Free vibration of self-powered nanoribbons subjected to thermal-mechanical-electrical fields based on a nonlocal strain gradient theory

•Modeling multi-physical behaviors of a piezoelectric nanoribbon used as a self-powered component in medical nanorobots.•Quantifying both nonlocal and strain gradient effects where gradient types of normal strain and bending moment are defined.•Demonstrating coupling phenomena of internal parameters...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematical modelling Vol. 110; pp. 583 - 602
Main Authors: Li, C., Zhu, C.X., Zhang, N., Sui, S.H., Zhao, J.B.
Format: Journal Article
Language:English
Published: Elsevier Inc 01.10.2022
Subjects:
ISSN:0307-904X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Modeling multi-physical behaviors of a piezoelectric nanoribbon used as a self-powered component in medical nanorobots.•Quantifying both nonlocal and strain gradient effects where gradient types of normal strain and bending moment are defined.•Demonstrating coupling phenomena of internal parameters but independence between internal scale and external parameters. This paper is contributed to the studies of dynamic behaviors of a piezoelectric nanoribbon subjected to thermal-mechanical-electrical fields that is used as an approximate model for the self-powered component in medical nanorobots. Both the nonlocal and strain gradient effects are taken into account, and a gradient type of normal strain is introduced and applied instead of the classical normal strain. By combining the theoretical constitutive relations with nonlocal strain gradient piezoelectric equations, the governing equations and boundary conditions under the nonlocal strain gradient theory are derived, respectively, by means of Hamilton's principle and a new definition of nonlocal strain gradient bending moment. The differential quadrature method is used to solve the governing equations numerically and the influences of internal characteristic scales and external physical parameters on dynamic behaviors are discussed. It is demonstrated that the stiffness weakening and strengthening are, respectively caused by the nonlocal and strain gradient effects. The classical results are recovered in case of the same magnitudes for the nonlocal parameter and strain gradient characteristic parameter. There is a coupling between two internal characteristic scales and the peak value of strain gradient characteristic parameter may exist, but effects of internal characteristic parameters and external physical parameters on dynamic behaviors are independent. Additionally, the self-powered nanoribbon may lose its stability with a certain critical external parameter. The work could be useful for the design and realization of self-powered nanostructures.
AbstractList •Modeling multi-physical behaviors of a piezoelectric nanoribbon used as a self-powered component in medical nanorobots.•Quantifying both nonlocal and strain gradient effects where gradient types of normal strain and bending moment are defined.•Demonstrating coupling phenomena of internal parameters but independence between internal scale and external parameters. This paper is contributed to the studies of dynamic behaviors of a piezoelectric nanoribbon subjected to thermal-mechanical-electrical fields that is used as an approximate model for the self-powered component in medical nanorobots. Both the nonlocal and strain gradient effects are taken into account, and a gradient type of normal strain is introduced and applied instead of the classical normal strain. By combining the theoretical constitutive relations with nonlocal strain gradient piezoelectric equations, the governing equations and boundary conditions under the nonlocal strain gradient theory are derived, respectively, by means of Hamilton's principle and a new definition of nonlocal strain gradient bending moment. The differential quadrature method is used to solve the governing equations numerically and the influences of internal characteristic scales and external physical parameters on dynamic behaviors are discussed. It is demonstrated that the stiffness weakening and strengthening are, respectively caused by the nonlocal and strain gradient effects. The classical results are recovered in case of the same magnitudes for the nonlocal parameter and strain gradient characteristic parameter. There is a coupling between two internal characteristic scales and the peak value of strain gradient characteristic parameter may exist, but effects of internal characteristic parameters and external physical parameters on dynamic behaviors are independent. Additionally, the self-powered nanoribbon may lose its stability with a certain critical external parameter. The work could be useful for the design and realization of self-powered nanostructures.
Author Li, C.
Zhang, N.
Sui, S.H.
Zhu, C.X.
Zhao, J.B.
Author_xml – sequence: 1
  givenname: C.
  surname: Li
  fullname: Li, C.
  organization: School of Automotive Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China
– sequence: 2
  givenname: C.X.
  surname: Zhu
  fullname: Zhu, C.X.
  organization: School of Rail Transportation, Soochow University, Suzhou, Jiangsu 215131, China
– sequence: 3
  givenname: N.
  surname: Zhang
  fullname: Zhang, N.
  organization: School of Rail Transportation, Soochow University, Suzhou, Jiangsu 215131, China
– sequence: 4
  givenname: S.H.
  surname: Sui
  fullname: Sui, S.H.
  organization: School of Mechanical Engineering, Shangqiu Institute of Technology, Shangqiu, Henan 476000, China
– sequence: 5
  givenname: J.B.
  surname: Zhao
  fullname: Zhao, J.B.
  email: zhaojb@cit.edu.cn
  organization: School of Automotive Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China
BookMark eNp9kEFOwzAQRb0oEm3hAOx8gYRJ2jixWKGKAlIlNiCxsxx7TB2ldmWHop6Aa-NQViy68nhm3tf8PyMT5x0SclNAXkDBbrtc7nd5CWWZQ5XDcjkhU1hAnXFYvl-SWYwdAFTpNyXf64BID7YNcrDeUW9oxN5ke_-FATV10vlg29a7SONn26EaUnfwdNhi2Mk-26HaSmdVKrFP0zCW1FjsdaStjGk7yUqabuz9OIpDkNbRjyC1RTeMQj4cr8iFkX3E6793Tt7WD6-rp2zz8vi8ut9kquT1kHHDpNFNwSvGsOZGyqJuNKtxwRvFdcO4akolWwaaA2vrSkKjqgpapg1vKrWYk_qkq4KPMaARyg6_1sezelGAGDMUnUgZijFDAZVIGSay-Efug93JcDzL3J0YTJYOFoOIKplWqG1IWQnt7Rn6B4NSkgo
CitedBy_id crossref_primary_10_3390_sym15040814
crossref_primary_10_1016_j_ijengsci_2025_104354
crossref_primary_10_1080_15376494_2024_2436653
crossref_primary_10_1016_j_engstruct_2024_118223
crossref_primary_10_1016_j_apm_2025_116103
crossref_primary_10_1016_j_engstruct_2025_121112
crossref_primary_10_1080_15397734_2024_2407419
crossref_primary_10_1080_15397734_2024_2418827
crossref_primary_10_1007_s00521_024_10805_y
crossref_primary_10_1007_s00366_024_02061_4
crossref_primary_10_1016_j_ijmecsci_2024_109083
crossref_primary_10_1002_zamm_202400984
crossref_primary_10_1007_s10483_025_3228_7
crossref_primary_10_1080_15397734_2024_2428754
crossref_primary_10_1002_zamm_202400088
crossref_primary_10_1016_j_ijmecsci_2025_109983
crossref_primary_10_1080_15376494_2025_2513052
crossref_primary_10_1007_s00707_025_04268_y
crossref_primary_10_1016_j_engstruct_2023_117240
crossref_primary_10_1007_s42417_023_01058_5
crossref_primary_10_1007_s00707_025_04452_0
crossref_primary_10_1080_15397734_2025_2480708
crossref_primary_10_1080_15397734_2025_2480706
crossref_primary_10_1016_j_compstruct_2024_117986
crossref_primary_10_1080_15397734_2025_2549475
crossref_primary_10_1007_s10483_024_3198_9
crossref_primary_10_1016_j_currproblcancer_2024_101077
crossref_primary_10_1007_s42417_025_01842_5
crossref_primary_10_1590_1679_7825_e8600
crossref_primary_10_1007_s42417_025_01914_6
crossref_primary_10_1080_15397734_2025_2487184
crossref_primary_10_1007_s00707_023_03779_w
crossref_primary_10_1007_s42417_023_00924_6
crossref_primary_10_1007_s10409_025_24824_x
crossref_primary_10_1080_01495739_2025_2545405
crossref_primary_10_3390_ma15238570
crossref_primary_10_2174_0122106812352676241201153243
crossref_primary_10_1007_s00707_024_04009_7
crossref_primary_10_1080_17445302_2024_2442342
crossref_primary_10_1007_s00707_025_04407_5
crossref_primary_10_1007_s42417_024_01751_z
crossref_primary_10_1177_10996362251347162
crossref_primary_10_1080_15397734_2025_2490812
crossref_primary_10_1002_zamm_202200233
crossref_primary_10_1016_j_sna_2025_116225
crossref_primary_10_1016_j_ijmecsci_2023_108675
crossref_primary_10_1080_15376494_2024_2418974
crossref_primary_10_1007_s00707_025_04390_x
crossref_primary_10_1080_15397734_2025_2542878
crossref_primary_10_1016_j_euromechsol_2024_105494
crossref_primary_10_1080_15376494_2024_2324353
crossref_primary_10_1007_s00707_025_04287_9
crossref_primary_10_1016_j_marstruc_2025_103860
crossref_primary_10_1177_1088467X241290621
crossref_primary_10_1016_j_physd_2024_134501
crossref_primary_10_1080_15397734_2024_2341809
crossref_primary_10_1007_s00707_025_04302_z
crossref_primary_10_1007_s42417_025_01917_3
crossref_primary_10_1016_j_compstruct_2023_117583
crossref_primary_10_1007_s42417_025_01767_z
crossref_primary_10_1016_j_heliyon_2024_e30231
crossref_primary_10_1007_s42417_024_01610_x
crossref_primary_10_1177_09544062241280513
crossref_primary_10_1002_zamm_70218
crossref_primary_10_1080_15376494_2024_2336207
crossref_primary_10_1016_j_ast_2024_109672
crossref_primary_10_1080_15397734_2024_2405833
crossref_primary_10_1007_s00707_024_04086_8
crossref_primary_10_1080_15397734_2024_2416600
crossref_primary_10_1016_j_enganabound_2025_106395
crossref_primary_10_1007_s40997_025_00922_x
crossref_primary_10_1007_s10483_025_3241_8
crossref_primary_10_1007_s00707_024_04184_7
crossref_primary_10_1016_j_ymssp_2024_111453
crossref_primary_10_1016_j_ymssp_2025_112389
crossref_primary_10_1002_zamm_202401358
crossref_primary_10_1515_zna_2023_0361
crossref_primary_10_1016_j_rineng_2025_107044
crossref_primary_10_1080_15397734_2025_2556241
crossref_primary_10_1080_15376494_2023_2189333
crossref_primary_10_1007_s42417_025_01803_y
crossref_primary_10_1080_15376494_2024_2379505
crossref_primary_10_1002_sia_7336
crossref_primary_10_1007_s00707_025_04227_7
crossref_primary_10_1016_j_apm_2025_116411
crossref_primary_10_1080_15376494_2024_2413186
crossref_primary_10_1080_15376494_2024_2413183
crossref_primary_10_1007_s42417_025_01829_2
crossref_primary_10_1142_S0219455425501226
crossref_primary_10_3390_fractalfract8090498
crossref_primary_10_1080_15376494_2023_2284860
crossref_primary_10_1016_j_camwa_2024_11_026
crossref_primary_10_1007_s11071_024_10110_2
crossref_primary_10_1016_j_tws_2023_111206
crossref_primary_10_1016_j_istruc_2024_107289
crossref_primary_10_1080_15397734_2025_2462665
crossref_primary_10_1007_s00419_025_02762_2
crossref_primary_10_1007_s42417_025_02031_0
crossref_primary_10_1007_s00707_024_04087_7
crossref_primary_10_3390_fractalfract8070409
crossref_primary_10_1016_j_tws_2024_112744
crossref_primary_10_1080_15397734_2024_2336155
crossref_primary_10_3390_fractalfract8120682
crossref_primary_10_1016_j_chaos_2024_115815
crossref_primary_10_1080_01495739_2025_2508760
crossref_primary_10_1134_S0025654425600072
crossref_primary_10_1016_j_ymssp_2024_112281
crossref_primary_10_1007_s42417_025_02080_5
crossref_primary_10_1016_j_apm_2024_115648
crossref_primary_10_1007_s00707_025_04304_x
crossref_primary_10_1007_s42417_025_01915_5
crossref_primary_10_1080_15376494_2025_2473701
Cites_doi 10.1016/j.apm.2016.11.023
10.1088/1367-2630/18/8/085005
10.1016/j.compstruct.2016.09.058
10.1016/S0020-7683(02)00233-0
10.1080/17455030.2018.1490505
10.1016/j.ijmecsci.2016.11.025
10.1016/j.ijmecsci.2021.106600
10.1142/S1758825114500112
10.1016/j.ijplas.2014.03.001
10.1016/j.euromechsol.2016.09.006
10.1016/j.ijsolstr.2013.06.024
10.1016/j.compstruct.2019.111036
10.1007/s11012-021-01361-z
10.1016/S0022-5096(03)00053-X
10.1063/1.332803
10.1007/s11433-010-0170-6
10.1016/j.compstruct.2017.11.082
10.1016/j.ijsolstr.2012.04.019
10.1080/15397734.2020.1728545
10.1016/j.apm.2011.09.051
10.1016/0020-7683(93)90230-5
10.1016/j.apm.2018.12.010
10.1016/j.ymssp.2021.107833
10.1016/j.jmps.2015.02.001
10.1016/j.ijmecsci.2016.09.036
10.1016/j.ijengsci.2007.04.004
10.1016/j.compositesb.2017.01.071
10.1016/j.sna.2021.112836
10.1016/0020-7683(68)90036-X
10.1126/science.1245711
10.1088/0964-1726/21/2/025018
10.1016/j.compstruct.2016.10.038
10.1016/j.compstruct.2012.01.023
10.1016/j.ijengsci.2015.08.013
10.1016/j.ijsolstr.2013.07.026
10.1016/j.ijengsci.2018.09.006
10.1016/0020-7225(72)90039-0
10.1126/science.1157996
10.1007/s00707-016-1605-6
10.1007/s00707-018-2116-4
10.1007/s00161-013-0322-9
10.1007/s42417-021-00297-8
10.1088/1361-6528/ab5bc8
10.1016/j.jsv.2021.116464
10.1016/j.euromechsol.2018.03.006
10.1007/s11431-009-0046-z
10.1016/j.compstruct.2017.03.070
10.1016/j.compositesb.2018.11.036
10.1016/j.ijsolstr.2016.04.001
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.apm.2022.05.044
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 602
ExternalDocumentID 10_1016_j_apm_2022_05_044
S0307904X22002621
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-9f6afd819566e79faa178d67e398c9d869c82cab60d906b75a08c550b6df985c3
ISICitedReferencesCount 123
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000830893700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-904X
IngestDate Sat Nov 29 07:19:39 EST 2025
Tue Nov 18 22:32:22 EST 2025
Fri Feb 23 02:37:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Natural frequency
Self-powered
Nonlocal
Strain gradient
Piezoelectric
Thermal-mechanical-electrical
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-9f6afd819566e79faa178d67e398c9d869c82cab60d906b75a08c550b6df985c3
PageCount 20
ParticipantIDs crossref_citationtrail_10_1016_j_apm_2022_05_044
crossref_primary_10_1016_j_apm_2022_05_044
elsevier_sciencedirect_doi_10_1016_j_apm_2022_05_044
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Applied mathematical modelling
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Maranganti, Sharma (bib0008) 2007; 98
Yang, Kang, Wang (bib0001) 2017; 43
Polizzotto (bib0045) 2013; 50
Polizzotto (bib0010) 2016; 90
Li, Hu (bib0031) 2017; 120
Zhao, Zhou, Wang, Wang (bib0021) 2012; 36
Reddy (bib0054) 2007; 45
Aria, Biglari (bib0033) 2018; 321
Shen, Li (bib0039) 2017; 172
Y. Bai, M. Suhatril, Y. Cao, A. Forooghi, H. Assilzadeh, Hygro–thermo–magnetically induced vibration of nanobeams with simultaneous axial and spinning motions based on nonlocal strain gradient theory, Eng. Comput. 10.1007/s00366-020-01218-1.
Pisano, Fuschi, Polizzotto (bib0012) 2021; 56
Polizzotto (bib0018) 2018; 71
Farajpour, Yazdi, Rastgoo (bib0029) 2016; 227
Yang, Lim (bib0020) 2009; 52
Lim, Zhang, Reddy (bib0027) 2015; 78
Polizzotto (bib0046) 2013; 50
Xu, Wang, Zheng, Ma (bib0032) 2017; 160
Villanueva-Flores, Castro-Lugo, Ramirez, Palomares (bib0002) 2020; 31
Hu, Huai, Xu, Feng, Jiang, Zheng, Deng (bib0003) 2021; 159
Shen, Wang, Li, Wang (bib0038) 2019; 225
Lim (bib0026) 2010; 53
Li, Lai, Yang (bib0055) 2019; 69
Polizzotto (bib0044) 2012; 49
Guo, He, Liu, Lei, Shen, Li (bib0047) 2016; 119
Li, Hu (bib0028) 2015; 97
Mindlin, Eshel (bib0017) 1968; 4
Ke, Wang (bib0048) 2012; 21
Bert, Wang, Striz (bib0051) 1993; 30
I. Esen, A.A. Abdelrhmaan, M.A. Eltaher, Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields, Eng. Comput. 10.1007/s00366-021-01389-5.
Jena, Chakraverty, Malikan (bib0050) 2020; 7
Asrari, Ebrahimi, Kheirikhah, Safari (bib0037) 2022; 50
Ke, Wang (bib0041) 2012; 21
Lee, Wei, Kysar, Hone (bib0014) 2008; 321
Lam, Yang, Chong, Wang, Tong (bib0019) 2003; 51
Vinther, Kjems (bib0006) 2016; 18
Polizzotto (bib0009) 2014; 60
Li, Liu, Cheng, Fan (bib0007) 2017; 116
Joshi, Carbone, Wang (bib0005) 2014; 343
Neff, Ghiba, Madeo, Placidi, Rosi (bib0011) 2014; 26
Zhang, Lei, Adhikari (bib0042) 2018; 229
Eringen, Edelen (bib0015) 1972; 10
Ebrahimi, Dabbagh (bib0035) 2020; 30
Wang (bib0043) 2002; 39
Sahmani, Aghdam, Rabczuk (bib0034) 2018; 186
Polizzotto (bib0023) 2017; 61
Yan, Zhang (bib0013) 2021; 514
Eringen (bib0016) 1983; 54
Ke, Wang, Wang (bib0052) 2012; 94
Ebrahimi, Barati (bib0030) 2017; 159
Phung-Van, Thai, Nguyen-Xuan, Wahab (bib0024) 2019; 164
Luo, Mao, Zeng, Wang, Wang, Wu, Lu (bib0053) 2021; 9
Zhao, Wang, Zhu, Li, Wan (bib0025) 2021; 206
Yan, Li, Ma, Wang (bib0036) 2021; 330
Islam, Jia, Lim (bib0022) 2014; 6
Farajpour, Ghayesh, Farokhi (bib0004) 2018; 133
Neff (10.1016/j.apm.2022.05.044_bib0011) 2014; 26
Aria (10.1016/j.apm.2022.05.044_bib0033) 2018; 321
Asrari (10.1016/j.apm.2022.05.044_bib0037) 2022; 50
Ke (10.1016/j.apm.2022.05.044_bib0052) 2012; 94
Shen (10.1016/j.apm.2022.05.044_bib0038) 2019; 225
Lim (10.1016/j.apm.2022.05.044_bib0027) 2015; 78
Polizzotto (10.1016/j.apm.2022.05.044_bib0010) 2016; 90
Reddy (10.1016/j.apm.2022.05.044_bib0054) 2007; 45
Polizzotto (10.1016/j.apm.2022.05.044_bib0045) 2013; 50
10.1016/j.apm.2022.05.044_bib0040
Ke (10.1016/j.apm.2022.05.044_bib0048) 2012; 21
Ke (10.1016/j.apm.2022.05.044_bib0041) 2012; 21
Yang (10.1016/j.apm.2022.05.044_bib0001) 2017; 43
Yan (10.1016/j.apm.2022.05.044_bib0036) 2021; 330
Shen (10.1016/j.apm.2022.05.044_bib0039) 2017; 172
Polizzotto (10.1016/j.apm.2022.05.044_bib0044) 2012; 49
Yang (10.1016/j.apm.2022.05.044_bib0020) 2009; 52
Hu (10.1016/j.apm.2022.05.044_bib0003) 2021; 159
Farajpour (10.1016/j.apm.2022.05.044_bib0029) 2016; 227
Li (10.1016/j.apm.2022.05.044_bib0007) 2017; 116
Lim (10.1016/j.apm.2022.05.044_bib0026) 2010; 53
Ebrahimi (10.1016/j.apm.2022.05.044_bib0030) 2017; 159
Xu (10.1016/j.apm.2022.05.044_bib0032) 2017; 160
Polizzotto (10.1016/j.apm.2022.05.044_bib0046) 2013; 50
Li (10.1016/j.apm.2022.05.044_bib0055) 2019; 69
Zhao (10.1016/j.apm.2022.05.044_bib0021) 2012; 36
Joshi (10.1016/j.apm.2022.05.044_bib0005) 2014; 343
Bert (10.1016/j.apm.2022.05.044_bib0051) 1993; 30
Guo (10.1016/j.apm.2022.05.044_bib0047) 2016; 119
Eringen (10.1016/j.apm.2022.05.044_bib0016) 1983; 54
Phung-Van (10.1016/j.apm.2022.05.044_bib0024) 2019; 164
Villanueva-Flores (10.1016/j.apm.2022.05.044_bib0002) 2020; 31
Lam (10.1016/j.apm.2022.05.044_bib0019) 2003; 51
Ebrahimi (10.1016/j.apm.2022.05.044_bib0035) 2020; 30
Luo (10.1016/j.apm.2022.05.044_bib0053) 2021; 9
Farajpour (10.1016/j.apm.2022.05.044_bib0004) 2018; 133
Jena (10.1016/j.apm.2022.05.044_bib0050) 2020; 7
Maranganti (10.1016/j.apm.2022.05.044_bib0008) 2007; 98
Wang (10.1016/j.apm.2022.05.044_bib0043) 2002; 39
Vinther (10.1016/j.apm.2022.05.044_bib0006) 2016; 18
Polizzotto (10.1016/j.apm.2022.05.044_bib0018) 2018; 71
Polizzotto (10.1016/j.apm.2022.05.044_bib0009) 2014; 60
Lee (10.1016/j.apm.2022.05.044_bib0014) 2008; 321
Zhao (10.1016/j.apm.2022.05.044_bib0025) 2021; 206
Li (10.1016/j.apm.2022.05.044_bib0028) 2015; 97
Yan (10.1016/j.apm.2022.05.044_bib0013) 2021; 514
Islam (10.1016/j.apm.2022.05.044_bib0022) 2014; 6
Sahmani (10.1016/j.apm.2022.05.044_bib0034) 2018; 186
10.1016/j.apm.2022.05.044_bib0049
Zhang (10.1016/j.apm.2022.05.044_bib0042) 2018; 229
Pisano (10.1016/j.apm.2022.05.044_bib0012) 2021; 56
Polizzotto (10.1016/j.apm.2022.05.044_bib0023) 2017; 61
Li (10.1016/j.apm.2022.05.044_bib0031) 2017; 120
Mindlin (10.1016/j.apm.2022.05.044_bib0017) 1968; 4
Eringen (10.1016/j.apm.2022.05.044_bib0015) 1972; 10
References_xml – volume: 159
  year: 2021
  ident: bib0003
  article-title: Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids
  publication-title: Mech. Syst. Signal Process.
– volume: 133
  start-page: 231
  year: 2018
  end-page: 263
  ident: bib0004
  article-title: A review on the mechanics of nanostructures
  publication-title: Int. J. Eng. Sci.
– volume: 514
  year: 2021
  ident: bib0013
  article-title: An atomistic-continuum multiscale approach to determine the exact thickness and bending rigidity of monolayer graphene
  publication-title: J. Sound Vib.
– volume: 94
  start-page: 2038
  year: 2012
  end-page: 2047
  ident: bib0052
  article-title: Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory
  publication-title: Compos. Struct.
– volume: 30
  start-page: 1737
  year: 1993
  end-page: 1744
  ident: bib0051
  article-title: Differential quadrature for static and free vibration analyses of anisotropic plates
  publication-title: Int. J. Solids Struct.
– volume: 6
  year: 2014
  ident: bib0022
  article-title: Torsional wave propagation and vibration of circular nanostructures based on nonlocal elasticity theory
  publication-title: Int. J. Appl. Mech.
– volume: 159
  start-page: 174
  year: 2017
  end-page: 182
  ident: bib0030
  article-title: A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams
  publication-title: Compos. Struct.
– volume: 78
  start-page: 298
  year: 2015
  end-page: 313
  ident: bib0027
  article-title: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation
  publication-title: J. Mech. Phys. Solids
– volume: 50
  start-page: 3766
  year: 2013
  end-page: 3777
  ident: bib0046
  article-title: A second strain gradient elasticity theory with second velocity gradient inertia-part II: dynamic behavior
  publication-title: Int. J. Solids Struct.
– volume: 69
  start-page: 127
  year: 2019
  end-page: 141
  ident: bib0055
  article-title: On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter
  publication-title: Appl. Math. Model.
– volume: 31
  year: 2020
  ident: bib0002
  article-title: Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices
  publication-title: Nanotechnology
– volume: 186
  start-page: 68
  year: 2018
  end-page: 78
  ident: bib0034
  article-title: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory
  publication-title: Compos. Struct.
– volume: 206
  year: 2021
  ident: bib0025
  article-title: Coupled thermoelastic nonlocal forced vibration of an axially moving micro/nano-beam
  publication-title: Int. J. Mech. Sci.
– volume: 119
  start-page: 88
  year: 2016
  end-page: 96
  ident: bib0047
  article-title: Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect
  publication-title: Int. J. Mech. Sci.
– volume: 52
  start-page: 617
  year: 2009
  end-page: 621
  ident: bib0020
  article-title: Nonlinear vibrations of nano-beams accounting for nonlocal effect using a multiple scale method
  publication-title: Sci. China Technol. Sci.
– volume: 10
  start-page: 233
  year: 1972
  end-page: 248
  ident: bib0015
  article-title: On nonlocal elasticity
  publication-title: Int. J. Eng. Sci.
– volume: 98
  year: 2007
  ident: bib0008
  article-title: Length scales at which classical elasticity breaks down for various materials
  publication-title: Phys. Rev. Lett.
– volume: 54
  start-page: 4703
  year: 1983
  end-page: 4710
  ident: bib0016
  article-title: On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves
  publication-title: J. Appl. Phys.
– volume: 61
  start-page: 92
  year: 2017
  end-page: 109
  ident: bib0023
  article-title: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity
  publication-title: Eur. J. Mech. A Solid
– reference: Y. Bai, M. Suhatril, Y. Cao, A. Forooghi, H. Assilzadeh, Hygro–thermo–magnetically induced vibration of nanobeams with simultaneous axial and spinning motions based on nonlocal strain gradient theory, Eng. Comput. 10.1007/s00366-020-01218-1.
– reference: I. Esen, A.A. Abdelrhmaan, M.A. Eltaher, Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields, Eng. Comput. 10.1007/s00366-021-01389-5.
– volume: 97
  start-page: 84
  year: 2015
  end-page: 94
  ident: bib0028
  article-title: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory
  publication-title: Int. J. Eng. Sci.
– volume: 225
  year: 2019
  ident: bib0038
  article-title: New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory
  publication-title: Compos. Struct.
– volume: 36
  start-page: 2674
  year: 2012
  end-page: 2686
  ident: bib0021
  article-title: Nonlinear microbeam model based on strain gradient theory
  publication-title: Appl. Math. Model.
– volume: 321
  start-page: 385
  year: 2008
  end-page: 388
  ident: bib0014
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science
– volume: 39
  start-page: 3023
  year: 2002
  end-page: 3037
  ident: bib0043
  article-title: Axi-symmetric wave propagation in a cylinder coated with a piezoelectric layer
  publication-title: Int. J. Solids Struct.
– volume: 56
  start-page: 2323
  year: 2021
  end-page: 2337
  ident: bib0012
  article-title: Euler-Bernoulli elastic beam models of Eringen's differential nonlocal type revisited within a C-0-continuous displacement framework
  publication-title: Meccanica
– volume: 21
  year: 2012
  ident: bib0041
  article-title: Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory
  publication-title: Smart Mater. Struct.
– volume: 116
  start-page: 153
  year: 2017
  end-page: 169
  ident: bib0007
  article-title: Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces
  publication-title: Compos. Part B Eng.
– volume: 53
  start-page: 712
  year: 2010
  end-page: 724
  ident: bib0026
  article-title: Is a nanorod (or nanotube) with a lower Young's modulus stiffer? Is not Young's modulus a stiffness indicator
  publication-title: Sci. China Phys. Mech. Astron.
– volume: 60
  start-page: 197
  year: 2014
  end-page: 216
  ident: bib0009
  article-title: Surface effects, boundary conditions and evolution laws within second strain gradient plasticity
  publication-title: Int. J. Plast.
– volume: 26
  start-page: 639
  year: 2014
  end-page: 681
  ident: bib0011
  article-title: A unifying perspective: the relaxed linear micromorphic continuum
  publication-title: Contin. Mech. Therm.
– volume: 229
  start-page: 2379
  year: 2018
  end-page: 2392
  ident: bib0042
  article-title: Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory
  publication-title: Acta Mech.
– volume: 50
  start-page: 3749
  year: 2013
  end-page: 3765
  ident: bib0045
  article-title: A second strain gradient elasticity theory with second velocity gradient inertia-part I: constitutive equations and quasi-static behavior
  publication-title: Int. J. Solids Struct.
– volume: 330
  year: 2021
  ident: bib0036
  article-title: Application and dynamical behavior of CNTs as fluidic nanosensors based on the nonlocal strain gradient theory
  publication-title: Sens. Actuat. A Phys.
– volume: 43
  start-page: 321
  year: 2017
  end-page: 336
  ident: bib0001
  article-title: Thermal and surface effects on the pull-in characteristics of circular nanoplate NEMS actuator based on nonlocal elasticity theory
  publication-title: Appl. Math. Model.
– volume: 227
  start-page: 1849
  year: 2016
  end-page: 1867
  ident: bib0029
  article-title: A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment
  publication-title: Acta Mech.
– volume: 9
  start-page: 1289
  year: 2021
  end-page: 1303
  ident: bib0053
  article-title: Scale effect on the nonlinear vibration of piezoelectric sandwich nanobeams on winkler foundation
  publication-title: J. Vib. Eng. Technol.
– volume: 90
  start-page: 116
  year: 2016
  end-page: 121
  ident: bib0010
  article-title: A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons
  publication-title: Int. J. Solids Struct.
– volume: 4
  start-page: 109
  year: 1968
  end-page: 124
  ident: bib0017
  article-title: On first strain-gradient theories in linear elasticity
  publication-title: Int. J. Solids Struct.
– volume: 164
  start-page: 215
  year: 2019
  end-page: 225
  ident: bib0024
  article-title: Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis
  publication-title: Compos. Part B Eng.
– volume: 343
  start-page: 752
  year: 2014
  end-page: 754
  ident: bib0005
  article-title: Precise and ultrafast molecular sieving through graphene oxide membranes
  publication-title: Science
– volume: 172
  start-page: 210
  year: 2017
  end-page: 220
  ident: bib0039
  article-title: A semi-continuum-based bending analysis for extreme-thin micro/nano-beams and new proposal for nonlocal differential constitution
  publication-title: Compos. Struct.
– volume: 51
  start-page: 1477
  year: 2003
  end-page: 1508
  ident: bib0019
  article-title: Experiments and theory in strain gradient elasticity
  publication-title: J. Mech. Phys. Solids
– volume: 45
  start-page: 288
  year: 2007
  end-page: 307
  ident: bib0054
  article-title: Nonlocal theories for bending, buckling and vibration of beams
  publication-title: Int. J. Eng. Sci.
– volume: 160
  start-page: 366
  year: 2017
  end-page: 377
  ident: bib0032
  article-title: Bending and buckling of nonlocal strain gradient elastic beams
  publication-title: Compos. Struct.
– volume: 30
  start-page: 157
  year: 2020
  end-page: 176
  ident: bib0035
  article-title: Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory
  publication-title: Waves Random Complex
– volume: 21
  year: 2012
  ident: bib0048
  article-title: Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory
  publication-title: Smart Mater. Struct.
– volume: 49
  start-page: 2121
  year: 2012
  end-page: 2137
  ident: bib0044
  article-title: A gradient elasticity theory for second-grade materials and higher order inertia
  publication-title: Int. J. Solids Struct.
– volume: 120
  start-page: 159
  year: 2017
  end-page: 170
  ident: bib0031
  article-title: Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects
  publication-title: Int. J. Mech. Sci.
– volume: 321
  start-page: 313
  year: 2018
  end-page: 332
  ident: bib0033
  article-title: Computational vibration and buckling analysis of microtubule bundles based on nonlocal strain gradient theory
  publication-title: Appl. Math. Comput.
– volume: 50
  start-page: 817
  year: 2022
  end-page: 840
  ident: bib0037
  article-title: Buckling analysis of heterogeneous magneto-electro-thermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory
  publication-title: Mech. Based Des. Struct.
– volume: 18
  year: 2016
  ident: bib0006
  article-title: Interfacing DNA nanodevices with biology: challenges, solutions and perspectives
  publication-title: New J. Phys.
– volume: 71
  start-page: 51
  year: 2018
  end-page: 63
  ident: bib0018
  article-title: Anisotropy in strain gradient elasticity: simplified models with different forms of internal length and moduli tensors
  publication-title: Eur. J. Mech. A Solid
– volume: 7
  start-page: 685
  year: 2020
  end-page: 699
  ident: bib0050
  article-title: Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field
  publication-title: J. Comput. Des. Eng.
– volume: 43
  start-page: 321
  year: 2017
  ident: 10.1016/j.apm.2022.05.044_bib0001
  article-title: Thermal and surface effects on the pull-in characteristics of circular nanoplate NEMS actuator based on nonlocal elasticity theory
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.11.023
– volume: 18
  year: 2016
  ident: 10.1016/j.apm.2022.05.044_bib0006
  article-title: Interfacing DNA nanodevices with biology: challenges, solutions and perspectives
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/8/085005
– volume: 159
  start-page: 174
  year: 2017
  ident: 10.1016/j.apm.2022.05.044_bib0030
  article-title: A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.09.058
– volume: 39
  start-page: 3023
  year: 2002
  ident: 10.1016/j.apm.2022.05.044_bib0043
  article-title: Axi-symmetric wave propagation in a cylinder coated with a piezoelectric layer
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(02)00233-0
– volume: 30
  start-page: 157
  year: 2020
  ident: 10.1016/j.apm.2022.05.044_bib0035
  article-title: Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory
  publication-title: Waves Random Complex
  doi: 10.1080/17455030.2018.1490505
– volume: 120
  start-page: 159
  year: 2017
  ident: 10.1016/j.apm.2022.05.044_bib0031
  article-title: Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2016.11.025
– volume: 7
  start-page: 685
  year: 2020
  ident: 10.1016/j.apm.2022.05.044_bib0050
  article-title: Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field
  publication-title: J. Comput. Des. Eng.
– volume: 206
  year: 2021
  ident: 10.1016/j.apm.2022.05.044_bib0025
  article-title: Coupled thermoelastic nonlocal forced vibration of an axially moving micro/nano-beam
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2021.106600
– volume: 6
  year: 2014
  ident: 10.1016/j.apm.2022.05.044_bib0022
  article-title: Torsional wave propagation and vibration of circular nanostructures based on nonlocal elasticity theory
  publication-title: Int. J. Appl. Mech.
  doi: 10.1142/S1758825114500112
– volume: 60
  start-page: 197
  year: 2014
  ident: 10.1016/j.apm.2022.05.044_bib0009
  article-title: Surface effects, boundary conditions and evolution laws within second strain gradient plasticity
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.03.001
– volume: 61
  start-page: 92
  year: 2017
  ident: 10.1016/j.apm.2022.05.044_bib0023
  article-title: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity
  publication-title: Eur. J. Mech. A Solid
  doi: 10.1016/j.euromechsol.2016.09.006
– volume: 50
  start-page: 3749
  year: 2013
  ident: 10.1016/j.apm.2022.05.044_bib0045
  article-title: A second strain gradient elasticity theory with second velocity gradient inertia-part I: constitutive equations and quasi-static behavior
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2013.06.024
– volume: 225
  year: 2019
  ident: 10.1016/j.apm.2022.05.044_bib0038
  article-title: New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.111036
– volume: 56
  start-page: 2323
  year: 2021
  ident: 10.1016/j.apm.2022.05.044_bib0012
  article-title: Euler-Bernoulli elastic beam models of Eringen's differential nonlocal type revisited within a C-0-continuous displacement framework
  publication-title: Meccanica
  doi: 10.1007/s11012-021-01361-z
– volume: 51
  start-page: 1477
  year: 2003
  ident: 10.1016/j.apm.2022.05.044_bib0019
  article-title: Experiments and theory in strain gradient elasticity
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(03)00053-X
– ident: 10.1016/j.apm.2022.05.044_bib0040
– volume: 54
  start-page: 4703
  year: 1983
  ident: 10.1016/j.apm.2022.05.044_bib0016
  article-title: On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.332803
– volume: 53
  start-page: 712
  year: 2010
  ident: 10.1016/j.apm.2022.05.044_bib0026
  article-title: Is a nanorod (or nanotube) with a lower Young's modulus stiffer? Is not Young's modulus a stiffness indicator
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-010-0170-6
– volume: 186
  start-page: 68
  year: 2018
  ident: 10.1016/j.apm.2022.05.044_bib0034
  article-title: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.11.082
– volume: 49
  start-page: 2121
  year: 2012
  ident: 10.1016/j.apm.2022.05.044_bib0044
  article-title: A gradient elasticity theory for second-grade materials and higher order inertia
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.04.019
– volume: 98
  year: 2007
  ident: 10.1016/j.apm.2022.05.044_bib0008
  article-title: Length scales at which classical elasticity breaks down for various materials
  publication-title: Phys. Rev. Lett.
– volume: 50
  start-page: 817
  year: 2022
  ident: 10.1016/j.apm.2022.05.044_bib0037
  article-title: Buckling analysis of heterogeneous magneto-electro-thermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory
  publication-title: Mech. Based Des. Struct.
  doi: 10.1080/15397734.2020.1728545
– volume: 36
  start-page: 2674
  year: 2012
  ident: 10.1016/j.apm.2022.05.044_bib0021
  article-title: Nonlinear microbeam model based on strain gradient theory
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.09.051
– volume: 30
  start-page: 1737
  year: 1993
  ident: 10.1016/j.apm.2022.05.044_bib0051
  article-title: Differential quadrature for static and free vibration analyses of anisotropic plates
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(93)90230-5
– volume: 69
  start-page: 127
  year: 2019
  ident: 10.1016/j.apm.2022.05.044_bib0055
  article-title: On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.12.010
– volume: 159
  year: 2021
  ident: 10.1016/j.apm.2022.05.044_bib0003
  article-title: Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.107833
– volume: 78
  start-page: 298
  year: 2015
  ident: 10.1016/j.apm.2022.05.044_bib0027
  article-title: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2015.02.001
– volume: 119
  start-page: 88
  year: 2016
  ident: 10.1016/j.apm.2022.05.044_bib0047
  article-title: Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2016.09.036
– volume: 45
  start-page: 288
  year: 2007
  ident: 10.1016/j.apm.2022.05.044_bib0054
  article-title: Nonlocal theories for bending, buckling and vibration of beams
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2007.04.004
– volume: 116
  start-page: 153
  year: 2017
  ident: 10.1016/j.apm.2022.05.044_bib0007
  article-title: Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2017.01.071
– volume: 330
  year: 2021
  ident: 10.1016/j.apm.2022.05.044_bib0036
  article-title: Application and dynamical behavior of CNTs as fluidic nanosensors based on the nonlocal strain gradient theory
  publication-title: Sens. Actuat. A Phys.
  doi: 10.1016/j.sna.2021.112836
– volume: 4
  start-page: 109
  year: 1968
  ident: 10.1016/j.apm.2022.05.044_bib0017
  article-title: On first strain-gradient theories in linear elasticity
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(68)90036-X
– volume: 343
  start-page: 752
  year: 2014
  ident: 10.1016/j.apm.2022.05.044_bib0005
  article-title: Precise and ultrafast molecular sieving through graphene oxide membranes
  publication-title: Science
  doi: 10.1126/science.1245711
– volume: 21
  year: 2012
  ident: 10.1016/j.apm.2022.05.044_bib0041
  article-title: Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/2/025018
– volume: 160
  start-page: 366
  year: 2017
  ident: 10.1016/j.apm.2022.05.044_bib0032
  article-title: Bending and buckling of nonlocal strain gradient elastic beams
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.10.038
– volume: 94
  start-page: 2038
  year: 2012
  ident: 10.1016/j.apm.2022.05.044_bib0052
  article-title: Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2012.01.023
– volume: 97
  start-page: 84
  year: 2015
  ident: 10.1016/j.apm.2022.05.044_bib0028
  article-title: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2015.08.013
– volume: 50
  start-page: 3766
  year: 2013
  ident: 10.1016/j.apm.2022.05.044_bib0046
  article-title: A second strain gradient elasticity theory with second velocity gradient inertia-part II: dynamic behavior
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2013.07.026
– volume: 133
  start-page: 231
  year: 2018
  ident: 10.1016/j.apm.2022.05.044_bib0004
  article-title: A review on the mechanics of nanostructures
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2018.09.006
– volume: 10
  start-page: 233
  year: 1972
  ident: 10.1016/j.apm.2022.05.044_bib0015
  article-title: On nonlocal elasticity
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(72)90039-0
– volume: 321
  start-page: 385
  year: 2008
  ident: 10.1016/j.apm.2022.05.044_bib0014
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 227
  start-page: 1849
  year: 2016
  ident: 10.1016/j.apm.2022.05.044_bib0029
  article-title: A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment
  publication-title: Acta Mech.
  doi: 10.1007/s00707-016-1605-6
– volume: 229
  start-page: 2379
  year: 2018
  ident: 10.1016/j.apm.2022.05.044_bib0042
  article-title: Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory
  publication-title: Acta Mech.
  doi: 10.1007/s00707-018-2116-4
– ident: 10.1016/j.apm.2022.05.044_bib0049
– volume: 26
  start-page: 639
  year: 2014
  ident: 10.1016/j.apm.2022.05.044_bib0011
  article-title: A unifying perspective: the relaxed linear micromorphic continuum
  publication-title: Contin. Mech. Therm.
  doi: 10.1007/s00161-013-0322-9
– volume: 21
  year: 2012
  ident: 10.1016/j.apm.2022.05.044_bib0048
  article-title: Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/2/025018
– volume: 9
  start-page: 1289
  year: 2021
  ident: 10.1016/j.apm.2022.05.044_bib0053
  article-title: Scale effect on the nonlinear vibration of piezoelectric sandwich nanobeams on winkler foundation
  publication-title: J. Vib. Eng. Technol.
  doi: 10.1007/s42417-021-00297-8
– volume: 31
  year: 2020
  ident: 10.1016/j.apm.2022.05.044_bib0002
  article-title: Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab5bc8
– volume: 514
  year: 2021
  ident: 10.1016/j.apm.2022.05.044_bib0013
  article-title: An atomistic-continuum multiscale approach to determine the exact thickness and bending rigidity of monolayer graphene
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2021.116464
– volume: 321
  start-page: 313
  year: 2018
  ident: 10.1016/j.apm.2022.05.044_bib0033
  article-title: Computational vibration and buckling analysis of microtubule bundles based on nonlocal strain gradient theory
  publication-title: Appl. Math. Comput.
– volume: 71
  start-page: 51
  year: 2018
  ident: 10.1016/j.apm.2022.05.044_bib0018
  article-title: Anisotropy in strain gradient elasticity: simplified models with different forms of internal length and moduli tensors
  publication-title: Eur. J. Mech. A Solid
  doi: 10.1016/j.euromechsol.2018.03.006
– volume: 52
  start-page: 617
  year: 2009
  ident: 10.1016/j.apm.2022.05.044_bib0020
  article-title: Nonlinear vibrations of nano-beams accounting for nonlocal effect using a multiple scale method
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-009-0046-z
– volume: 172
  start-page: 210
  year: 2017
  ident: 10.1016/j.apm.2022.05.044_bib0039
  article-title: A semi-continuum-based bending analysis for extreme-thin micro/nano-beams and new proposal for nonlocal differential constitution
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.03.070
– volume: 164
  start-page: 215
  year: 2019
  ident: 10.1016/j.apm.2022.05.044_bib0024
  article-title: Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2018.11.036
– volume: 90
  start-page: 116
  year: 2016
  ident: 10.1016/j.apm.2022.05.044_bib0010
  article-title: A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.04.001
SSID ssj0005904
Score 2.6319988
Snippet •Modeling multi-physical behaviors of a piezoelectric nanoribbon used as a self-powered component in medical nanorobots.•Quantifying both nonlocal and strain...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 583
SubjectTerms Natural frequency
Nonlocal
Piezoelectric
Self-powered
Strain gradient
Thermal-mechanical-electrical
Title Free vibration of self-powered nanoribbons subjected to thermal-mechanical-electrical fields based on a nonlocal strain gradient theory
URI https://dx.doi.org/10.1016/j.apm.2022.05.044
Volume 110
WOSCitedRecordID wos000830893700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0307-904X
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005904
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBah3cP2MHZl3Q097GnBQXYs2XospaUbWxikG3kzsiyNFNcJzoX-g_2C_t_q6OK43Va2wV5COERWyPdF5-joO0cIvTMhdGb8jIwokWWUZpRFglAdUaqoVkrEsa3i__Ypm0zy2Yx_GQyuQi3Mts6aJr-85Mv_CrWxGbChdPYv4O4eagzmvQHdvBrYzesfAX_SKjXcwi44BIMrVetoCdehwVm_aBbtvCxBIrPalJCGMVYXgZpFuo4uFBQDA3aRuyPHFTmC0m01BKdXwQGDGDaLxjpCKDcR82b4vbXqMV8beeO0OIS6F12PWKhZgTt46uA5QRNkhQVHo10ue-MMs57Jp7cnnWm6scOmo9NRP4NhNr9BC-fTaqG05oby03av5MTJN7ul2ktg3WJL3RU43m8zW7n9s0tw2YnzkVhC44EksY1aXc_JW522pzAnTJmAcoVBe4L9JKPcLJb7hx-OZx932iFO0tBhEwaE43IrHLw10a8Dnl4Qc_YIPfS7D3zoWPMYDVTzBD343MGyeop-AH9wxx-80LjPH9zjD-74g9cLfCd_sOMPtvzB5rECB_5gxx8c-IMdf56hryfHZ0enkb-tI5IJz9YR10zoCo5lGVMZ10LEWV6xTI15LnmVMy7zRIqSkYoTVmZUkFya_XHJKs1zKsfP0Z6ZWb1AWI5jJmmSlmwsU1FJHmuSaM7LlFSxSNkBIuEnLaRvZQ9ftS6CZvG8MCgUgEJBaGFQOEDvuyFL18flrg-nAafCB6IuwCwMqX4_7OW_DXuF7u_-Fa_R3rrdqDfontyu56v2rafeNQ7-sIs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free+vibration+of+self-powered+nanoribbons+subjected+to+thermal-mechanical-electrical+fields+based+on+a+nonlocal+strain+gradient+theory&rft.jtitle=Applied+mathematical+modelling&rft.au=Li%2C+C.&rft.au=Zhu%2C+C.X.&rft.au=Zhang%2C+N.&rft.au=Sui%2C+S.H.&rft.date=2022-10-01&rft.pub=Elsevier+Inc&rft.issn=0307-904X&rft.volume=110&rft.spage=583&rft.epage=602&rft_id=info:doi/10.1016%2Fj.apm.2022.05.044&rft.externalDocID=S0307904X22002621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon