Fast spectral source integration in black hole perturbation calculations

This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called spectral source integration (SSI), this method should see wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles, fields, gravitation, and cosmology Jg. 92; H. 4
Hauptverfasser: Hopper, Seth, Forseth, Erik, Osburn, Thomas, Evans, Charles R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 26.08.2015
Schlagworte:
ISSN:1550-7998, 1550-2368
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called spectral source integration (SSI), this method should see widespread future use in problems that entail (i) a point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) the use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. We believe the method will extend to work for inspirals on Kerr and will be the subject of a later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate the mode normalization coefficients in perturbation theory via sums over modest numbers of points around an orbit. A variant of the idea is used to obtain spectral accuracy in a solution of the geodesic orbital motion.
AbstractList This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called spectral source integration (SSI), this method should see widespread future use in problems that entail (i) a point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) the use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. We believe the method will extend to work for inspirals on Kerr and will be the subject of a later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate the mode normalization coefficients in perturbation theory via sums over modest numbers of points around an orbit. A variant of the idea is used to obtain spectral accuracy in a solution of the geodesic orbital motion.
ArticleNumber 044048
Author Hopper, Seth
Forseth, Erik
Osburn, Thomas
Evans, Charles R.
Author_xml – sequence: 1
  givenname: Seth
  surname: Hopper
  fullname: Hopper, Seth
– sequence: 2
  givenname: Erik
  surname: Forseth
  fullname: Forseth, Erik
– sequence: 3
  givenname: Thomas
  surname: Osburn
  fullname: Osburn, Thomas
– sequence: 4
  givenname: Charles R.
  surname: Evans
  fullname: Evans, Charles R.
BookMark eNo1kMtOwzAURC1UJNrCD7DKkk3K9SNxvESFtkiVQAjWluPc0ICbBNtB6t9TSFnNkWY0izMjk7ZrkZBrCgtKgd8-7w7hBb_vF4otQAgQxRmZ0iyDlPG8mJxYKlVckFkIHwCc5VJOyWZlQkxCjzZ645LQDd5i0rQR372JTdceOSmdsZ_JrnOY9Ojj4MuxssbZwf1xuCTntXEBr045J2-rh9flJt0-rR-Xd9vUMiVjqpCDkVVRIlBVoOBUGCqFrIuKqUwJDlhxqE3JkaqKZZxJhtZCqTgIBiWfk5vxt_fd14Ah6n0TLDpnWuyGoGkBIHKQKj9O2Ti1vgvBY6173-yNP2gK-leb_temFdOjNv4DrvdkWg
Cites_doi 10.12942/lrr-2014-2
10.1103/PhysRevD.89.084021
10.1103/PhysRevD.79.124043
10.1143/PTP.128.971
10.1143/PTP.95.1079
10.1103/PhysRevD.88.084005
10.1103/PhysRevD.89.044046
10.1103/PhysRevD.90.044025
10.2307/2695765
10.1146/annurev-astro-081913-040031
10.1109/T-C.1974.223784
10.1103/PhysRevD.78.064028
10.1103/PhysRevD.85.104044
10.1103/PhysRevD.81.084021
10.1103/PhysRevD.78.124024
10.1016/0771-050X(81)90010-3
10.1088/0264-9381/26/21/213001
10.1103/PhysRevD.75.064021
10.1137/1023037
10.1103/PhysRevD.81.084033
10.1103/PhysRevD.89.064042
10.1103/PhysRevD.59.084006
10.1103/PhysRevD.83.124038
10.1088/0264-9381/26/16/165010
10.1103/PhysRevD.81.024017
10.1073/pnas.1103127108
10.1103/PhysRevD.79.124028
10.1103/PhysRevD.90.104031
10.1103/PhysRevD.73.024027
10.1103/PhysRevD.56.3381
10.1103/PhysRevD.91.124022
10.1103/PhysRevD.81.064004
10.1137/130932132
10.1017/CBO9781139193344
10.1103/PhysRevD.83.124026
10.1103/PhysRevD.89.061502
10.1103/PhysRevD.69.044015
10.12942/lrr-2003-6
10.1103/PhysRevD.55.3457
10.1103/PhysRevD.78.084021
10.1103/PhysRevD.61.061502
10.1086/431475
10.1143/PTP.121.843
10.1103/PhysRevD.77.084008
10.1088/0264-9381/24/17/R01
10.1103/PhysRevD.66.044002
10.1088/0264-9381/26/13/135002
10.1088/0264-9381/28/13/134010
10.1103/PhysRevD.88.044022
10.1103/PhysRevLett.99.201102
10.1098/rspa.1961.0142
10.1103/PhysRevD.69.044025
10.1088/1742-6596/610/1/012002
10.1103/PhysRevD.82.084010
10.1103/PhysRevD.76.044020
10.1142/S0218271814300225
10.12942/lrr-2011-7
10.1103/PhysRevD.88.104009
10.1103/PhysRevD.50.3816
10.1103/PhysRevD.77.124026
ContentType Journal Article
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1103/PhysRevD.92.044048
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1550-2368
ExternalDocumentID 10_1103_PhysRevD_92_044048
GroupedDBID 2-P
29O
3MX
6TJ
AAYXX
ACNCT
AECSF
AENEX
AEQTI
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
AUAIK
CITATION
CS3
DU5
EBS
EJD
MVM
NPBMV
RNS
S7W
SJN
TN5
ZPR
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c297t-9e30a7d8be0198e4314a1747f8d2959430ed30fab3e19d253272ecc0b930420b3
IEDL.DBID 3MX
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360065000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1550-7998
IngestDate Fri Jul 11 00:56:14 EDT 2025
Sat Nov 29 04:21:50 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
License http://link.aps.org/licenses/aps-default-accepted-manuscript-license
http://link.aps.org/licenses/aps-default-license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-9e30a7d8be0198e4314a1747f8d2959430ed30fab3e19d253272ecc0b930420b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1800460796
PQPubID 23500
ParticipantIDs proquest_miscellaneous_1800460796
crossref_primary_10_1103_PhysRevD_92_044048
PublicationCentury 2000
PublicationDate 2015-08-26
PublicationDateYYYYMMDD 2015-08-26
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-26
  day: 26
PublicationDecade 2010
PublicationTitle Physical review. D, Particles, fields, gravitation, and cosmology
PublicationYear 2015
References PhysRevD.92.044048Cc17R1
PhysRevD.92.044048Cc19R1
PhysRevD.92.044048Cc15R1
PhysRevD.92.044048Cc59R1
W. H. Press (PhysRevD.92.044048Cc62R1) 1993
T. W. Baumgarte (PhysRevD.92.044048Cc2R1) 2010
PhysRevD.92.044048Cc60R1
PhysRevD.92.044048Cc8R1
PhysRevD.92.044048Cc6R1
PhysRevD.92.044048Cc22R1
PhysRevD.92.044048Cc43R1
PhysRevD.92.044048Cc68R1
PhysRevD.92.044048Cc4R1
PhysRevD.92.044048Cc24R1
PhysRevD.92.044048Cc45R1
PhysRevD.92.044048Cc64R1
PhysRevD.92.044048Cc20R1
PhysRevD.92.044048Cc41R1
PhysRevD.92.044048Cc29R1
PhysRevD.92.044048Cc48R1
PhysRevD.92.044048Cc27R1
PhysRevD.92.044048Cc69R1
S. D. Poisson (PhysRevD.92.044048Cc73R1) 1827; 4
PhysRevD.92.044048Cc32R1
PhysRevD.92.044048Cc55R1
PhysRevD.92.044048Cc34R1
PhysRevD.92.044048Cc57R1
PhysRevD.92.044048Cc13R1
PhysRevD.92.044048Cc11R1
PhysRevD.92.044048Cc30R1
PhysRevD.92.044048Cc72R1
PhysRevD.92.044048Cc18R1
PhysRevD.92.044048Cc16R1
PhysRevD.92.044048Cc58R1
PhysRevD.92.044048Cc39R1
PhysRevD.92.044048Cc7R1
PhysRevD.92.044048Cc5R1
PhysRevD.92.044048Cc21R1
PhysRevD.92.044048Cc44R1
PhysRevD.92.044048Cc67R1
PhysRevD.92.044048Cc3R1
PhysRevD.92.044048Cc23R1
PhysRevD.92.044048Cc46R1
PhysRevD.92.044048Cc65R1
PhysRevD.92.044048Cc1R1
PhysRevD.92.044048Cc40R1
PhysRevD.92.044048Cc63R1
PhysRevD.92.044048Cc42R1
K. R. Rao (PhysRevD.92.044048Cc66R1) 1990
PhysRevD.92.044048Cc26R1
PhysRevD.92.044048Cc47R1
PhysRevD.92.044048Cc28R1
PhysRevD.92.044048Cc49R1
PhysRevD.92.044048Cc71R1
PhysRevD.92.044048Cc33R1
PhysRevD.92.044048Cc54R1
PhysRevD.92.044048Cc35R1
PhysRevD.92.044048Cc56R1
I. S. Gradshteyn (PhysRevD.92.044048Cc61R1) 2007
PhysRevD.92.044048Cc12R1
PhysRevD.92.044048Cc50R1
PhysRevD.92.044048Cc10R1
PhysRevD.92.044048Cc31R1
PhysRevD.92.044048Cc52R1
References_xml – ident: PhysRevD.92.044048Cc5R1
  doi: 10.12942/lrr-2014-2
– ident: PhysRevD.92.044048Cc41R1
  doi: 10.1103/PhysRevD.89.084021
– ident: PhysRevD.92.044048Cc39R1
  doi: 10.1103/PhysRevD.79.124043
– ident: PhysRevD.92.044048Cc45R1
  doi: 10.1143/PTP.128.971
– ident: PhysRevD.92.044048Cc50R1
  doi: 10.1143/PTP.95.1079
– ident: PhysRevD.92.044048Cc13R1
  doi: 10.1103/PhysRevD.88.084005
– ident: PhysRevD.92.044048Cc35R1
  doi: 10.1103/PhysRevD.89.044046
– ident: PhysRevD.92.044048Cc47R1
  doi: 10.1103/PhysRevD.90.044025
– ident: PhysRevD.92.044048Cc71R1
  doi: 10.2307/2695765
– ident: PhysRevD.92.044048Cc3R1
  doi: 10.1146/annurev-astro-081913-040031
– ident: PhysRevD.92.044048Cc65R1
  doi: 10.1109/T-C.1974.223784
– ident: PhysRevD.92.044048Cc49R1
  doi: 10.1103/PhysRevD.78.064028
– ident: PhysRevD.92.044048Cc34R1
  doi: 10.1103/PhysRevD.85.104044
– volume-title: Numerical Recipes in C: The Art of Scientific Computing
  year: 1993
  ident: PhysRevD.92.044048Cc62R1
– ident: PhysRevD.92.044048Cc59R1
  doi: 10.1103/PhysRevD.81.084021
– ident: PhysRevD.92.044048Cc42R1
  doi: 10.1103/PhysRevD.78.124024
– ident: PhysRevD.92.044048Cc69R1
  doi: 10.1016/0771-050X(81)90010-3
– ident: PhysRevD.92.044048Cc7R1
  doi: 10.1088/0264-9381/26/21/213001
– ident: PhysRevD.92.044048Cc23R1
  doi: 10.1103/PhysRevD.75.064021
– ident: PhysRevD.92.044048Cc64R1
  doi: 10.1137/1023037
– ident: PhysRevD.92.044048Cc44R1
  doi: 10.1103/PhysRevD.81.084033
– ident: PhysRevD.92.044048Cc46R1
  doi: 10.1103/PhysRevD.89.064042
– ident: PhysRevD.92.044048Cc10R1
  doi: 10.1103/PhysRevD.59.084006
– ident: PhysRevD.92.044048Cc56R1
  doi: 10.1103/PhysRevD.83.124038
– ident: PhysRevD.92.044048Cc24R1
  doi: 10.1088/0264-9381/26/16/165010
– ident: PhysRevD.92.044048Cc12R1
  doi: 10.1103/PhysRevD.81.024017
– ident: PhysRevD.92.044048Cc4R1
  doi: 10.1073/pnas.1103127108
– ident: PhysRevD.92.044048Cc11R1
  doi: 10.1103/PhysRevD.79.124028
– ident: PhysRevD.92.044048Cc30R1
  doi: 10.1103/PhysRevD.90.104031
– ident: PhysRevD.92.044048Cc57R1
  doi: 10.1103/PhysRevD.73.024027
– ident: PhysRevD.92.044048Cc17R1
  doi: 10.1103/PhysRevD.56.3381
– ident: PhysRevD.92.044048Cc48R1
  doi: 10.1103/PhysRevD.91.124022
– ident: PhysRevD.92.044048Cc43R1
  doi: 10.1103/PhysRevD.81.064004
– ident: PhysRevD.92.044048Cc72R1
  doi: 10.1137/130932132
– volume-title: Numerical Relativity: Solving Einstein’s Equations on the Computer
  year: 2010
  ident: PhysRevD.92.044048Cc2R1
  doi: 10.1017/CBO9781139193344
– ident: PhysRevD.92.044048Cc28R1
  doi: 10.1103/PhysRevD.83.124026
– ident: PhysRevD.92.044048Cc15R1
  doi: 10.1103/PhysRevD.89.061502
– ident: PhysRevD.92.044048Cc6R1
  doi: 10.1103/PhysRevD.69.044015
– ident: PhysRevD.92.044048Cc67R1
  doi: 10.12942/lrr-2003-6
– ident: PhysRevD.92.044048Cc16R1
  doi: 10.1103/PhysRevD.55.3457
– ident: PhysRevD.92.044048Cc55R1
  doi: 10.1103/PhysRevD.78.084021
– ident: PhysRevD.92.044048Cc21R1
  doi: 10.1103/PhysRevD.61.061502
– ident: PhysRevD.92.044048Cc52R1
  doi: 10.1086/431475
– ident: PhysRevD.92.044048Cc58R1
  doi: 10.1143/PTP.121.843
– ident: PhysRevD.92.044048Cc32R1
  doi: 10.1103/PhysRevD.77.084008
– ident: PhysRevD.92.044048Cc20R1
  doi: 10.1088/0264-9381/24/17/R01
– ident: PhysRevD.92.044048Cc68R1
  doi: 10.1103/PhysRevD.66.044002
– volume-title: Table of Integrals, Series, and Products
  year: 2007
  ident: PhysRevD.92.044048Cc61R1
– ident: PhysRevD.92.044048Cc63R1
  doi: 10.1088/0264-9381/26/13/135002
– ident: PhysRevD.92.044048Cc33R1
  doi: 10.1088/0264-9381/28/13/134010
– ident: PhysRevD.92.044048Cc40R1
  doi: 10.1103/PhysRevD.88.044022
– ident: PhysRevD.92.044048Cc19R1
  doi: 10.1103/PhysRevLett.99.201102
– ident: PhysRevD.92.044048Cc60R1
  doi: 10.1098/rspa.1961.0142
– ident: PhysRevD.92.044048Cc22R1
  doi: 10.1103/PhysRevD.69.044025
– ident: PhysRevD.92.044048Cc18R1
  doi: 10.1088/1742-6596/610/1/012002
– volume: 4
  start-page: 571
  year: 1827
  ident: PhysRevD.92.044048Cc73R1
  publication-title: Mem. Acad. Sci. Inst. France
– ident: PhysRevD.92.044048Cc27R1
  doi: 10.1103/PhysRevD.82.084010
– ident: PhysRevD.92.044048Cc31R1
  doi: 10.1103/PhysRevD.76.044020
– ident: PhysRevD.92.044048Cc1R1
  doi: 10.1142/S0218271814300225
– ident: PhysRevD.92.044048Cc8R1
  doi: 10.12942/lrr-2011-7
– ident: PhysRevD.92.044048Cc29R1
  doi: 10.1103/PhysRevD.88.104009
– ident: PhysRevD.92.044048Cc54R1
  doi: 10.1103/PhysRevD.50.3816
– volume-title: Discrete Cosine Transform: Algorithms, Advantages, Applications
  year: 1990
  ident: PhysRevD.92.044048Cc66R1
– ident: PhysRevD.92.044048Cc26R1
  doi: 10.1103/PhysRevD.77.124026
SSID ssj0032677
Score 1.7695259
Snippet This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Accuracy
Black holes (astronomy)
Frequency domains
Gravitation
Mathematical analysis
Orbits
Perturbation theory
Spectra
Title Fast spectral source integration in black hole perturbation calculations
URI https://www.proquest.com/docview/1800460796
Volume 92
WOSCitedRecordID wos000360065000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals (OCUL)
  customDbUrl:
  eissn: 1550-2368
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0032677
  issn: 1550-7998
  databaseCode: 3MX
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED5CaKFL36XpCxW6tU71sC1pLG1DloZSWshmLFmGLk6xnfz-nuR4CGTJJrAQ5k7ovu-kuw_gQeuSlUwZL5OaRjFTNjK8SCMb89xRZG-Ud2ITcjZT87n-HMDT9ht8RsWzfwn55VZvY83HXh85DpW9KvZyBeJj3h-7CEOCzKKH3JFEEtFXyGxdYjMKbR7CIbJMjnb7p2M4XCNI8tK5_AQGrjqF_fCS0zZnMJ3kTUtCAWWN07rkPOm7QqAXcEyMT9sRL41L_lyNUcd0n9Bhdq3n1ZzDz-T9-3UareUSIsu1bCPtBM1loYxD2KYcIoM4R74hS1Vwnfg2664QtMyNcEwXPBFccnQgNdqnNKgRFzCsFpW7BCIKhuTVFGlpMHq50lBTSpkwm1NpXWpG8NibL_vrumJkgU1QkfW2yTTPOtuM4L63cIab199I5JVbLJuMqVC8KnV6tdOK13CAwCXxuV2e3sCwrZfuFvbsqv1t6ruwL_4BguC0rA
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+spectral+source+integration+in+black+hole+perturbation+calculations&rft.jtitle=Physical+review.+D%2C+Particles%2C+fields%2C+gravitation%2C+and+cosmology&rft.au=Hopper%2C+Seth&rft.au=seth%2C+Erik&rft.au=Osburn%2C+Thomas&rft.au=Evans%2C+Charles+R&rft.date=2015-08-26&rft.issn=1550-7998&rft.eissn=1550-2368&rft.volume=92&rft.issue=4&rft_id=info:doi/10.1103%2Fphysrevd.92.044048&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-7998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-7998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-7998&client=summon