A training and assessment system for human-computer interaction combining fNIRS and eye-tracking data
In the domain of engineering interactive product design, the optimization of Human-Computer Interaction (HCI) is central to enhancing user experience and system efficiency. Notably, the application of cognitive load theory holds significant prominence in this field. Efficient evaluation of cognitive...
Saved in:
| Published in: | Advanced engineering informatics Vol. 62; p. 102765 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2024
|
| Subjects: | |
| ISSN: | 1474-0346 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the domain of engineering interactive product design, the optimization of Human-Computer Interaction (HCI) is central to enhancing user experience and system efficiency. Notably, the application of cognitive load theory holds significant prominence in this field. Efficient evaluation of cognitive load not only facilitates the optimization of resource management and task allocation, but is also the key to creating a fluent interactive experience. With the advancement of Artificial Intelligence (AI) and physiological measurement technologies, new methodologies have emerged to measure and understand cognitive load. This research introduces a system for HCI training and assessment. The system, through the development of digital memory paradigms, induces and verifies varying levels of cognitive load with precision, thereby providing data-driven insights for HCI design. Specifically, this study constructs an AI-assisted multimodal cognitive load assessment framework, integrating physiological data collected from Functional Near-Infrared Spectroscopy (fNIRS) and eye-tracking technologies. By extracting and analyzing 29 physiological features, including channel features, graph-theoretic features, and features pertaining to eyelid and iris movements, we propose an innovative multimodal recognition approach to classify cognitive load across individuals. The experimental results not only verified the validity of the method, but also revealed changes in physiological patterns at different levels of cognitive load. In particular, the significant potential of the fNIRS feature in band I. This discovery suggests that we can monitor and predict cognitive load with greater precision through physiological signals, hence optimizing the design of HCI systems to alleviate user strain, prevent information overload, and enhance the naturalness and intuitiveness of interaction. |
|---|---|
| AbstractList | In the domain of engineering interactive product design, the optimization of Human-Computer Interaction (HCI) is central to enhancing user experience and system efficiency. Notably, the application of cognitive load theory holds significant prominence in this field. Efficient evaluation of cognitive load not only facilitates the optimization of resource management and task allocation, but is also the key to creating a fluent interactive experience. With the advancement of Artificial Intelligence (AI) and physiological measurement technologies, new methodologies have emerged to measure and understand cognitive load. This research introduces a system for HCI training and assessment. The system, through the development of digital memory paradigms, induces and verifies varying levels of cognitive load with precision, thereby providing data-driven insights for HCI design. Specifically, this study constructs an AI-assisted multimodal cognitive load assessment framework, integrating physiological data collected from Functional Near-Infrared Spectroscopy (fNIRS) and eye-tracking technologies. By extracting and analyzing 29 physiological features, including channel features, graph-theoretic features, and features pertaining to eyelid and iris movements, we propose an innovative multimodal recognition approach to classify cognitive load across individuals. The experimental results not only verified the validity of the method, but also revealed changes in physiological patterns at different levels of cognitive load. In particular, the significant potential of the fNIRS feature in band I. This discovery suggests that we can monitor and predict cognitive load with greater precision through physiological signals, hence optimizing the design of HCI systems to alleviate user strain, prevent information overload, and enhance the naturalness and intuitiveness of interaction. |
| ArticleNumber | 102765 |
| Author | Bu, Lingguo Qu, Jing Zhao, Lei Wang, Yonghui |
| Author_xml | – sequence: 1 givenname: Jing surname: Qu fullname: Qu, Jing organization: Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China – sequence: 2 givenname: Lingguo surname: Bu fullname: Bu, Lingguo email: bulingguo@sdu.edu.cn organization: Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China – sequence: 3 givenname: Lei surname: Zhao fullname: Zhao, Lei organization: School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan 250101, China – sequence: 4 givenname: Yonghui surname: Wang fullname: Wang, Yonghui email: yonghuiw6606@126.com organization: Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, China |
| BookMark | eNp9kMtOwzAQRb0oEi3wAez8Aymx83AiVlXFo1IFEo-15Y7H4NI4le0i9e9xCCsW3cxoRnOuNGdGJq53SMg1y-csZ_XNdq7QznnOyzRzUVcTMmWlKLO8KOtzMgthm6e7phVTggsavbLOug-qnKYqBAyhQxdpOIaIHTW9p5-HTrkM-m5_iOipdakqiLZ3NC03I26eVi-vvyF4xCylwtew1iqqS3Jm1C7g1V-_IO_3d2_Lx2z9_LBaLtYZ8FbErIVSi6IR0HJouKkqrMoWQJtmAyUvhDZGA1MMoOAF40w3ihc5L0xdIvINFBeEjbng-xA8Grn3tlP-KFkuBzdyK5MbObiRo5vEiH8M2KiG3wYxu5Pk7UhieunbopcBLDpAbT1ClLq3J-gfPJeEVg |
| CitedBy_id | crossref_primary_10_1109_JSEN_2025_3597329 crossref_primary_10_3390_make7020051 crossref_primary_10_1016_j_aei_2025_103675 crossref_primary_10_1016_j_aei_2025_103259 crossref_primary_10_1016_j_aap_2025_108067 |
| Cites_doi | 10.1145/3340962 10.1016/j.aei.2022.101668 10.1016/j.ijhcs.2020.102580 10.1016/j.neuroscience.2015.03.047 10.1177/0018720813480177 10.1016/j.aei.2023.102113 10.1016/j.aei.2023.102123 10.1016/j.knosys.2016.08.031 10.1109/10.790500 10.1016/j.aei.2024.102489 10.1177/0018720819830553 10.1016/j.ijhcs.2023.103169 10.1177/107118139704100173 10.1007/978-3-030-34872-4_53 10.1109/TNB.2018.2839736 10.3390/s20185122 10.1016/j.ijpsycho.2011.10.011 10.1016/j.apergo.2022.103867 10.1145/3173380 10.2991/aebmr.k.200306.057 10.1109/ACCESS.2020.3039268 10.1016/j.aei.2022.101698 10.3389/feduc.2021.632907 10.1145/3412365 10.1145/3603622 10.1016/j.aei.2020.101048 10.1007/978-3-030-94277-9_110 10.1016/j.neubiorev.2020.07.020 10.1145/3445792 10.1007/s11571-020-09617-2 10.1145/3463507 10.1177/0018720821990484 10.1145/3534583 10.1109/CogInfoCom.2015.7390617 10.1186/s12938-018-0555-8 10.1080/0144929X.2020.1864019 10.1145/2556288.2557068 10.1007/978-3-030-80624-8_13 10.1109/SMC42975.2020.9283168 10.1109/ACCESS.2017.2731784 10.1109/ICHI48887.2020.9374342 10.1016/j.knosys.2021.108047 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.aei.2024.102765 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| ExternalDocumentID | 10_1016_j_aei_2024_102765 S1474034624004130 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAAKF AAAKG AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SST SSV SSZ T5K UHS XPP ZMT ~G- 9DU AATTM AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-9c4d7387c92c82f55e549ccdf8bc4237dffdc1a1cc323121d8a23023f64ee2bc3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001294249700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-0346 |
| IngestDate | Sat Nov 29 03:19:54 EST 2025 Tue Nov 18 21:55:51 EST 2025 Sat Dec 14 16:15:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | fNIRS Cognitive workload Eye-tracking Multimodal fusion |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-9c4d7387c92c82f55e549ccdf8bc4237dffdc1a1cc323121d8a23023f64ee2bc3 |
| ParticipantIDs | crossref_primary_10_1016_j_aei_2024_102765 crossref_citationtrail_10_1016_j_aei_2024_102765 elsevier_sciencedirect_doi_10_1016_j_aei_2024_102765 |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced engineering informatics |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – sequence: 0 name: Elsevier Ltd |
| References | Xuan, Wu, Shen, Ji, Lyu, Zhang (b0195) 2020; 14 Chen, Sawaragi, Hiraoka (b0105) 2020 Mijic, Sarlija, Petrinovic (b0235) 2017 Stevens, Morris, Fisher, Myers (b0040) 2022 De Las Casas, De La Riva-rodriguez, Maldonado-Macias, Saenz-Zamarron (b0050) 2023; 20 Abdurrahman, Zheng, Sharifai, Muraina (b0250) 2022 Kazemi, Cousins, Smith, Salesi, Alibeygian, Zendehbodi, Mokarami (b0155) 2023 Yang, Kuo, Lenne, Fitzharris, Horberry, Blay, Wood, Mulvihill, Truche (b0080) 2021; 63 Stefanovska, Bracic, Kvernmo (b0255) 1999; 46 Shaposhnyk, Yanushkevich (b0245) 2023 Figalova, Bieg, Reiser, Liu, Baumann, Chuang, Pollatos (b0065) 2024; 182 Ghani, Signal, Niazi, Taylor (b0070) 2020; 118 Knoll, Wang, Chen, Xu, Ruiz, Epps, Zarjam (b0075) 2011 Y. Zak, Y. Parmet, T. Oron-Gilad, Ieee, Subjective Workload Assessment Technique (SWAT) in real time: affordable methodology to continuously assess human operators' workload, in: IEEE International Conference on Systems, Man, and Cybernetics (SMC) Electr Network, 2020, pp. 2687–2694. Saha, Minz, Bonela, Sreeja, Chowdhury, Samanta (b0230) 2018 Z. Qadir, E. Chowdhury, L. Ghosh, A. Konar, Quantitative Analysis of Cognitive Load Test While Driving in a VR vs Non-VR Environment, 8th International Conference on Pattern Recognition and Machine Intelligence (PReMI)Tezpur Univ, Tezpur, INDIA, 2019, pp. 481-489. E.T. Solovey, M. Zec, E.A.G. Perez, B. Reimer, B. Mehler, Acm, Classifying Driver Workload Using Physiological and Driving Performance Data: Two Field Studies, 32nd Annual ACM Conference on Human Factors in Computing Systems (CHI)Toronto, CANADA, 2014, pp. 4057–4066. Midha, Maior, Wilson, Sharples (b0280) 2021; 147 Minkley, Xu, Krell (b0210) 2021; 6 Yu, Hongtao, Yunshan, Li, Lu (b0035) 2015 Alharthi, Raptis, Katsini, Dolgov, Nacke, Toups (b0265) 2021; 28 J. Lv, J. Qiao, J. Wu, Mental fatigue assessment method based on assembly operation, in: 5th International Conference on Financial Innovation and Economic Development (ICFIED)Sanya, PEOPLES R CHINA, 2020, pp. 325–329. Hughes, Hancock, Marlow, Stowers, Salas (b0015) 2019; 61 Vortmann, Putze (b0090) 2021; 5 P. Dasgupta, J. VanSwearingen, E. Sejdic, You can tell by the way I use my walk, Predicting the presence of cognitive load with gait measurements, Biomedical Engineering Online, 17 (2018). Liu, Qi, Hao, Lian, Luo (b0285) 2023; 14 Peng, Chao, Wang, Dang, Jiang, Hu, Majoe (b0260) 2018; 17 M. Vaidya, A. Tiwari, Workload assessment methods on train station control room, in: D. Chakrabarti, S. Karmakar, U.R. Salve (Eds.) International Conference of the Indian Society of Ergonomics, 2022, pp. 1293–1302. A.W. Joseph, J.S. Vaiz, R. Murugesh, Modeling Cognitive Load in Mobile Human Computer Interaction Using Eye Tracking Metrics, AHFE Virtual Conferences on Human Factors in Software and Systems Engineering, Artificial Intelligence and Social Computing, and EnergyElectr Network, 2021, pp. 99–106. P. Hafiz, A. Maxhuni, J.E. Bardram, S.O.C. Ieee comp, analysis of perceived human factors and participants' demographics during a cognitive assessment study with a smartwatch, IN: 8th IEEE International Conference on Healthcare Informatics (ICHI) Electr Network, 2020, pp. 287–296. Wortelen, Unni, Rieger, Luedtke (b0120) 2016 Digiesi, Manghisi, Facchini, Klose, Foglia, Mummolo (b0175) 2020; 11 Longo, Orru (b0045) 2022; 41 Okano, Nakayama (b0170) 2021 Liu, Lan, Cui, Krishnan, Sourina, Konovessis, Ang, Mueller-Wittig (b0020) 2020; 44 Maior, Wilson, Sharples (b0110) 2018; 25 Yu, Chen, Yang (b0135) 2023; 57 Yang, Shi, Wang, Wang, Peng (b0290) 2020; 8 A. Unni, K. Ihme, H. Surm, L. Weber, A. Luedtke, D. Nicklas, M. Jipp, J.W. Rieger, Ieee, brain activity measured with fnirs for the prediction of cognitive workload, in: 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2015)Szechenyi Istvan Univ, Gyor, HUNGARY, 2015, pp. 349–354. Li, Chen, Lee, Feng (b0145) 2022; 239 Yiu, Ng, Li, Zhang, Li, Lam, Chong (b0025) 2022; 53 Kalanadhabhatta, Santana, Zhang, Ganesan, Grabell, Rahman (b0115) 2022; 6 Liu, Gardi, Ramasamy, Lim, Sabatini (b0125) 2016; 112 Muth, Moss, Rosopa, Salley, Walker (b0055) 2012; 83 Biondi, Saberi, Graf, Cort, Pillai, Balasingam (b0180) 2023; 106 Howard, Burianova, Ehrich, Kervin, Calleia, Barkus, Carmody, Humphry (b0190) 2015; 297 Pang, Hu, Lieber, Cooke, Liu (b0010) 2023; 57 L.A. Whitaker, J. Hohne, D.P. Birkmire-Peters, Assessing cognitive workload metrics for evaluating telecommunication tasks, in: Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting 1997, vol. 321, 1997, pp. 325–329. Ding, Terwilliger, Parab, Wang, Fridman, Mehler, Reimer (b0100) 2023; 30 Fan, Huang, Shao, Niu (b0270) 2024; 61 Cooper, Medeiros-Ward, Strayer (b0085) 2013; 55 Zhang, Lyu, Qu, Qiu, Luo, Zhang, Fan, Shi (b0215) 2019; 16 Wirzberger, Herms, Bijarsari, Eibl, Rey (b0205) 2018; 3 Chen, Epps (b0130) 2020; 27 Xiong, Kong, Yang, Liu, Wen (b0240) 2020; 20 Ye, Shi, Xia, Kang, Tyagi, Mehta, Du (b0005) 2022; 53 Mazher, Abd Aziz, Malik, Amin (b0185) 2017; 5 Xu, Wang, Chen, Choi (b0095) 2011 Biondi (10.1016/j.aei.2024.102765_b0180) 2023; 106 Hughes (10.1016/j.aei.2024.102765_b0015) 2019; 61 Mazher (10.1016/j.aei.2024.102765_b0185) 2017; 5 Wortelen (10.1016/j.aei.2024.102765_b0120) 2016 Liu (10.1016/j.aei.2024.102765_b0285) 2023; 14 Pang (10.1016/j.aei.2024.102765_b0010) 2023; 57 Yiu (10.1016/j.aei.2024.102765_b0025) 2022; 53 Stevens (10.1016/j.aei.2024.102765_b0040) 2022 10.1016/j.aei.2024.102765_b0160 10.1016/j.aei.2024.102765_b0165 Vortmann (10.1016/j.aei.2024.102765_b0090) 2021; 5 Yu (10.1016/j.aei.2024.102765_b0135) 2023; 57 10.1016/j.aei.2024.102765_b0200 Xu (10.1016/j.aei.2024.102765_b0095) 2011 Saha (10.1016/j.aei.2024.102765_b0230) 2018 Okano (10.1016/j.aei.2024.102765_b0170) 2021 Digiesi (10.1016/j.aei.2024.102765_b0175) 2020; 11 Cooper (10.1016/j.aei.2024.102765_b0085) 2013; 55 Kazemi (10.1016/j.aei.2024.102765_b0155) 2023 Figalova (10.1016/j.aei.2024.102765_b0065) 2024; 182 Li (10.1016/j.aei.2024.102765_b0145) 2022; 239 Longo (10.1016/j.aei.2024.102765_b0045) 2022; 41 Kalanadhabhatta (10.1016/j.aei.2024.102765_b0115) 2022; 6 10.1016/j.aei.2024.102765_b0150 10.1016/j.aei.2024.102765_b0275 Midha (10.1016/j.aei.2024.102765_b0280) 2021; 147 Stefanovska (10.1016/j.aei.2024.102765_b0255) 1999; 46 10.1016/j.aei.2024.102765_b0030 Liu (10.1016/j.aei.2024.102765_b0125) 2016; 112 Mijic (10.1016/j.aei.2024.102765_b0235) 2017 10.1016/j.aei.2024.102765_b0225 Maior (10.1016/j.aei.2024.102765_b0110) 2018; 25 Abdurrahman (10.1016/j.aei.2024.102765_b0250) 2022 Alharthi (10.1016/j.aei.2024.102765_b0265) 2021; 28 Wirzberger (10.1016/j.aei.2024.102765_b0205) 2018; 3 Liu (10.1016/j.aei.2024.102765_b0020) 2020; 44 10.1016/j.aei.2024.102765_b0060 10.1016/j.aei.2024.102765_b0220 Ye (10.1016/j.aei.2024.102765_b0005) 2022; 53 10.1016/j.aei.2024.102765_b0140 Peng (10.1016/j.aei.2024.102765_b0260) 2018; 17 Knoll (10.1016/j.aei.2024.102765_b0075) 2011 Minkley (10.1016/j.aei.2024.102765_b0210) 2021; 6 Zhang (10.1016/j.aei.2024.102765_b0215) 2019; 16 Chen (10.1016/j.aei.2024.102765_b0130) 2020; 27 Xiong (10.1016/j.aei.2024.102765_b0240) 2020; 20 De Las Casas (10.1016/j.aei.2024.102765_b0050) 2023; 20 Ghani (10.1016/j.aei.2024.102765_b0070) 2020; 118 Yang (10.1016/j.aei.2024.102765_b0290) 2020; 8 Yu (10.1016/j.aei.2024.102765_b0035) 2015 Shaposhnyk (10.1016/j.aei.2024.102765_b0245) 2023 Howard (10.1016/j.aei.2024.102765_b0190) 2015; 297 Chen (10.1016/j.aei.2024.102765_b0105) 2020 Muth (10.1016/j.aei.2024.102765_b0055) 2012; 83 Ding (10.1016/j.aei.2024.102765_b0100) 2023; 30 Yang (10.1016/j.aei.2024.102765_b0080) 2021; 63 Xuan (10.1016/j.aei.2024.102765_b0195) 2020; 14 Fan (10.1016/j.aei.2024.102765_b0270) 2024; 61 |
| References_xml | – start-page: 568 year: 2011 end-page: 571 ident: b0075 article-title: Measuring cognitive workload with low-cost electroencephalograph publication-title: 13th IFIP TC 13 International Conference on Human–Computer Interaction (INTERACT)Lisbon, PORTUGAL – volume: 106 year: 2023 ident: b0180 article-title: Distracted worker: using pupil size and blink rate to detect cognitive load during manufacturing tasks publication-title: Appl. Ergon. – reference: P. Dasgupta, J. VanSwearingen, E. Sejdic, You can tell by the way I use my walk, Predicting the presence of cognitive load with gait measurements, Biomedical Engineering Online, 17 (2018). – volume: 8 start-page: 211482 year: 2020 end-page: 211489 ident: b0290 article-title: Long-term cognitive tasks impair the ability of resource allocation in working memory: a study of time-frequency analysis and event-related potentials publication-title: IEEE Access – volume: 239 year: 2022 ident: b0145 article-title: Artificial intelligence-enabled non-intrusive vigilance assessment approach to reducing traffic controller's human errors publication-title: Knowl.-Based Syst. – volume: 63 start-page: 772 year: 2021 end-page: 787 ident: b0080 article-title: The impacts of temporal variation and individual differences in driver cognitive workload on ECG-based detection publication-title: Hum. Factors – volume: 30 year: 2023 ident: b0100 article-title: CLERA: a unified model for joint cognitive load and eye region analysis in the wild publication-title: ACM Trans. Comput.-Hum. Interact. – reference: M. Vaidya, A. Tiwari, Workload assessment methods on train station control room, in: D. Chakrabarti, S. Karmakar, U.R. Salve (Eds.) International Conference of the Indian Society of Ergonomics, 2022, pp. 1293–1302. – reference: Y. Zak, Y. Parmet, T. Oron-Gilad, Ieee, Subjective Workload Assessment Technique (SWAT) in real time: affordable methodology to continuously assess human operators' workload, in: IEEE International Conference on Systems, Man, and Cybernetics (SMC) Electr Network, 2020, pp. 2687–2694. – volume: 44 year: 2020 ident: b0020 article-title: Psychophysiological evaluation of seafarers to improve training in maritime virtual simulator publication-title: Adv. Eng. Inf. – start-page: 1 year: 2022 end-page: 14 ident: b0040 article-title: Profiling cognitive workload in an unmanned vehicle control task with cognitive models and physiological metrics publication-title: Mil. Psychol. – volume: 53 year: 2022 ident: b0025 article-title: Towards safe and collaborative aerodrome operations: assessing shared situational awareness for adverse weather detection with EEG-enabled Bayesian neural networks publication-title: Adv. Eng. Inf. – volume: 55 start-page: 1001 year: 2013 end-page: 1014 ident: b0085 article-title: The impact of eye movements and cognitive workload on lateral position variability in driving publication-title: Hum. Factors – volume: 46 start-page: 1230 year: 1999 end-page: 1239 ident: b0255 article-title: Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique publication-title: IEEE Trans. Biomed. Eng. – start-page: 59 year: 2018 end-page: 68 ident: b0230 article-title: Classification of EEG signals for cognitive load estimation using deep learning architectures publication-title: 10th International Conference on Intelligent Human Computer Interaction (IHCI) Allahabad, INDIA – volume: 297 start-page: 38 year: 2015 end-page: 46 ident: b0190 article-title: Behavioral and fMRI evidence of the differing cognitive load of domain-specific assessments publication-title: Neuroscience – start-page: 1 year: 2022 end-page: 7 ident: b0250 article-title: Heart rate and pupil dilation as reliable measures of neuro-cognitive load classification publication-title: 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing – volume: 57 year: 2023 ident: b0010 article-title: Air traffic controller workload level prediction using conformalized dynamical graph learning publication-title: Adv. Eng. Inf. – volume: 61 start-page: 393 year: 2019 end-page: 414 ident: b0015 article-title: Cardiac measures of cognitive workload: a meta-analysis publication-title: Hum. Factors – reference: L.A. Whitaker, J. Hohne, D.P. Birkmire-Peters, Assessing cognitive workload metrics for evaluating telecommunication tasks, in: Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting 1997, vol. 321, 1997, pp. 325–329. – reference: P. Hafiz, A. Maxhuni, J.E. Bardram, S.O.C. Ieee comp, analysis of perceived human factors and participants' demographics during a cognitive assessment study with a smartwatch, IN: 8th IEEE International Conference on Healthcare Informatics (ICHI) Electr Network, 2020, pp. 287–296. – volume: 61 year: 2024 ident: b0270 article-title: Design recommendations for voluntary blink interactions based on pressure sensors publication-title: Adv. Eng. Inform. – volume: 57 year: 2023 ident: b0135 article-title: Air traffic controllers' mental fatigue recognition: a multi-sensor information fusion-based deep learning approach publication-title: Adv. Eng. Inf. – volume: 16 year: 2019 ident: b0215 article-title: Photoplethysmogram-based cognitive load assessment using multi-feature fusion model publication-title: ACM Trans. Appl. Percept. – volume: 14 year: 2023 ident: b0285 article-title: Using electroencephalography to analyse drivers' different cognitive workload characteristics based on on-road experiment publication-title: Front. Psychol. – volume: 27 year: 2020 ident: b0130 article-title: Multimodal coordination measures to understand users and tasks publication-title: ACM Trans. Comput.-Hum. Interact. – volume: 28 year: 2021 ident: b0265 article-title: Investigating the effects of individual cognitive styles on collaborative gameplay publication-title: ACM Trans. Comput.-Hum. Interact. – volume: 20 year: 2023 ident: b0050 article-title: Cognitive analyses for interface design using dual N-back tasks for mental workload (MWL) evaluation publication-title: Int. J. Environ. Res. Public Health – start-page: 1458 year: 2020 end-page: 1463 ident: b0105 article-title: Ieee, Driver's mental workload measurement concerning cognitive channels publication-title: 59th Annual Conference of the Society-of-Instrument-and-Control-Engineers-of-Japan (SICE) Electr Network – reference: A. Unni, K. Ihme, H. Surm, L. Weber, A. Luedtke, D. Nicklas, M. Jipp, J.W. Rieger, Ieee, brain activity measured with fnirs for the prediction of cognitive workload, in: 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2015)Szechenyi Istvan Univ, Gyor, HUNGARY, 2015, pp. 349–354. – volume: 112 start-page: 37 year: 2016 end-page: 53 ident: b0125 article-title: Cognitive pilot-aircraft interface for single-pilot operations publication-title: Knowl.-Based Syst. – reference: J. Lv, J. Qiao, J. Wu, Mental fatigue assessment method based on assembly operation, in: 5th International Conference on Financial Innovation and Economic Development (ICFIED)Sanya, PEOPLES R CHINA, 2020, pp. 325–329. – volume: 83 start-page: 96 year: 2012 end-page: 101 ident: b0055 article-title: Respiratory sinus arrhythmia as a measure of cognitive workload publication-title: Int. J. Psychophysiol. – volume: 6 year: 2021 ident: b0210 article-title: Analyzing relationships between causal and assessment factors of cognitive load: associations between objective and subjective measures of cognitive load, stress, interest, and self-concept publication-title: Front. Educ. – start-page: 345 year: 2017 end-page: 350 ident: b0235 article-title: Ieee, classification of cognitive load using voice features: a preliminary investigation publication-title: 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)Debrecen, HUNGARY – volume: 182 year: 2024 ident: b0065 article-title: From driver to supervisor: comparing cognitive load and EEG-based attentional resource allocation across automation levels publication-title: Int. J. Hum Comput Stud. – start-page: 178 year: 2011 end-page: 185 ident: b0095 article-title: Pupillary response based cognitive workload measurement under luminance changes publication-title: 13th IFIP TC 13 International Conference on Human–Computer Interaction (INTERACT)Lisbon – volume: 3 year: 2018 ident: b0205 article-title: Schema-related cognitive load influences performance, speech, and physiology in a dual-task setting: a continuous multi-measure approach publication-title: Cogn. Res.-Principl. Impl. – volume: 41 start-page: 1199 year: 2022 end-page: 1229 ident: b0045 article-title: Evaluating instructional designs with mental workload assessments in university classrooms publication-title: Behav. Inform. Technol. – volume: 5 start-page: 27 year: 2021 ident: b0090 article-title: Exploration of person-independent BCIs for internal and external attention-detection in augmented reality publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. – reference: E.T. Solovey, M. Zec, E.A.G. Perez, B. Reimer, B. Mehler, Acm, Classifying Driver Workload Using Physiological and Driving Performance Data: Two Field Studies, 32nd Annual ACM Conference on Human Factors in Computing Systems (CHI)Toronto, CANADA, 2014, pp. 4057–4066. – start-page: 11 year: 2016 end-page: 16 ident: b0120 article-title: Ieee, towards the integration and evaluation of online workload measures in a cognitive architecture publication-title: 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)Wroclaw, POLAND – volume: 17 start-page: 181 year: 2018 end-page: 190 ident: b0260 article-title: Single-trial classification of fNIRS signals in four directions motor imagery tasks measured from prefrontal cortex publication-title: IEEE Trans. NanoBiosci. – volume: 5 start-page: 14819 year: 2017 end-page: 14829 ident: b0185 article-title: An EEG-based cognitive load assessment in multimedia learning using feature extraction and partial directed coherence publication-title: IEEE Access – volume: 6 start-page: 39 year: 2022 ident: b0115 article-title: EarlyScreen: multi-scale instance fusion for predicting neural activation and psychopathology in preschool children publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. – volume: 20 year: 2020 ident: b0240 article-title: Pattern recognition of cognitive load using EEG and ECG signals publication-title: Sensors – volume: 25 year: 2018 ident: b0110 article-title: Workload alerts-using physiological measures of mental workload to provide feedback during tasks publication-title: ACM Trans. Comput.-Hum. Interact. – volume: 11 start-page: 56 year: 2020 end-page: 64 ident: b0175 article-title: Heart rate variability based assessment of cognitive workload in smart operators publication-title: Manage. Prod. Eng. Rev. – volume: 118 start-page: 18 year: 2020 end-page: 26 ident: b0070 article-title: ERP based measures of cognitive workload: a review publication-title: Neurosci. Biobehav. Rev. – volume: 147 year: 2021 ident: b0280 article-title: Measuring mental workload variations in office work tasks using fNIRS publication-title: Int. J. Human–Computer Stud. – volume: 14 start-page: 709 year: 2020 end-page: 721 ident: b0195 article-title: Assessing cognitive load in adolescent and adult students using photoplethysmogram morphometrics publication-title: Cogn. Neurodyn. – start-page: 130 year: 2023 end-page: 131 ident: b0245 article-title: Ieee, predicting cognitive load with wearable sensor signals publication-title: IEEE Conference on Artificial Intelligence (IEEE CAI) Santa Clara, CA – start-page: 1093 year: 2015 end-page: 1098 ident: b0035 article-title: An integrated approach to subjective measuring commercial aviation pilot workload publication-title: 2015 IEEE 10th Conference on Industrial Electronics and Applications – reference: A.W. Joseph, J.S. Vaiz, R. Murugesh, Modeling Cognitive Load in Mobile Human Computer Interaction Using Eye Tracking Metrics, AHFE Virtual Conferences on Human Factors in Software and Systems Engineering, Artificial Intelligence and Social Computing, and EnergyElectr Network, 2021, pp. 99–106. – start-page: 1 year: 2021 end-page: 6 ident: b0170 article-title: Feasibility of evaluating temporal changes in cognitive load factors using ocular features publication-title: ACM Symposium on Eye Tracking Research and Applications. – start-page: 1 year: 2023 end-page: 12 ident: b0155 article-title: Development and validation of a task load index for process control room operators (PCRO-TLX) publication-title: Ergonomics – volume: 53 year: 2022 ident: b0005 article-title: Cognitive characteristics in firefighter wayfinding tasks: an eye-tracking analysis publication-title: Adv. Eng. Inf. – reference: Z. Qadir, E. Chowdhury, L. Ghosh, A. Konar, Quantitative Analysis of Cognitive Load Test While Driving in a VR vs Non-VR Environment, 8th International Conference on Pattern Recognition and Machine Intelligence (PReMI)Tezpur Univ, Tezpur, INDIA, 2019, pp. 481-489. – volume: 16 year: 2019 ident: 10.1016/j.aei.2024.102765_b0215 article-title: Photoplethysmogram-based cognitive load assessment using multi-feature fusion model publication-title: ACM Trans. Appl. Percept. doi: 10.1145/3340962 – volume: 53 year: 2022 ident: 10.1016/j.aei.2024.102765_b0005 article-title: Cognitive characteristics in firefighter wayfinding tasks: an eye-tracking analysis publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2022.101668 – volume: 147 year: 2021 ident: 10.1016/j.aei.2024.102765_b0280 article-title: Measuring mental workload variations in office work tasks using fNIRS publication-title: Int. J. Human–Computer Stud. doi: 10.1016/j.ijhcs.2020.102580 – volume: 297 start-page: 38 year: 2015 ident: 10.1016/j.aei.2024.102765_b0190 article-title: Behavioral and fMRI evidence of the differing cognitive load of domain-specific assessments publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.03.047 – volume: 55 start-page: 1001 year: 2013 ident: 10.1016/j.aei.2024.102765_b0085 article-title: The impact of eye movements and cognitive workload on lateral position variability in driving publication-title: Hum. Factors doi: 10.1177/0018720813480177 – start-page: 1458 year: 2020 ident: 10.1016/j.aei.2024.102765_b0105 article-title: Ieee, Driver's mental workload measurement concerning cognitive channels – start-page: 568 year: 2011 ident: 10.1016/j.aei.2024.102765_b0075 article-title: Measuring cognitive workload with low-cost electroencephalograph – volume: 57 year: 2023 ident: 10.1016/j.aei.2024.102765_b0010 article-title: Air traffic controller workload level prediction using conformalized dynamical graph learning publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2023.102113 – volume: 57 year: 2023 ident: 10.1016/j.aei.2024.102765_b0135 article-title: Air traffic controllers' mental fatigue recognition: a multi-sensor information fusion-based deep learning approach publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2023.102123 – volume: 112 start-page: 37 year: 2016 ident: 10.1016/j.aei.2024.102765_b0125 article-title: Cognitive pilot-aircraft interface for single-pilot operations publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.08.031 – volume: 46 start-page: 1230 year: 1999 ident: 10.1016/j.aei.2024.102765_b0255 article-title: Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.790500 – volume: 61 year: 2024 ident: 10.1016/j.aei.2024.102765_b0270 article-title: Design recommendations for voluntary blink interactions based on pressure sensors publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2024.102489 – volume: 61 start-page: 393 year: 2019 ident: 10.1016/j.aei.2024.102765_b0015 article-title: Cardiac measures of cognitive workload: a meta-analysis publication-title: Hum. Factors doi: 10.1177/0018720819830553 – volume: 182 year: 2024 ident: 10.1016/j.aei.2024.102765_b0065 article-title: From driver to supervisor: comparing cognitive load and EEG-based attentional resource allocation across automation levels publication-title: Int. J. Hum Comput Stud. doi: 10.1016/j.ijhcs.2023.103169 – ident: 10.1016/j.aei.2024.102765_b0030 doi: 10.1177/107118139704100173 – ident: 10.1016/j.aei.2024.102765_b0200 doi: 10.1007/978-3-030-34872-4_53 – volume: 17 start-page: 181 year: 2018 ident: 10.1016/j.aei.2024.102765_b0260 article-title: Single-trial classification of fNIRS signals in four directions motor imagery tasks measured from prefrontal cortex publication-title: IEEE Trans. NanoBiosci. doi: 10.1109/TNB.2018.2839736 – volume: 20 year: 2020 ident: 10.1016/j.aei.2024.102765_b0240 article-title: Pattern recognition of cognitive load using EEG and ECG signals publication-title: Sensors doi: 10.3390/s20185122 – volume: 83 start-page: 96 year: 2012 ident: 10.1016/j.aei.2024.102765_b0055 article-title: Respiratory sinus arrhythmia as a measure of cognitive workload publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2011.10.011 – start-page: 1 year: 2023 ident: 10.1016/j.aei.2024.102765_b0155 article-title: Development and validation of a task load index for process control room operators (PCRO-TLX) publication-title: Ergonomics – volume: 11 start-page: 56 year: 2020 ident: 10.1016/j.aei.2024.102765_b0175 article-title: Heart rate variability based assessment of cognitive workload in smart operators publication-title: Manage. Prod. Eng. Rev. – volume: 106 year: 2023 ident: 10.1016/j.aei.2024.102765_b0180 article-title: Distracted worker: using pupil size and blink rate to detect cognitive load during manufacturing tasks publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2022.103867 – volume: 25 year: 2018 ident: 10.1016/j.aei.2024.102765_b0110 article-title: Workload alerts-using physiological measures of mental workload to provide feedback during tasks publication-title: ACM Trans. Comput.-Hum. Interact. doi: 10.1145/3173380 – ident: 10.1016/j.aei.2024.102765_b0150 doi: 10.2991/aebmr.k.200306.057 – start-page: 130 year: 2023 ident: 10.1016/j.aei.2024.102765_b0245 article-title: Ieee, predicting cognitive load with wearable sensor signals – volume: 8 start-page: 211482 year: 2020 ident: 10.1016/j.aei.2024.102765_b0290 article-title: Long-term cognitive tasks impair the ability of resource allocation in working memory: a study of time-frequency analysis and event-related potentials publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039268 – volume: 53 year: 2022 ident: 10.1016/j.aei.2024.102765_b0025 article-title: Towards safe and collaborative aerodrome operations: assessing shared situational awareness for adverse weather detection with EEG-enabled Bayesian neural networks publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2022.101698 – start-page: 1 year: 2021 ident: 10.1016/j.aei.2024.102765_b0170 article-title: Feasibility of evaluating temporal changes in cognitive load factors using ocular features publication-title: ACM Symposium on Eye Tracking Research and Applications. – volume: 6 year: 2021 ident: 10.1016/j.aei.2024.102765_b0210 article-title: Analyzing relationships between causal and assessment factors of cognitive load: associations between objective and subjective measures of cognitive load, stress, interest, and self-concept publication-title: Front. Educ. doi: 10.3389/feduc.2021.632907 – volume: 27 year: 2020 ident: 10.1016/j.aei.2024.102765_b0130 article-title: Multimodal coordination measures to understand users and tasks publication-title: ACM Trans. Comput.-Hum. Interact. doi: 10.1145/3412365 – volume: 30 year: 2023 ident: 10.1016/j.aei.2024.102765_b0100 article-title: CLERA: a unified model for joint cognitive load and eye region analysis in the wild publication-title: ACM Trans. Comput.-Hum. Interact. doi: 10.1145/3603622 – volume: 14 year: 2023 ident: 10.1016/j.aei.2024.102765_b0285 article-title: Using electroencephalography to analyse drivers' different cognitive workload characteristics based on on-road experiment publication-title: Front. Psychol. – volume: 44 year: 2020 ident: 10.1016/j.aei.2024.102765_b0020 article-title: Psychophysiological evaluation of seafarers to improve training in maritime virtual simulator publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2020.101048 – ident: 10.1016/j.aei.2024.102765_b0165 doi: 10.1007/978-3-030-94277-9_110 – volume: 20 year: 2023 ident: 10.1016/j.aei.2024.102765_b0050 article-title: Cognitive analyses for interface design using dual N-back tasks for mental workload (MWL) evaluation publication-title: Int. J. Environ. Res. Public Health – volume: 118 start-page: 18 year: 2020 ident: 10.1016/j.aei.2024.102765_b0070 article-title: ERP based measures of cognitive workload: a review publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2020.07.020 – volume: 28 year: 2021 ident: 10.1016/j.aei.2024.102765_b0265 article-title: Investigating the effects of individual cognitive styles on collaborative gameplay publication-title: ACM Trans. Comput.-Hum. Interact. doi: 10.1145/3445792 – volume: 14 start-page: 709 year: 2020 ident: 10.1016/j.aei.2024.102765_b0195 article-title: Assessing cognitive load in adolescent and adult students using photoplethysmogram morphometrics publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-020-09617-2 – start-page: 1093 year: 2015 ident: 10.1016/j.aei.2024.102765_b0035 article-title: An integrated approach to subjective measuring commercial aviation pilot workload – volume: 5 start-page: 27 year: 2021 ident: 10.1016/j.aei.2024.102765_b0090 article-title: Exploration of person-independent BCIs for internal and external attention-detection in augmented reality publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3463507 – start-page: 345 year: 2017 ident: 10.1016/j.aei.2024.102765_b0235 article-title: Ieee, classification of cognitive load using voice features: a preliminary investigation – volume: 63 start-page: 772 year: 2021 ident: 10.1016/j.aei.2024.102765_b0080 article-title: The impacts of temporal variation and individual differences in driver cognitive workload on ECG-based detection publication-title: Hum. Factors doi: 10.1177/0018720821990484 – volume: 6 start-page: 39 year: 2022 ident: 10.1016/j.aei.2024.102765_b0115 article-title: EarlyScreen: multi-scale instance fusion for predicting neural activation and psychopathology in preschool children publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3534583 – start-page: 59 year: 2018 ident: 10.1016/j.aei.2024.102765_b0230 article-title: Classification of EEG signals for cognitive load estimation using deep learning architectures – ident: 10.1016/j.aei.2024.102765_b0275 doi: 10.1109/CogInfoCom.2015.7390617 – ident: 10.1016/j.aei.2024.102765_b0225 doi: 10.1186/s12938-018-0555-8 – volume: 41 start-page: 1199 year: 2022 ident: 10.1016/j.aei.2024.102765_b0045 article-title: Evaluating instructional designs with mental workload assessments in university classrooms publication-title: Behav. Inform. Technol. doi: 10.1080/0144929X.2020.1864019 – ident: 10.1016/j.aei.2024.102765_b0060 doi: 10.1145/2556288.2557068 – ident: 10.1016/j.aei.2024.102765_b0220 doi: 10.1007/978-3-030-80624-8_13 – start-page: 1 year: 2022 ident: 10.1016/j.aei.2024.102765_b0040 article-title: Profiling cognitive workload in an unmanned vehicle control task with cognitive models and physiological metrics publication-title: Mil. Psychol. – start-page: 11 year: 2016 ident: 10.1016/j.aei.2024.102765_b0120 article-title: Ieee, towards the integration and evaluation of online workload measures in a cognitive architecture – ident: 10.1016/j.aei.2024.102765_b0140 doi: 10.1109/SMC42975.2020.9283168 – start-page: 178 year: 2011 ident: 10.1016/j.aei.2024.102765_b0095 article-title: Pupillary response based cognitive workload measurement under luminance changes – volume: 5 start-page: 14819 year: 2017 ident: 10.1016/j.aei.2024.102765_b0185 article-title: An EEG-based cognitive load assessment in multimedia learning using feature extraction and partial directed coherence publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2731784 – volume: 3 year: 2018 ident: 10.1016/j.aei.2024.102765_b0205 article-title: Schema-related cognitive load influences performance, speech, and physiology in a dual-task setting: a continuous multi-measure approach publication-title: Cogn. Res.-Principl. Impl. – ident: 10.1016/j.aei.2024.102765_b0160 doi: 10.1109/ICHI48887.2020.9374342 – volume: 239 year: 2022 ident: 10.1016/j.aei.2024.102765_b0145 article-title: Artificial intelligence-enabled non-intrusive vigilance assessment approach to reducing traffic controller's human errors publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.108047 – start-page: 1 year: 2022 ident: 10.1016/j.aei.2024.102765_b0250 article-title: Heart rate and pupil dilation as reliable measures of neuro-cognitive load classification |
| SSID | ssj0016897 |
| Score | 2.427683 |
| Snippet | In the domain of engineering interactive product design, the optimization of Human-Computer Interaction (HCI) is central to enhancing user experience and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 102765 |
| SubjectTerms | Cognitive workload Eye-tracking fNIRS Multimodal fusion |
| Title | A training and assessment system for human-computer interaction combining fNIRS and eye-tracking data |
| URI | https://dx.doi.org/10.1016/j.aei.2024.102765 |
| Volume | 62 |
| WOSCitedRecordID | wos001294249700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1474-0346 databaseCode: AIEXJ dateStart: 20020101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016897 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6loYde-q5KodUeeiraCNvrePdoVaBSoagPKqUnyx7vpkHIQSFBIP48sy_b0FKVQy-WtfJO7HyfxrPj2fkIeZ_WaQlJVDGuU2BcjAWrqqpkyA6MviOZKof0YTaZiOlUfhkMrsJemPOTrGnExYU8_a9Q4xiCbbbO3gPu1igO4DmCjkeEHY__BHzeyj64Rqxt603ftdkWFlppPgZe0sE2jVh61XAcrNx0PTn49t0aUZeKoVUwefUdv52tjWnzUEagut6GO74h66pXTP91bSkT3pV2D4VPC8xm60UvhW3Tt4dq3mX7nUf6uWhmv9bzfqYi5m3NW3CuPONsN_EpR-99vS927hOjncxJR_zm2V2S4XhUqvnIGB91197son3r7dbWHIZytuMCTRTGROFMPCAbcZZKMSQb-cHe9HP7EWosnDZPuO3wUdyWB966jz-HNb1Q5egpeezXGDR33HhGBqp5Tp749Qb13vzsBVE5DVShiDLtqEIdVShiSG9ShfaoQluqUEsVa6RPFWqo8pL82N87-viJedkNBrHMVkwCr7NEZCBjELFOU5VyCVBrUYEpoqq1riEqI4AEFwdxVIsyNtJTesyViitIXpFhs2jUa0IT0CBVLRIFRtZmXEnOeQ06wxOloNwku-FfK8D3pDcPflLcidYm-dBOOXUNWf52MQ9QFD6idJFigbS6e9qb-_zGFnnUkX2bDFfLtXpLHsL5an62fOc5dQ0n9Zix |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+training+and+assessment+system+for+human-computer+interaction+combining+fNIRS+and+eye-tracking+data&rft.jtitle=Advanced+engineering+informatics&rft.au=Qu%2C+Jing&rft.au=Bu%2C+Lingguo&rft.au=Zhao%2C+Lei&rft.au=Wang%2C+Yonghui&rft.date=2024-10-01&rft.issn=1474-0346&rft.volume=62&rft.spage=102765&rft_id=info:doi/10.1016%2Fj.aei.2024.102765&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aei_2024_102765 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon |