Multimode process monitoring based on hierarchical mode identification and stacked denoising autoencoder
•A novel hierarchical mode identification strategy is proposed for multimode process.•An improved density peaks clustering algorithm called LDRSDPC is presented for achieving the transition mode identification.•A decision criterion combined with local density relation is constructed to automatically...
Gespeichert in:
| Veröffentlicht in: | Chemical engineering science Jg. 253; S. 117556 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
18.05.2022
|
| Schlagworte: | |
| ISSN: | 0009-2509 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A novel hierarchical mode identification strategy is proposed for multimode process.•An improved density peaks clustering algorithm called LDRSDPC is presented for achieving the transition mode identification.•A decision criterion combined with local density relation is constructed to automatically determine the clustering center.•A numerical example and Tennessee Eastman process simulations are carried out to demonstrate the effectiveness.
In modern plants, industrial processes generally operate under different modes, and reliable monitoring for such processes is highly important. One of the key challenges is how to accurately identify the various modes including steady modes and transitions modes. In this paper, a novel monitoring scheme based on hierarchical mode identification strategy and stacked denoising autoencoder (HMI-SDAE) is proposed for multimode processes. First, a novel mode division strategy called HMI is presented. In HMI, the Gaussian mixture model (GMM) is adopted to realize the preliminary identification of various modes by extracting the global distribution features of the variables. In this way, the whole multimode process is divided into multiple steady modes. An improved density peaks clustering algorithm based on local density relation search (LDRSDPC) is proposed to achieve the transition mode identification by fully utilizing the local distribution features of the process variables involved in any two adjacent steady modes and transition mode between them. A decision criterion combined with local density relation is constructed to automatically determine the clustering center. In this hierarchical way, multiple steady modes and transition modes are divided automatically and accurately. Secondly, the deep nonlinear features embedded in process variables are mined by SDAE, and the robust monitoring model is established for each steady mode. A monitoring statistic is constructed using the reconstruction error for detecting faults. The effectiveness and feasibility of the proposed HMI-SDAE monitoring scheme are illustrated with a numerical example and Tennessee Eastman (TE) process. |
|---|---|
| AbstractList | •A novel hierarchical mode identification strategy is proposed for multimode process.•An improved density peaks clustering algorithm called LDRSDPC is presented for achieving the transition mode identification.•A decision criterion combined with local density relation is constructed to automatically determine the clustering center.•A numerical example and Tennessee Eastman process simulations are carried out to demonstrate the effectiveness.
In modern plants, industrial processes generally operate under different modes, and reliable monitoring for such processes is highly important. One of the key challenges is how to accurately identify the various modes including steady modes and transitions modes. In this paper, a novel monitoring scheme based on hierarchical mode identification strategy and stacked denoising autoencoder (HMI-SDAE) is proposed for multimode processes. First, a novel mode division strategy called HMI is presented. In HMI, the Gaussian mixture model (GMM) is adopted to realize the preliminary identification of various modes by extracting the global distribution features of the variables. In this way, the whole multimode process is divided into multiple steady modes. An improved density peaks clustering algorithm based on local density relation search (LDRSDPC) is proposed to achieve the transition mode identification by fully utilizing the local distribution features of the process variables involved in any two adjacent steady modes and transition mode between them. A decision criterion combined with local density relation is constructed to automatically determine the clustering center. In this hierarchical way, multiple steady modes and transition modes are divided automatically and accurately. Secondly, the deep nonlinear features embedded in process variables are mined by SDAE, and the robust monitoring model is established for each steady mode. A monitoring statistic is constructed using the reconstruction error for detecting faults. The effectiveness and feasibility of the proposed HMI-SDAE monitoring scheme are illustrated with a numerical example and Tennessee Eastman (TE) process. |
| ArticleNumber | 117556 |
| Author | Huang, Wenjie Wei, Chen Gao, Xuejin Gao, Huihui |
| Author_xml | – sequence: 1 givenname: Huihui surname: Gao fullname: Gao, Huihui email: gaohh@bjut.edu.cn – sequence: 2 givenname: Chen surname: Wei fullname: Wei, Chen – sequence: 3 givenname: Wenjie surname: Huang fullname: Huang, Wenjie – sequence: 4 givenname: Xuejin surname: Gao fullname: Gao, Xuejin email: gaoxuejin@bjut.edu.cn |
| BookMark | eNp9kM9OAjEQxnvAREAfwNu-wK7Thd1l48kQ_yUYL3puynQqg9CStpj49hbw5IHTZGa-32S-byQGzjsS4kZCJUG2t-sKKVY11HUlZdc07UAMAaAv6wb6SzGKcZ3brpMwFKvX_Sbx1hsqdsFnLhZb7zj5wO6zWOpIpvCuWDEFHXDFqDfFUc2GXGKbB4mzQDtTxKTxK-vzxnM88HqfPDnM-nAlLqzeRLr-q2Px8fjwPn8uF29PL_P7RYl136Wyt0TQTdG0tDQww6bpjbTW1qi7VhJSq80Eamt6gBbkTPcaZhYnNG2WANNmMhbd6S4GH2Mgq5DT8ccUNG-UBHUISa1VNqsOIalTSJmU_8hd4K0OP2eZuxND2dJ3DklF5OyYDAfCpIznM_QvvcGG1A |
| CitedBy_id | crossref_primary_10_1016_j_infrared_2024_105532 crossref_primary_10_1016_j_jfranklin_2023_04_030 crossref_primary_10_1088_2631_8695_addd5f crossref_primary_10_1016_j_chemolab_2022_104711 crossref_primary_10_1016_j_foodchem_2022_135251 crossref_primary_10_1016_j_conengprac_2024_106227 crossref_primary_10_3390_pr12112478 crossref_primary_10_1016_j_engappai_2022_105737 crossref_primary_10_1016_j_compchemeng_2025_109107 crossref_primary_10_1016_j_psep_2023_02_023 crossref_primary_10_1016_j_energy_2023_128128 crossref_primary_10_1109_TIM_2022_3222506 crossref_primary_10_3390_math10142526 crossref_primary_10_1016_j_ins_2022_11_091 crossref_primary_10_1016_j_ces_2023_118581 crossref_primary_10_1016_j_ces_2025_121652 crossref_primary_10_1016_j_cjche_2025_02_025 crossref_primary_10_1016_j_measurement_2023_113700 crossref_primary_10_1016_j_psep_2024_05_065 crossref_primary_10_1109_TIM_2024_3420267 crossref_primary_10_1016_j_jfca_2025_107994 crossref_primary_10_1016_j_psep_2025_107207 crossref_primary_10_1016_j_asoc_2025_113679 crossref_primary_10_1109_TIM_2024_3449983 crossref_primary_10_1002_cjce_25687 crossref_primary_10_1007_s40313_022_00971_6 |
| Cites_doi | 10.1016/j.ces.2021.116851 10.1016/j.ces.2020.116233 10.1109/TASE.2020.3010536 10.1016/0098-1354(93)80018-I 10.1021/ie300203u 10.1109/TASE.2016.2636292 10.1016/j.jtice.2010.03.015 10.1016/j.jprocont.2010.12.003 10.1016/j.jprocont.2016.09.006 10.1016/j.compchemeng.2020.107024 10.1109/TII.2019.2942650 10.1016/j.measurement.2019.107190 10.1109/ACCESS.2018.2798278 10.1016/j.patcog.2020.107554 10.1021/ie504380c 10.1016/j.ces.2011.10.011 10.1016/0959-1524(96)00010-8 10.1021/acs.iecr.7b01721 10.1002/aic.14282 10.1002/cjce.23614 10.1126/science.1242072 10.1016/j.jprocont.2018.02.004 10.1016/0098-1354(94)00043-N 10.1109/TASE.2019.2897477 10.1016/j.chemolab.2019.03.012 10.1016/j.compchemeng.2015.09.013 10.1145/1390156.1390294 10.1021/ie202720y 10.1177/0142331219881343 10.1016/j.jfranklin.2020.05.039 10.1021/acs.iecr.5b03993 10.1016/j.neunet.2021.01.010 10.1016/j.ces.2010.08.024 10.1016/j.ins.2018.03.031 10.1016/j.compchemeng.2020.106787 10.1109/TASE.2013.2285571 10.1016/j.jprocont.2019.01.008 10.1016/S1004-9541(12)60604-1 10.1016/j.knosys.2017.07.010 10.1016/j.ces.2017.12.025 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ces.2022.117556 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ces_2022_117556 S0009250922001403 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SPC SPCBC SSG SSH SSZ T5K XPP ZMT ~02 ~G- 9DU AAQXK AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EFLBG EJD FEDTE FGOYB HVGLF HZ~ NDZJH R2- SC5 SEW T9H VH1 WUQ Y6R ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-9fee074cd6ebd08c559d1fff2ca761ece6ad302fd9006018a9a08fc3e45b00453 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788736700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0009-2509 |
| IngestDate | Sat Nov 29 07:30:19 EST 2025 Tue Nov 18 21:30:51 EST 2025 Sun Apr 06 06:53:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mode identification Multimode process monitoring Stacked denoising autoencoder Gaussian mixture model Density peaks clustering Industrial process |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-9fee074cd6ebd08c559d1fff2ca761ece6ad302fd9006018a9a08fc3e45b00453 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ces_2022_117556 crossref_primary_10_1016_j_ces_2022_117556 elsevier_sciencedirect_doi_10_1016_j_ces_2022_117556 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-18 |
| PublicationDateYYYYMMDD | 2022-05-18 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering science |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lou, Wang (b0065) 2017; 56 Song, Tan, Shi (b0105) 2016; 47 Wu, Zhao (b0145) 2020; 141 Ricker (b0090) 1995; 19 Downs, Vogel (b0010) 1993; 17 Yaohui, Zhengming, Fang (b0060) 2017; 133 Wu, Zhou, Zhang, Chen (b0140) 2020; 136 Sun, Zhuang, Xu, Qin, Feng (b0115) 2021 Zhang, Zhao, Gao (b0185) 2018; 178 Zhao (b0200) 2014; 60 Quiñones-Grueiro, Prieto-Moreno, Verde, Llanes-Santiago (b0080) 2019; 189 Vincent, Larochelle, Lajoie, Bengio, Manzagol, Bottou (b0130) 2010; 11 Jiang, Huang, Yan (b0045) 2016; 84 Xie, Shi (b0150) 2012; 51 Yu, Liu (b0175) 2021; 137 Wang, Li, Dai, Lawrence, Yan (b0135) 2020; 16 Gao, Jia, Mao, Zhao (b0020) 2020; 98 Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A., 2008. Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning. pp. 1096–1103. Hou, Zhang, Qi (b0030) 2020; 108 Rodriguez, Laio (b0095) 2014; 344 Zhao, Yao, Gao, Wang (b0215) 2010; 65 Jiang, Yan (b0050) 2019; 16 Yu (b0170) 2012; 68 Rashid, Yu (b0085) 2012; 51 Xie, Shi (b0155) 2012; 20 Zhang, Jiang, Zhan, Yang (b0195) 2019; 75 Ji (b0040) 2021; 230 Liu, Wang, Yu (b0055) 2018; 450 Jeng (b0035) 2010; 41 Martin, Morris (b0075) 1996; 6 Yu (b0165) 2018; 15 Tang, Li (b0120) 2020; 42 Chen, Zhang, Cao, Wang (b0005) 2020; 151 Sun, Meng, Palazoglu, Zhao, Zhang, Zhang (b0110) 2011; 21 Song, Shi (b0100) 2018; 6 Guo, Huang, Cai, Zhu (b0025) 2018 Zhang, Shang, Yang, Sun (b0180) 2020; 357 Luo, Bao, Mao, Tang (b0070) 2016; 55 Zhao, Wang, Qin, Gao (b0210) 2015; 54 Zhao, Chen, Jing (b0205) 2021; 18 Du, Tian, Qian (b0015) 2014; 11 Zhang, Jiang, Li, Yang (b0190) 2018; 64 You, Chen (b0160) 2021; 246 Jiang (10.1016/j.ces.2022.117556_b0045) 2016; 84 Chen (10.1016/j.ces.2022.117556_b0005) 2020; 151 Hou (10.1016/j.ces.2022.117556_b0030) 2020; 108 Zhao (10.1016/j.ces.2022.117556_b0215) 2010; 65 Song (10.1016/j.ces.2022.117556_b0105) 2016; 47 Vincent (10.1016/j.ces.2022.117556_b0130) 2010; 11 Yaohui (10.1016/j.ces.2022.117556_b0060) 2017; 133 Rashid (10.1016/j.ces.2022.117556_b0085) 2012; 51 Wu (10.1016/j.ces.2022.117556_b0140) 2020; 136 Zhang (10.1016/j.ces.2022.117556_b0190) 2018; 64 Wu (10.1016/j.ces.2022.117556_b0145) 2020; 141 Guo (10.1016/j.ces.2022.117556_b0025) 2018 Martin (10.1016/j.ces.2022.117556_b0075) 1996; 6 Ricker (10.1016/j.ces.2022.117556_b0090) 1995; 19 Du (10.1016/j.ces.2022.117556_b0015) 2014; 11 Gao (10.1016/j.ces.2022.117556_b0020) 2020; 98 Yu (10.1016/j.ces.2022.117556_b0170) 2012; 68 Jeng (10.1016/j.ces.2022.117556_b0035) 2010; 41 Quiñones-Grueiro (10.1016/j.ces.2022.117556_b0080) 2019; 189 10.1016/j.ces.2022.117556_b0125 Zhang (10.1016/j.ces.2022.117556_b0195) 2019; 75 Song (10.1016/j.ces.2022.117556_b0100) 2018; 6 Sun (10.1016/j.ces.2022.117556_b0115) 2021 Sun (10.1016/j.ces.2022.117556_b0110) 2011; 21 Xie (10.1016/j.ces.2022.117556_b0155) 2012; 20 Tang (10.1016/j.ces.2022.117556_b0120) 2020; 42 Yu (10.1016/j.ces.2022.117556_b0165) 2018; 15 Liu (10.1016/j.ces.2022.117556_b0055) 2018; 450 Luo (10.1016/j.ces.2022.117556_b0070) 2016; 55 Jiang (10.1016/j.ces.2022.117556_b0050) 2019; 16 Zhao (10.1016/j.ces.2022.117556_b0205) 2021; 18 Lou (10.1016/j.ces.2022.117556_b0065) 2017; 56 Zhang (10.1016/j.ces.2022.117556_b0180) 2020; 357 Rodriguez (10.1016/j.ces.2022.117556_b0095) 2014; 344 You (10.1016/j.ces.2022.117556_b0160) 2021; 246 Downs (10.1016/j.ces.2022.117556_b0010) 1993; 17 Zhao (10.1016/j.ces.2022.117556_b0210) 2015; 54 Yu (10.1016/j.ces.2022.117556_b0175) 2021; 137 Zhao (10.1016/j.ces.2022.117556_b0200) 2014; 60 Xie (10.1016/j.ces.2022.117556_b0150) 2012; 51 Zhang (10.1016/j.ces.2022.117556_b0185) 2018; 178 Wang (10.1016/j.ces.2022.117556_b0135) 2020; 16 Ji (10.1016/j.ces.2022.117556_b0040) 2021; 230 |
| References_xml | – volume: 11 start-page: 1133 year: 2014 end-page: 1148 ident: b0015 article-title: Monitoring for nonlinear multiple modes process based on LL-SVDD-MRDA publication-title: IEEE Trans. Autom. Sci. Eng. – year: 2021 ident: b0115 article-title: Data-driven modeling and analysis based on complex network for multimode recognition of industrial processes publication-title: Journal of Manufacturing Systems – volume: 47 start-page: 136 year: 2016 end-page: 149 ident: b0105 article-title: Key principal components with recursive local outlier factor for multimode chemical process monitoring publication-title: J. Process Control – volume: 21 start-page: 627 year: 2011 end-page: 638 ident: b0110 article-title: A method for multiphase batch process monitoring based on auto phase identification publication-title: J. Process Control – volume: 178 start-page: 104 year: 2018 end-page: 117 ident: b0185 article-title: Two-directional concurrent strategy of mode identification and sequential phase division for multimode and multiphase batch process monitoring with uneven lengths publication-title: Chem. Eng. Sci. – volume: 16 start-page: 1814 year: 2019 end-page: 1824 ident: b0050 article-title: Multimode Process Monitoring Using Variational Bayesian Inference and Canonical Correlation Analysis publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 246 start-page: 116851 year: 2021 ident: b0160 article-title: A Variable Relevant Multi-Local PCA Modeling Scheme to Monitor a Nonlinear Chemical Process publication-title: Chem. Eng. Sci. – volume: 42 start-page: 1022 year: 2020 end-page: 1036 ident: b0120 article-title: Phase division and transition modeling based on the dominant phase identification for multiphase batch process quality prediction publication-title: Trans. Inst. Meas. Control – volume: 108 start-page: 107554 year: 2020 ident: b0030 article-title: Density peak clustering based on relative density relationship publication-title: Pattern Recognit. – volume: 133 start-page: 208 year: 2017 end-page: 220 ident: b0060 article-title: Adaptive density peak clustering based on K-nearest neighbors with aggregating strategy publication-title: Knowledge-Based Syst. – volume: 55 start-page: 2035 year: 2016 end-page: 2048 ident: b0070 article-title: Phase partition and phase-based process monitoring methods for multiphase batch processes with uneven durations publication-title: Ind. Eng. Chem. Res. – volume: 75 start-page: 136 year: 2019 end-page: 155 ident: b0195 article-title: Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring publication-title: J. Process Control – volume: 51 start-page: 5497 year: 2012 end-page: 5505 ident: b0150 article-title: Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models publication-title: Ind. Eng. Chem. Res. – volume: 450 start-page: 200 year: 2018 end-page: 226 ident: b0055 article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks publication-title: Inf. Sci. – volume: 54 start-page: 3154 year: 2015 end-page: 3166 ident: b0210 article-title: Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitoring publication-title: Ind. Eng. Chem. Res. – volume: 15 start-page: 506 year: 2018 end-page: 518 ident: b0165 article-title: A novel semiparametric hidden Markov model for process failure mode identification publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 98 start-page: 254 year: 2020 end-page: 262 ident: b0020 article-title: A new monitoring method for the between-mode transition of multimode processes publication-title: Can. J. Chem. Eng. – volume: 64 start-page: 49 year: 2018 end-page: 61 ident: b0190 article-title: Automated feature learning for nonlinear process monitoring – An approach using stacked denoising autoencoder and k-nearest neighbor rule publication-title: J. Process Control – start-page: 426 year: 2018 end-page: 438 ident: b0025 article-title: A new local density for density peak clustering publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining – volume: 6 start-page: 349 year: 1996 end-page: 358 ident: b0075 article-title: Non-parametric confidence bounds for process performance monitoring charts publication-title: J. Process Control – volume: 65 start-page: 5961 year: 2010 end-page: 5975 ident: b0215 article-title: Statistical analysis and online monitoring for multimode processes with between-mode transitions publication-title: Chem. Eng. Sci. – volume: 189 start-page: 56 year: 2019 end-page: 71 ident: b0080 article-title: Data-driven monitoring of multimode continuous processes: A review publication-title: Chemometrics Intell. Lab. Syst. – volume: 11 year: 2010 ident: b0130 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 949 year: 1995 end-page: 959 ident: b0090 article-title: Optimal steady-state operation of the Tennessee Eastman challenge process publication-title: Comput. Chem. Eng. – volume: 6 start-page: 9740 year: 2018 end-page: 9749 ident: b0100 article-title: Temporal-spatial global locality projections for multimode process monitoring publication-title: IEEE Access – volume: 17 start-page: 245 year: 1993 end-page: 255 ident: b0010 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. – volume: 151 start-page: 107190 year: 2020 ident: b0005 article-title: A novel method of combining nonlinear frequency spectrum and deep learning for complex system fault diagnosis publication-title: Measurement – volume: 68 start-page: 506 year: 2012 end-page: 519 ident: b0170 article-title: A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes publication-title: Chem. Eng. Sci. – volume: 357 start-page: 8229 year: 2020 end-page: 8251 ident: b0180 article-title: Conditional random field for monitoring multimode processes with stochastic perturbations publication-title: J. Franklin Inst. – volume: 41 start-page: 475 year: 2010 end-page: 481 ident: b0035 article-title: Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms publication-title: J. Taiwan Inst. Chem. Eng. – volume: 84 start-page: 338 year: 2016 end-page: 349 ident: b0045 article-title: GMM and optimal principal components-based Bayesian method for multimode fault diagnosis publication-title: Comput. Chem. Eng. – volume: 60 start-page: 559 year: 2014 end-page: 573 ident: b0200 article-title: Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring publication-title: AICHE J. – volume: 344 start-page: 1492 year: 2014 end-page: 1496 ident: b0095 article-title: Clustering by fast search and find of density peaks publication-title: Science – reference: Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A., 2008. Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning. pp. 1096–1103. – volume: 20 start-page: 1174 year: 2012 end-page: 1179 ident: b0155 article-title: Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace publication-title: Chin. J. Chem. Eng. – volume: 137 start-page: 31 year: 2021 end-page: 42 ident: b0175 article-title: Extracting and inserting knowledge into stacked denoising auto-encoders publication-title: Neural Networks – volume: 230 start-page: 116233 year: 2021 ident: b0040 article-title: Statistics Mahalanobis distance for incipient sensor fault detection and diagnosis publication-title: Chem. Eng. Sci. – volume: 136 start-page: 106787 year: 2020 ident: b0140 article-title: Multimode process monitoring based on fault dependent variable selection and moving window-negative log likelihood probability publication-title: Comput. Chem. Eng. – volume: 56 start-page: 13800 year: 2017 end-page: 13811 ident: b0065 article-title: Multimode continuous processes monitoring based on hidden semi-Markov model and principal component analysis publication-title: Ind. Eng. Chem. Res. – volume: 16 start-page: 3651 year: 2020 end-page: 3661 ident: b0135 article-title: Data-Driven Mode Identification and Unsupervised Fault Detection for Nonlinear Multimode Processes publication-title: IEEE Trans. Ind. Inform. – volume: 51 start-page: 5506 year: 2012 end-page: 5514 ident: b0085 article-title: Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection publication-title: Ind. Eng. Chem. Res. – volume: 18 start-page: 1563 year: 2021 end-page: 1574 ident: b0205 article-title: Condition-driven data analytics and monitoring for wide-range nonstationary and transient continuous processes publication-title: IEEE Trans. Automat. Sci. Eng. – volume: 141 start-page: 107024 year: 2020 ident: b0145 article-title: Self-adaptive deep learning for multimode process monitoring publication-title: Comput. Chem. Eng. – volume: 246 start-page: 116851 year: 2021 ident: 10.1016/j.ces.2022.117556_b0160 article-title: A Variable Relevant Multi-Local PCA Modeling Scheme to Monitor a Nonlinear Chemical Process publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116851 – volume: 230 start-page: 116233 year: 2021 ident: 10.1016/j.ces.2022.117556_b0040 article-title: Statistics Mahalanobis distance for incipient sensor fault detection and diagnosis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.116233 – volume: 18 start-page: 1563 issue: 4 year: 2021 ident: 10.1016/j.ces.2022.117556_b0205 article-title: Condition-driven data analytics and monitoring for wide-range nonstationary and transient continuous processes publication-title: IEEE Trans. Automat. Sci. Eng. doi: 10.1109/TASE.2020.3010536 – volume: 17 start-page: 245 issue: 3 year: 1993 ident: 10.1016/j.ces.2022.117556_b0010 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80018-I – volume: 51 start-page: 5506 issue: 15 year: 2012 ident: 10.1016/j.ces.2022.117556_b0085 article-title: Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300203u – volume: 15 start-page: 506 issue: 2 year: 2018 ident: 10.1016/j.ces.2022.117556_b0165 article-title: A novel semiparametric hidden Markov model for process failure mode identification publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2636292 – volume: 41 start-page: 475 issue: 4 year: 2010 ident: 10.1016/j.ces.2022.117556_b0035 article-title: Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2010.03.015 – volume: 21 start-page: 627 issue: 4 year: 2011 ident: 10.1016/j.ces.2022.117556_b0110 article-title: A method for multiphase batch process monitoring based on auto phase identification publication-title: J. Process Control doi: 10.1016/j.jprocont.2010.12.003 – volume: 47 start-page: 136 year: 2016 ident: 10.1016/j.ces.2022.117556_b0105 article-title: Key principal components with recursive local outlier factor for multimode chemical process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2016.09.006 – volume: 141 start-page: 107024 year: 2020 ident: 10.1016/j.ces.2022.117556_b0145 article-title: Self-adaptive deep learning for multimode process monitoring publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107024 – volume: 16 start-page: 3651 issue: 6 year: 2020 ident: 10.1016/j.ces.2022.117556_b0135 article-title: Data-Driven Mode Identification and Unsupervised Fault Detection for Nonlinear Multimode Processes publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2942650 – volume: 11 issue: 12 year: 2010 ident: 10.1016/j.ces.2022.117556_b0130 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 151 start-page: 107190 year: 2020 ident: 10.1016/j.ces.2022.117556_b0005 article-title: A novel method of combining nonlinear frequency spectrum and deep learning for complex system fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2019.107190 – volume: 6 start-page: 9740 year: 2018 ident: 10.1016/j.ces.2022.117556_b0100 article-title: Temporal-spatial global locality projections for multimode process monitoring publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2798278 – volume: 108 start-page: 107554 year: 2020 ident: 10.1016/j.ces.2022.117556_b0030 article-title: Density peak clustering based on relative density relationship publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107554 – volume: 54 start-page: 3154 issue: 12 year: 2015 ident: 10.1016/j.ces.2022.117556_b0210 article-title: Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie504380c – volume: 68 start-page: 506 issue: 1 year: 2012 ident: 10.1016/j.ces.2022.117556_b0170 article-title: A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.10.011 – volume: 6 start-page: 349 issue: 6 year: 1996 ident: 10.1016/j.ces.2022.117556_b0075 article-title: Non-parametric confidence bounds for process performance monitoring charts publication-title: J. Process Control doi: 10.1016/0959-1524(96)00010-8 – volume: 56 start-page: 13800 issue: 46 year: 2017 ident: 10.1016/j.ces.2022.117556_b0065 article-title: Multimode continuous processes monitoring based on hidden semi-Markov model and principal component analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b01721 – volume: 60 start-page: 559 issue: 2 year: 2014 ident: 10.1016/j.ces.2022.117556_b0200 article-title: Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring publication-title: AICHE J. doi: 10.1002/aic.14282 – volume: 98 start-page: 254 issue: 1 year: 2020 ident: 10.1016/j.ces.2022.117556_b0020 article-title: A new monitoring method for the between-mode transition of multimode processes publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23614 – volume: 344 start-page: 1492 issue: 6191 year: 2014 ident: 10.1016/j.ces.2022.117556_b0095 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – volume: 64 start-page: 49 year: 2018 ident: 10.1016/j.ces.2022.117556_b0190 article-title: Automated feature learning for nonlinear process monitoring – An approach using stacked denoising autoencoder and k-nearest neighbor rule publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.02.004 – start-page: 426 year: 2018 ident: 10.1016/j.ces.2022.117556_b0025 article-title: A new local density for density peak clustering – volume: 19 start-page: 949 issue: 9 year: 1995 ident: 10.1016/j.ces.2022.117556_b0090 article-title: Optimal steady-state operation of the Tennessee Eastman challenge process publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(94)00043-N – volume: 16 start-page: 1814 issue: 4 year: 2019 ident: 10.1016/j.ces.2022.117556_b0050 article-title: Multimode Process Monitoring Using Variational Bayesian Inference and Canonical Correlation Analysis publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2019.2897477 – volume: 189 start-page: 56 year: 2019 ident: 10.1016/j.ces.2022.117556_b0080 article-title: Data-driven monitoring of multimode continuous processes: A review publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/j.chemolab.2019.03.012 – volume: 84 start-page: 338 issue: JAN.4 year: 2016 ident: 10.1016/j.ces.2022.117556_b0045 article-title: GMM and optimal principal components-based Bayesian method for multimode fault diagnosis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2015.09.013 – ident: 10.1016/j.ces.2022.117556_b0125 doi: 10.1145/1390156.1390294 – volume: 51 start-page: 5497 issue: 15 year: 2012 ident: 10.1016/j.ces.2022.117556_b0150 article-title: Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202720y – volume: 42 start-page: 1022 issue: 5 year: 2020 ident: 10.1016/j.ces.2022.117556_b0120 article-title: Phase division and transition modeling based on the dominant phase identification for multiphase batch process quality prediction publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331219881343 – volume: 357 start-page: 8229 issue: 12 year: 2020 ident: 10.1016/j.ces.2022.117556_b0180 article-title: Conditional random field for monitoring multimode processes with stochastic perturbations publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.05.039 – volume: 55 start-page: 2035 issue: 7 year: 2016 ident: 10.1016/j.ces.2022.117556_b0070 article-title: Phase partition and phase-based process monitoring methods for multiphase batch processes with uneven durations publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b03993 – year: 2021 ident: 10.1016/j.ces.2022.117556_b0115 article-title: Data-driven modeling and analysis based on complex network for multimode recognition of industrial processes publication-title: Journal of Manufacturing Systems – volume: 137 start-page: 31 year: 2021 ident: 10.1016/j.ces.2022.117556_b0175 article-title: Extracting and inserting knowledge into stacked denoising auto-encoders publication-title: Neural Networks doi: 10.1016/j.neunet.2021.01.010 – volume: 65 start-page: 5961 issue: 22 year: 2010 ident: 10.1016/j.ces.2022.117556_b0215 article-title: Statistical analysis and online monitoring for multimode processes with between-mode transitions publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.08.024 – volume: 450 start-page: 200 year: 2018 ident: 10.1016/j.ces.2022.117556_b0055 article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.03.031 – volume: 136 start-page: 106787 year: 2020 ident: 10.1016/j.ces.2022.117556_b0140 article-title: Multimode process monitoring based on fault dependent variable selection and moving window-negative log likelihood probability publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106787 – volume: 11 start-page: 1133 issue: 4 year: 2014 ident: 10.1016/j.ces.2022.117556_b0015 article-title: Monitoring for nonlinear multiple modes process based on LL-SVDD-MRDA publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2013.2285571 – volume: 75 start-page: 136 year: 2019 ident: 10.1016/j.ces.2022.117556_b0195 article-title: Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2019.01.008 – volume: 20 start-page: 1174 issue: 6 year: 2012 ident: 10.1016/j.ces.2022.117556_b0155 article-title: Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(12)60604-1 – volume: 133 start-page: 208 year: 2017 ident: 10.1016/j.ces.2022.117556_b0060 article-title: Adaptive density peak clustering based on K-nearest neighbors with aggregating strategy publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2017.07.010 – volume: 178 start-page: 104 year: 2018 ident: 10.1016/j.ces.2022.117556_b0185 article-title: Two-directional concurrent strategy of mode identification and sequential phase division for multimode and multiphase batch process monitoring with uneven lengths publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.12.025 |
| SSID | ssj0007710 |
| Score | 2.5060678 |
| Snippet | •A novel hierarchical mode identification strategy is proposed for multimode process.•An improved density peaks clustering algorithm called LDRSDPC is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 117556 |
| SubjectTerms | Density peaks clustering Gaussian mixture model Industrial process Mode identification Multimode process monitoring Stacked denoising autoencoder |
| Title | Multimode process monitoring based on hierarchical mode identification and stacked denoising autoencoder |
| URI | https://dx.doi.org/10.1016/j.ces.2022.117556 |
| Volume | 253 |
| WOSCitedRecordID | wos000788736700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0009-2509 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007710 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5UAPqBSqvkA-cGKVKm_Hxwq12nKokGjF3iKvPVazarOrNkH9-YwfebClCJC4RJFjO9LM59fM-BtCPoBSch4BHlMZ50EqWRbwPFWBCudacii0hNQmm2AXF8Vsxr94R_u9TSfA6rp4eOCr_6pqLENlm6uzf6HuvlMswHdUOj5R7fj8I8XbK7Umwc1k5S4BTG7tuLWBdmbRUsZBYFJgWyeC0ZGtXSkfOOQgYQ3qjcBBrib4ZVlZo4Jom6WhvlQ-qLfjOOhoB2CgN5z4xbWP8BHWKjttq-u2GhxClXP6DzfSpq03YX-DelGtN5-1sPBk4d5WgcdcQ3NaDAa07hLNELHkJmUe4E6Mjyfl2FEIP5rgna1hcYziOzZ_ME7nLFsj07bL81fTr-k2ji2JUPKcbMYs4zj1bZ6cn84-9ws2Y1HYJdwzDTrntw0DXPvRr7cvoy3J5TZ55c8S9MRh4DV5BvUO2RoxTL4h1z0aqEcDHdBALRrosqZjNFBb-2c0UEQD9WigPRroCA1vydXZ6eWnaeCTawQy5qwJuAbA7aNUOcxVWEg8WapIax1LwfIIJORCJWGsFbeUPYXgIsSRm0CamZk-S3bJRr2sYY_QlEvQORYXCa4HOix4JCNhaF-BhZHI9knYyayUnnneJEC5KbsQw0WJAiiNmEsn5n3ysW-ycrQrv6ucdoooPbTdfrBE1Dzd7ODfmh2SlwO0j8hGc9fCO_JCfm-q-7v3Hls_ABTmlns |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimode+process+monitoring+based+on+hierarchical+mode+identification+and+stacked+denoising+autoencoder&rft.jtitle=Chemical+engineering+science&rft.au=Gao%2C+Huihui&rft.au=Wei%2C+Chen&rft.au=Huang%2C+Wenjie&rft.au=Gao%2C+Xuejin&rft.date=2022-05-18&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.volume=253&rft_id=info:doi/10.1016%2Fj.ces.2022.117556&rft.externalDocID=S0009250922001403 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |