.na.2004.12.036
– volume: 20
  start-page: 601
  issue: 4
  year: 2000
  ident: 10.1016/j.amc.2024.129093_br0020
  article-title: On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/20.4.601
– volume: 96
  start-page: 237
  issue: 2–3
  year: 1998
  ident: 10.1016/j.amc.2024.129093_br0150
  article-title: Optimal convergence rates for some discrete projection methods
  publication-title: Appl. Math. Comput.
– volume: 229
  start-page: 425
  issue: 2
  year: 2009
  ident: 10.1016/j.amc.2024.129093_br0090
  article-title: Definitions, properties and applications of finite-part integrals
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.04.006
– volume: 16
  start-page: 129
  issue: 3
  year: 1994
  ident: 10.1016/j.amc.2024.129093_br0110
  article-title: Scattering of water waves by submerged curved plates and by surface-piercing flat plates
  publication-title: Appl. Ocean Res.
  doi: 10.1016/0141-1187(94)90024-8
– volume: 59
  start-page: 1366
  issue: 6
  year: 2009
  ident: 10.1016/j.amc.2024.129093_br0180
  article-title: Accuracy optimal methods for evaluating hypersingular integrals
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.08.004
– volume: 9
  start-page: 3359
  issue: 4
  year: 2018
  ident: 10.1016/j.amc.2024.129093_br0200
  article-title: Homotopy perturbation method for the hypersingular integral equations of the first kind
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2017.04.010
– volume: 60
  start-page: 607
  issue: 6
  year: 2010
  ident: 10.1016/j.amc.2024.129093_br0220
  article-title: An approximate solution of hypersingular integral equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2010.03.003
– volume: 68
  start-page: 517
  issue: 3
  year: 2003
  ident: 10.1016/j.amc.2024.129093_br0240
  article-title: A superconvergence result for solutions of compact operator equations
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972700037916
– volume: 41
  start-page: 683
  issue: 7
  year: 2003
  ident: 10.1016/j.amc.2024.129093_br0010
  article-title: Integral equations with hypersingular kernels theory and applications to fracture mechanics
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/S0020-7225(02)00134-9
– year: 1970
  ident: 10.1016/j.amc.2024.129093_br0280
– volume: 45
  start-page: 105
  issue: 1
  year: 1987
  ident: 10.1016/j.amc.2024.129093_br0050
  article-title: On the solution of integral equations with strongly singular kernels
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/885173
– year: 1997
  ident: 10.1016/j.amc.2024.129093_br0260
– volume: 14
  start-page: 313
  issue: 5
  year: 1992
  ident: 10.1016/j.amc.2024.129093_br0100
  article-title: Scattering of water waves by submerged plates using hypersingular integral equations
  publication-title: Appl. Ocean Res.
  doi: 10.1016/0141-1187(92)90035-I
– volume: 269
  start-page: 118
  year: 2014
  ident: 10.1016/j.amc.2024.129093_br0120
  article-title: Hypersingular integral equations over a disc: convergence of a spectral method and connection with Tranter's method
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.03.014
– year: 2007
  ident: 10.1016/j.amc.2024.129093_br0270
– year: 1998
  ident: 10.1016/j.amc.2024.129093_br0040
– volume: 39
  start-page: 687
  issue: 4
  year: 1996
  ident: 10.1016/j.amc.2024.129093_br0080
  article-title: Hypersingular integrals: how smooth must the density be?
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19960229)39:4<687::AID-NME876>3.0.CO;2-S
– year: 2002
  ident: 10.1016/j.amc.2024.129093_br0250
– volume: 24
  start-page: 636
  issue: 5
  year: 2011
  ident: 10.1016/j.amc.2024.129093_br0190
  article-title: A new method for solving hypersingular integral equations of the first kind
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.11.028
– volume: 19
  start-page: 1286
  issue: 11
  year: 2006
  ident: 10.1016/j.amc.2024.129093_br0160
  article-title: Approximate solution for a class of hypersingular integral equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2006.01.013
– volume: 190
  start-page: 1707
  issue: 2
  year: 2007
  ident: 10.1016/j.amc.2024.129093_br0230
  article-title: Numerical solution of some classes of integral equations using Bernstein polynomials
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.02.058
– volume: 21
  start-page: 283
  issue: 4
  year: 1987
  ident: 10.1016/j.amc.2024.129093_br0140
  article-title: The convergence of several algorithms for solving integral equations with finite part integrals. II
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(87)90017-8
– volume: 343
  start-page: 619
  year: 2018
  ident: 10.1016/j.amc.2024.129093_br0210
  article-title: A novel fast modification of the Adomian decomposition method to solve integral equations of the first kind with hypersingular kernels
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.04.055
– start-page: 329
  year: 1983
  ident: 10.1016/j.amc.2024.129093_br0130
  article-title: The convergence of several algorithms for solving integral equations with finite-part integrals
  publication-title: J. Integral Equ.
– volume: 432
  start-page: 301
  issue: 1885
  year: 1991
  ident: 10.1016/j.amc.2024.129093_br0070
  article-title: End-point behaviour of solutions to hypersingular integral equations
  publication-title: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci.
– volume: 57
  year: 1990
  ident: 10.1016/j.amc.2024.129093_br0060
  article-title: Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering
  publication-title: Trans. ASME J. Appl. Mech.
  doi: 10.1115/1.2892004
– volume: 2013
  year: 2013
  ident: 10.1016/j.amc.2024.129093_br0170
  article-title: On the convergence problem of one-dimensional hypersingular integral equations
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2013/974751
SSID ssj0007614
Score 2.4528933
Snippet In this article, we propose Chebyshev spectral projection methods to solve the hypersingular integral equation of first kind. The presence of strong...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129093
SubjectTerms Chebyshev polynomial
Hypersingular integral equation
Spectral projection method
Superconvergence
Title Superconvergence results for hypersingular integral equation of first kind by Chebyshev spectral projection methods
URI https://dx.doi.org/10.1016/j.amc.2024.129093
Volume 487
WOSCitedRecordID wos001334718800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007614
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEM7FE0faPoCh041FDgSZUpjEKSPAAkCJAW8CSeSQpzIsmpLRrL2l_cokpLtPJAMWQSDoGjJ9_n43fEehHzjYaYGPnAPeMY85Le-FyvAv7tgIHUcUZZC02yCHx9Ho1F80uv9c7kwi5wXRXR1FZdPKmocQ2Hr1NlHiLtdFAfwMwodryh2vD5I8Kd1qWZNMPnMFNpEg7rOq6buQv8czc7GPWCiT02tiLyv_tYtdczGSAj7l2ira2q6f660B1st-k1Opp5snTd6uuk_PV9muI7WTtp6sHOXO1fWq-f-P-vScNdTyFG1tLofrsGEDuDLpp3LvJBm-GhaT8YVLPsr_Cb_22RsOh0c62i7QbCsg5nddY0W1b4x0zfxhoI3voaLHZjo-pM-2-nmrhbTXtvk2tBDF9V2keASiV4iMUs8I5s-D2PUjJt7vw9Gh-1-zoemQrx7bnc23kQJrj3H7exmibGcvSavrKlB9wxEtkhPFW_Iy6NOLm_JfB0s1IKFIljoClioAwt1YKHTjDZgoRosNL2mLVioAwvtwEItWN6RPz8OzvZ_ebYNhyf8mFceDGQcZiIQyM3xpZVCCo2sH0IQfhpyxYZslw9lKGQaRCyFSJ-QBrrOJJeKD1XwnmwU00J9IFQoNAi4lBkEAYOQAfgZj2WQRlKmSu5uk4H7-RJha9TrVil5cqfYtsn39pbSFGi5bzJzMkkswzTMMUF83X3bx8d8xyfyooP9Z7JRzWr1hTwXi2o8n3214PoPNKSilQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superconvergence+results+for+hypersingular+integral+equation+of+first+kind+by+Chebyshev+spectral+projection+methods&rft.jtitle=Applied+mathematics+and+computation&rft.au=Gupta%2C+Saloni&rft.au=Kayal%2C+Arnab&rft.au=Mandal%2C+Moumita&rft.date=2025-02-15&rft.issn=0096-3003&rft.volume=487&rft.spage=129093&rft_id=info:doi/10.1016%2Fj.amc.2024.129093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2024_129093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon