A training and assessment system for human-computer interaction combining fNIRS and eye-tracking data

In the domain of engineering interactive product design, the optimization of Human-Computer Interaction (HCI) is central to enhancing user experience and system efficiency. Notably, the application of cognitive load theory holds significant prominence in this field. Efficient evaluation of cognitive...

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering informatics Vol. 62; p. 102765
Main Authors: Qu, Jing, Bu, Lingguo, Zhao, Lei, Wang, Yonghui
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2024
Subjects:
ISSN:1474-0346
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the domain of engineering interactive product design, the optimization of Human-Computer Interaction (HCI) is central to enhancing user experience and system efficiency. Notably, the application of cognitive load theory holds significant prominence in this field. Efficient evaluation of cognitive load not only facilitates the optimization of resource management and task allocation, but is also the key to creating a fluent interactive experience. With the advancement of Artificial Intelligence (AI) and physiological measurement technologies, new methodologies have emerged to measure and understand cognitive load. This research introduces a system for HCI training and assessment. The system, through the development of digital memory paradigms, induces and verifies varying levels of cognitive load with precision, thereby providing data-driven insights for HCI design. Specifically, this study constructs an AI-assisted multimodal cognitive load assessment framework, integrating physiological data collected from Functional Near-Infrared Spectroscopy (fNIRS) and eye-tracking technologies. By extracting and analyzing 29 physiological features, including channel features, graph-theoretic features, and features pertaining to eyelid and iris movements, we propose an innovative multimodal recognition approach to classify cognitive load across individuals. The experimental results not only verified the validity of the method, but also revealed changes in physiological patterns at different levels of cognitive load. In particular, the significant potential of the fNIRS feature in band I. This discovery suggests that we can monitor and predict cognitive load with greater precision through physiological signals, hence optimizing the design of HCI systems to alleviate user strain, prevent information overload, and enhance the naturalness and intuitiveness of interaction.
AbstractList In the domain of engineering interactive product design, the optimization of Human-Computer Interaction (HCI) is central to enhancing user experience and system efficiency. Notably, the application of cognitive load theory holds significant prominence in this field. Efficient evaluation of cognitive load not only facilitates the optimization of resource management and task allocation, but is also the key to creating a fluent interactive experience. With the advancement of Artificial Intelligence (AI) and physiological measurement technologies, new methodologies have emerged to measure and understand cognitive load. This research introduces a system for HCI training and assessment. The system, through the development of digital memory paradigms, induces and verifies varying levels of cognitive load with precision, thereby providing data-driven insights for HCI design. Specifically, this study constructs an AI-assisted multimodal cognitive load assessment framework, integrating physiological data collected from Functional Near-Infrared Spectroscopy (fNIRS) and eye-tracking technologies. By extracting and analyzing 29 physiological features, including channel features, graph-theoretic features, and features pertaining to eyelid and iris movements, we propose an innovative multimodal recognition approach to classify cognitive load across individuals. The experimental results not only verified the validity of the method, but also revealed changes in physiological patterns at different levels of cognitive load. In particular, the significant potential of the fNIRS feature in band I. This discovery suggests that we can monitor and predict cognitive load with greater precision through physiological signals, hence optimizing the design of HCI systems to alleviate user strain, prevent information overload, and enhance the naturalness and intuitiveness of interaction.
ArticleNumber 102765
Author Bu, Lingguo
Qu, Jing
Zhao, Lei
Wang, Yonghui
Author_xml – sequence: 1
  givenname: Jing
  surname: Qu
  fullname: Qu, Jing
  organization: Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
– sequence: 2
  givenname: Lingguo
  surname: Bu
  fullname: Bu, Lingguo
  email: bulingguo@sdu.edu.cn
  organization: Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
– sequence: 3
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
  organization: School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan 250101, China
– sequence: 4
  givenname: Yonghui
  surname: Wang
  fullname: Wang, Yonghui
  email: yonghuiw6606@126.com
  organization: Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, China
BookMark eNp9kMtOwzAQRb0oEi3wAez8Aymx83AiVlXFo1IFEo-15Y7H4NI4le0i9e9xCCsW3cxoRnOuNGdGJq53SMg1y-csZ_XNdq7QznnOyzRzUVcTMmWlKLO8KOtzMgthm6e7phVTggsavbLOug-qnKYqBAyhQxdpOIaIHTW9p5-HTrkM-m5_iOipdakqiLZ3NC03I26eVi-vvyF4xCylwtew1iqqS3Jm1C7g1V-_IO_3d2_Lx2z9_LBaLtYZ8FbErIVSi6IR0HJouKkqrMoWQJtmAyUvhDZGA1MMoOAF40w3ihc5L0xdIvINFBeEjbng-xA8Grn3tlP-KFkuBzdyK5MbObiRo5vEiH8M2KiG3wYxu5Pk7UhieunbopcBLDpAbT1ClLq3J-gfPJeEVg
CitedBy_id crossref_primary_10_1109_JSEN_2025_3597329
crossref_primary_10_3390_make7020051
crossref_primary_10_1016_j_aei_2025_103675
crossref_primary_10_1016_j_aei_2025_103259
crossref_primary_10_1016_j_aap_2025_108067
Cites_doi 10.1145/3340962
10.1016/j.aei.2022.101668
10.1016/j.ijhcs.2020.102580
10.1016/j.neuroscience.2015.03.047
10.1177/0018720813480177
10.1016/j.aei.2023.102113
10.1016/j.aei.2023.102123
10.1016/j.knosys.2016.08.031
10.1109/10.790500
10.1016/j.aei.2024.102489
10.1177/0018720819830553
10.1016/j.ijhcs.2023.103169
10.1177/107118139704100173
10.1007/978-3-030-34872-4_53
10.1109/TNB.2018.2839736
10.3390/s20185122
10.1016/j.ijpsycho.2011.10.011
10.1016/j.apergo.2022.103867
10.1145/3173380
10.2991/aebmr.k.200306.057
10.1109/ACCESS.2020.3039268
10.1016/j.aei.2022.101698
10.3389/feduc.2021.632907
10.1145/3412365
10.1145/3603622
10.1016/j.aei.2020.101048
10.1007/978-3-030-94277-9_110
10.1016/j.neubiorev.2020.07.020
10.1145/3445792
10.1007/s11571-020-09617-2
10.1145/3463507
10.1177/0018720821990484
10.1145/3534583
10.1109/CogInfoCom.2015.7390617
10.1186/s12938-018-0555-8
10.1080/0144929X.2020.1864019
10.1145/2556288.2557068
10.1007/978-3-030-80624-8_13
10.1109/SMC42975.2020.9283168
10.1109/ACCESS.2017.2731784
10.1109/ICHI48887.2020.9374342
10.1016/j.knosys.2021.108047
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aei.2024.102765
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
ExternalDocumentID 10_1016_j_aei_2024_102765
S1474034624004130
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
UHS
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-9c4d7387c92c82f55e549ccdf8bc4237dffdc1a1cc323121d8a23023f64ee2bc3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001294249700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-0346
IngestDate Sat Nov 29 03:19:54 EST 2025
Tue Nov 18 21:55:51 EST 2025
Sat Dec 14 16:15:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords fNIRS
Cognitive workload
Eye-tracking
Multimodal fusion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-9c4d7387c92c82f55e549ccdf8bc4237dffdc1a1cc323121d8a23023f64ee2bc3
ParticipantIDs crossref_primary_10_1016_j_aei_2024_102765
crossref_citationtrail_10_1016_j_aei_2024_102765
elsevier_sciencedirect_doi_10_1016_j_aei_2024_102765
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Advanced engineering informatics
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Xuan, Wu, Shen, Ji, Lyu, Zhang (b0195) 2020; 14
Chen, Sawaragi, Hiraoka (b0105) 2020
Mijic, Sarlija, Petrinovic (b0235) 2017
Stevens, Morris, Fisher, Myers (b0040) 2022
De Las Casas, De La Riva-rodriguez, Maldonado-Macias, Saenz-Zamarron (b0050) 2023; 20
Abdurrahman, Zheng, Sharifai, Muraina (b0250) 2022
Kazemi, Cousins, Smith, Salesi, Alibeygian, Zendehbodi, Mokarami (b0155) 2023
Yang, Kuo, Lenne, Fitzharris, Horberry, Blay, Wood, Mulvihill, Truche (b0080) 2021; 63
Stefanovska, Bracic, Kvernmo (b0255) 1999; 46
Shaposhnyk, Yanushkevich (b0245) 2023
Figalova, Bieg, Reiser, Liu, Baumann, Chuang, Pollatos (b0065) 2024; 182
Ghani, Signal, Niazi, Taylor (b0070) 2020; 118
Knoll, Wang, Chen, Xu, Ruiz, Epps, Zarjam (b0075) 2011
Y. Zak, Y. Parmet, T. Oron-Gilad, Ieee, Subjective Workload Assessment Technique (SWAT) in real time: affordable methodology to continuously assess human operators' workload, in: IEEE International Conference on Systems, Man, and Cybernetics (SMC) Electr Network, 2020, pp. 2687–2694.
Saha, Minz, Bonela, Sreeja, Chowdhury, Samanta (b0230) 2018
Z. Qadir, E. Chowdhury, L. Ghosh, A. Konar, Quantitative Analysis of Cognitive Load Test While Driving in a VR vs Non-VR Environment, 8th International Conference on Pattern Recognition and Machine Intelligence (PReMI)Tezpur Univ, Tezpur, INDIA, 2019, pp. 481-489.
E.T. Solovey, M. Zec, E.A.G. Perez, B. Reimer, B. Mehler, Acm, Classifying Driver Workload Using Physiological and Driving Performance Data: Two Field Studies, 32nd Annual ACM Conference on Human Factors in Computing Systems (CHI)Toronto, CANADA, 2014, pp. 4057–4066.
Midha, Maior, Wilson, Sharples (b0280) 2021; 147
Minkley, Xu, Krell (b0210) 2021; 6
Yu, Hongtao, Yunshan, Li, Lu (b0035) 2015
Alharthi, Raptis, Katsini, Dolgov, Nacke, Toups (b0265) 2021; 28
J. Lv, J. Qiao, J. Wu, Mental fatigue assessment method based on assembly operation, in: 5th International Conference on Financial Innovation and Economic Development (ICFIED)Sanya, PEOPLES R CHINA, 2020, pp. 325–329.
Hughes, Hancock, Marlow, Stowers, Salas (b0015) 2019; 61
Vortmann, Putze (b0090) 2021; 5
P. Dasgupta, J. VanSwearingen, E. Sejdic, You can tell by the way I use my walk, Predicting the presence of cognitive load with gait measurements, Biomedical Engineering Online, 17 (2018).
Liu, Qi, Hao, Lian, Luo (b0285) 2023; 14
Peng, Chao, Wang, Dang, Jiang, Hu, Majoe (b0260) 2018; 17
M. Vaidya, A. Tiwari, Workload assessment methods on train station control room, in: D. Chakrabarti, S. Karmakar, U.R. Salve (Eds.) International Conference of the Indian Society of Ergonomics, 2022, pp. 1293–1302.
A.W. Joseph, J.S. Vaiz, R. Murugesh, Modeling Cognitive Load in Mobile Human Computer Interaction Using Eye Tracking Metrics, AHFE Virtual Conferences on Human Factors in Software and Systems Engineering, Artificial Intelligence and Social Computing, and EnergyElectr Network, 2021, pp. 99–106.
P. Hafiz, A. Maxhuni, J.E. Bardram, S.O.C. Ieee comp, analysis of perceived human factors and participants' demographics during a cognitive assessment study with a smartwatch, IN: 8th IEEE International Conference on Healthcare Informatics (ICHI) Electr Network, 2020, pp. 287–296.
Wortelen, Unni, Rieger, Luedtke (b0120) 2016
Digiesi, Manghisi, Facchini, Klose, Foglia, Mummolo (b0175) 2020; 11
Longo, Orru (b0045) 2022; 41
Okano, Nakayama (b0170) 2021
Liu, Lan, Cui, Krishnan, Sourina, Konovessis, Ang, Mueller-Wittig (b0020) 2020; 44
Maior, Wilson, Sharples (b0110) 2018; 25
Yu, Chen, Yang (b0135) 2023; 57
Yang, Shi, Wang, Wang, Peng (b0290) 2020; 8
A. Unni, K. Ihme, H. Surm, L. Weber, A. Luedtke, D. Nicklas, M. Jipp, J.W. Rieger, Ieee, brain activity measured with fnirs for the prediction of cognitive workload, in: 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2015)Szechenyi Istvan Univ, Gyor, HUNGARY, 2015, pp. 349–354.
Li, Chen, Lee, Feng (b0145) 2022; 239
Yiu, Ng, Li, Zhang, Li, Lam, Chong (b0025) 2022; 53
Kalanadhabhatta, Santana, Zhang, Ganesan, Grabell, Rahman (b0115) 2022; 6
Liu, Gardi, Ramasamy, Lim, Sabatini (b0125) 2016; 112
Muth, Moss, Rosopa, Salley, Walker (b0055) 2012; 83
Biondi, Saberi, Graf, Cort, Pillai, Balasingam (b0180) 2023; 106
Howard, Burianova, Ehrich, Kervin, Calleia, Barkus, Carmody, Humphry (b0190) 2015; 297
Pang, Hu, Lieber, Cooke, Liu (b0010) 2023; 57
L.A. Whitaker, J. Hohne, D.P. Birkmire-Peters, Assessing cognitive workload metrics for evaluating telecommunication tasks, in: Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting 1997, vol. 321, 1997, pp. 325–329.
Ding, Terwilliger, Parab, Wang, Fridman, Mehler, Reimer (b0100) 2023; 30
Fan, Huang, Shao, Niu (b0270) 2024; 61
Cooper, Medeiros-Ward, Strayer (b0085) 2013; 55
Zhang, Lyu, Qu, Qiu, Luo, Zhang, Fan, Shi (b0215) 2019; 16
Wirzberger, Herms, Bijarsari, Eibl, Rey (b0205) 2018; 3
Chen, Epps (b0130) 2020; 27
Xiong, Kong, Yang, Liu, Wen (b0240) 2020; 20
Ye, Shi, Xia, Kang, Tyagi, Mehta, Du (b0005) 2022; 53
Mazher, Abd Aziz, Malik, Amin (b0185) 2017; 5
Xu, Wang, Chen, Choi (b0095) 2011
Biondi (10.1016/j.aei.2024.102765_b0180) 2023; 106
Hughes (10.1016/j.aei.2024.102765_b0015) 2019; 61
Mazher (10.1016/j.aei.2024.102765_b0185) 2017; 5
Wortelen (10.1016/j.aei.2024.102765_b0120) 2016
Liu (10.1016/j.aei.2024.102765_b0285) 2023; 14
Pang (10.1016/j.aei.2024.102765_b0010) 2023; 57
Yiu (10.1016/j.aei.2024.102765_b0025) 2022; 53
Stevens (10.1016/j.aei.2024.102765_b0040) 2022
10.1016/j.aei.2024.102765_b0160
10.1016/j.aei.2024.102765_b0165
Vortmann (10.1016/j.aei.2024.102765_b0090) 2021; 5
Yu (10.1016/j.aei.2024.102765_b0135) 2023; 57
10.1016/j.aei.2024.102765_b0200
Xu (10.1016/j.aei.2024.102765_b0095) 2011
Saha (10.1016/j.aei.2024.102765_b0230) 2018
Okano (10.1016/j.aei.2024.102765_b0170) 2021
Digiesi (10.1016/j.aei.2024.102765_b0175) 2020; 11
Cooper (10.1016/j.aei.2024.102765_b0085) 2013; 55
Kazemi (10.1016/j.aei.2024.102765_b0155) 2023
Figalova (10.1016/j.aei.2024.102765_b0065) 2024; 182
Li (10.1016/j.aei.2024.102765_b0145) 2022; 239
Longo (10.1016/j.aei.2024.102765_b0045) 2022; 41
Kalanadhabhatta (10.1016/j.aei.2024.102765_b0115) 2022; 6
10.1016/j.aei.2024.102765_b0150
10.1016/j.aei.2024.102765_b0275
Midha (10.1016/j.aei.2024.102765_b0280) 2021; 147
Stefanovska (10.1016/j.aei.2024.102765_b0255) 1999; 46
10.1016/j.aei.2024.102765_b0030
Liu (10.1016/j.aei.2024.102765_b0125) 2016; 112
Mijic (10.1016/j.aei.2024.102765_b0235) 2017
10.1016/j.aei.2024.102765_b0225
Maior (10.1016/j.aei.2024.102765_b0110) 2018; 25
Abdurrahman (10.1016/j.aei.2024.102765_b0250) 2022
Alharthi (10.1016/j.aei.2024.102765_b0265) 2021; 28
Wirzberger (10.1016/j.aei.2024.102765_b0205) 2018; 3
Liu (10.1016/j.aei.2024.102765_b0020) 2020; 44
10.1016/j.aei.2024.102765_b0060
10.1016/j.aei.2024.102765_b0220
Ye (10.1016/j.aei.2024.102765_b0005) 2022; 53
10.1016/j.aei.2024.102765_b0140
Peng (10.1016/j.aei.2024.102765_b0260) 2018; 17
Knoll (10.1016/j.aei.2024.102765_b0075) 2011
Minkley (10.1016/j.aei.2024.102765_b0210) 2021; 6
Zhang (10.1016/j.aei.2024.102765_b0215) 2019; 16
Chen (10.1016/j.aei.2024.102765_b0130) 2020; 27
Xiong (10.1016/j.aei.2024.102765_b0240) 2020; 20
De Las Casas (10.1016/j.aei.2024.102765_b0050) 2023; 20
Ghani (10.1016/j.aei.2024.102765_b0070) 2020; 118
Yang (10.1016/j.aei.2024.102765_b0290) 2020; 8
Yu (10.1016/j.aei.2024.102765_b0035) 2015
Shaposhnyk (10.1016/j.aei.2024.102765_b0245) 2023
Howard (10.1016/j.aei.2024.102765_b0190) 2015; 297
Chen (10.1016/j.aei.2024.102765_b0105) 2020
Muth (10.1016/j.aei.2024.102765_b0055) 2012; 83
Ding (10.1016/j.aei.2024.102765_b0100) 2023; 30
Yang (10.1016/j.aei.2024.102765_b0080) 2021; 63
Xuan (10.1016/j.aei.2024.102765_b0195) 2020; 14
Fan (10.1016/j.aei.2024.102765_b0270) 2024; 61
References_xml – start-page: 568
  year: 2011
  end-page: 571
  ident: b0075
  article-title: Measuring cognitive workload with low-cost electroencephalograph
  publication-title: 13th IFIP TC 13 International Conference on Human–Computer Interaction (INTERACT)Lisbon, PORTUGAL
– volume: 106
  year: 2023
  ident: b0180
  article-title: Distracted worker: using pupil size and blink rate to detect cognitive load during manufacturing tasks
  publication-title: Appl. Ergon.
– reference: P. Dasgupta, J. VanSwearingen, E. Sejdic, You can tell by the way I use my walk, Predicting the presence of cognitive load with gait measurements, Biomedical Engineering Online, 17 (2018).
– volume: 8
  start-page: 211482
  year: 2020
  end-page: 211489
  ident: b0290
  article-title: Long-term cognitive tasks impair the ability of resource allocation in working memory: a study of time-frequency analysis and event-related potentials
  publication-title: IEEE Access
– volume: 239
  year: 2022
  ident: b0145
  article-title: Artificial intelligence-enabled non-intrusive vigilance assessment approach to reducing traffic controller's human errors
  publication-title: Knowl.-Based Syst.
– volume: 63
  start-page: 772
  year: 2021
  end-page: 787
  ident: b0080
  article-title: The impacts of temporal variation and individual differences in driver cognitive workload on ECG-based detection
  publication-title: Hum. Factors
– volume: 30
  year: 2023
  ident: b0100
  article-title: CLERA: a unified model for joint cognitive load and eye region analysis in the wild
  publication-title: ACM Trans. Comput.-Hum. Interact.
– reference: M. Vaidya, A. Tiwari, Workload assessment methods on train station control room, in: D. Chakrabarti, S. Karmakar, U.R. Salve (Eds.) International Conference of the Indian Society of Ergonomics, 2022, pp. 1293–1302.
– reference: Y. Zak, Y. Parmet, T. Oron-Gilad, Ieee, Subjective Workload Assessment Technique (SWAT) in real time: affordable methodology to continuously assess human operators' workload, in: IEEE International Conference on Systems, Man, and Cybernetics (SMC) Electr Network, 2020, pp. 2687–2694.
– volume: 44
  year: 2020
  ident: b0020
  article-title: Psychophysiological evaluation of seafarers to improve training in maritime virtual simulator
  publication-title: Adv. Eng. Inf.
– start-page: 1
  year: 2022
  end-page: 14
  ident: b0040
  article-title: Profiling cognitive workload in an unmanned vehicle control task with cognitive models and physiological metrics
  publication-title: Mil. Psychol.
– volume: 53
  year: 2022
  ident: b0025
  article-title: Towards safe and collaborative aerodrome operations: assessing shared situational awareness for adverse weather detection with EEG-enabled Bayesian neural networks
  publication-title: Adv. Eng. Inf.
– volume: 55
  start-page: 1001
  year: 2013
  end-page: 1014
  ident: b0085
  article-title: The impact of eye movements and cognitive workload on lateral position variability in driving
  publication-title: Hum. Factors
– volume: 46
  start-page: 1230
  year: 1999
  end-page: 1239
  ident: b0255
  article-title: Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 59
  year: 2018
  end-page: 68
  ident: b0230
  article-title: Classification of EEG signals for cognitive load estimation using deep learning architectures
  publication-title: 10th International Conference on Intelligent Human Computer Interaction (IHCI) Allahabad, INDIA
– volume: 297
  start-page: 38
  year: 2015
  end-page: 46
  ident: b0190
  article-title: Behavioral and fMRI evidence of the differing cognitive load of domain-specific assessments
  publication-title: Neuroscience
– start-page: 1
  year: 2022
  end-page: 7
  ident: b0250
  article-title: Heart rate and pupil dilation as reliable measures of neuro-cognitive load classification
  publication-title: 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing
– volume: 57
  year: 2023
  ident: b0010
  article-title: Air traffic controller workload level prediction using conformalized dynamical graph learning
  publication-title: Adv. Eng. Inf.
– volume: 61
  start-page: 393
  year: 2019
  end-page: 414
  ident: b0015
  article-title: Cardiac measures of cognitive workload: a meta-analysis
  publication-title: Hum. Factors
– reference: L.A. Whitaker, J. Hohne, D.P. Birkmire-Peters, Assessing cognitive workload metrics for evaluating telecommunication tasks, in: Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting 1997, vol. 321, 1997, pp. 325–329.
– reference: P. Hafiz, A. Maxhuni, J.E. Bardram, S.O.C. Ieee comp, analysis of perceived human factors and participants' demographics during a cognitive assessment study with a smartwatch, IN: 8th IEEE International Conference on Healthcare Informatics (ICHI) Electr Network, 2020, pp. 287–296.
– volume: 61
  year: 2024
  ident: b0270
  article-title: Design recommendations for voluntary blink interactions based on pressure sensors
  publication-title: Adv. Eng. Inform.
– volume: 57
  year: 2023
  ident: b0135
  article-title: Air traffic controllers' mental fatigue recognition: a multi-sensor information fusion-based deep learning approach
  publication-title: Adv. Eng. Inf.
– volume: 16
  year: 2019
  ident: b0215
  article-title: Photoplethysmogram-based cognitive load assessment using multi-feature fusion model
  publication-title: ACM Trans. Appl. Percept.
– volume: 14
  year: 2023
  ident: b0285
  article-title: Using electroencephalography to analyse drivers' different cognitive workload characteristics based on on-road experiment
  publication-title: Front. Psychol.
– volume: 27
  year: 2020
  ident: b0130
  article-title: Multimodal coordination measures to understand users and tasks
  publication-title: ACM Trans. Comput.-Hum. Interact.
– volume: 28
  year: 2021
  ident: b0265
  article-title: Investigating the effects of individual cognitive styles on collaborative gameplay
  publication-title: ACM Trans. Comput.-Hum. Interact.
– volume: 20
  year: 2023
  ident: b0050
  article-title: Cognitive analyses for interface design using dual N-back tasks for mental workload (MWL) evaluation
  publication-title: Int. J. Environ. Res. Public Health
– start-page: 1458
  year: 2020
  end-page: 1463
  ident: b0105
  article-title: Ieee, Driver's mental workload measurement concerning cognitive channels
  publication-title: 59th Annual Conference of the Society-of-Instrument-and-Control-Engineers-of-Japan (SICE) Electr Network
– reference: A. Unni, K. Ihme, H. Surm, L. Weber, A. Luedtke, D. Nicklas, M. Jipp, J.W. Rieger, Ieee, brain activity measured with fnirs for the prediction of cognitive workload, in: 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2015)Szechenyi Istvan Univ, Gyor, HUNGARY, 2015, pp. 349–354.
– volume: 112
  start-page: 37
  year: 2016
  end-page: 53
  ident: b0125
  article-title: Cognitive pilot-aircraft interface for single-pilot operations
  publication-title: Knowl.-Based Syst.
– reference: J. Lv, J. Qiao, J. Wu, Mental fatigue assessment method based on assembly operation, in: 5th International Conference on Financial Innovation and Economic Development (ICFIED)Sanya, PEOPLES R CHINA, 2020, pp. 325–329.
– volume: 83
  start-page: 96
  year: 2012
  end-page: 101
  ident: b0055
  article-title: Respiratory sinus arrhythmia as a measure of cognitive workload
  publication-title: Int. J. Psychophysiol.
– volume: 6
  year: 2021
  ident: b0210
  article-title: Analyzing relationships between causal and assessment factors of cognitive load: associations between objective and subjective measures of cognitive load, stress, interest, and self-concept
  publication-title: Front. Educ.
– start-page: 345
  year: 2017
  end-page: 350
  ident: b0235
  article-title: Ieee, classification of cognitive load using voice features: a preliminary investigation
  publication-title: 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)Debrecen, HUNGARY
– volume: 182
  year: 2024
  ident: b0065
  article-title: From driver to supervisor: comparing cognitive load and EEG-based attentional resource allocation across automation levels
  publication-title: Int. J. Hum Comput Stud.
– start-page: 178
  year: 2011
  end-page: 185
  ident: b0095
  article-title: Pupillary response based cognitive workload measurement under luminance changes
  publication-title: 13th IFIP TC 13 International Conference on Human–Computer Interaction (INTERACT)Lisbon
– volume: 3
  year: 2018
  ident: b0205
  article-title: Schema-related cognitive load influences performance, speech, and physiology in a dual-task setting: a continuous multi-measure approach
  publication-title: Cogn. Res.-Principl. Impl.
– volume: 41
  start-page: 1199
  year: 2022
  end-page: 1229
  ident: b0045
  article-title: Evaluating instructional designs with mental workload assessments in university classrooms
  publication-title: Behav. Inform. Technol.
– volume: 5
  start-page: 27
  year: 2021
  ident: b0090
  article-title: Exploration of person-independent BCIs for internal and external attention-detection in augmented reality
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
– reference: E.T. Solovey, M. Zec, E.A.G. Perez, B. Reimer, B. Mehler, Acm, Classifying Driver Workload Using Physiological and Driving Performance Data: Two Field Studies, 32nd Annual ACM Conference on Human Factors in Computing Systems (CHI)Toronto, CANADA, 2014, pp. 4057–4066.
– start-page: 11
  year: 2016
  end-page: 16
  ident: b0120
  article-title: Ieee, towards the integration and evaluation of online workload measures in a cognitive architecture
  publication-title: 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)Wroclaw, POLAND
– volume: 17
  start-page: 181
  year: 2018
  end-page: 190
  ident: b0260
  article-title: Single-trial classification of fNIRS signals in four directions motor imagery tasks measured from prefrontal cortex
  publication-title: IEEE Trans. NanoBiosci.
– volume: 5
  start-page: 14819
  year: 2017
  end-page: 14829
  ident: b0185
  article-title: An EEG-based cognitive load assessment in multimedia learning using feature extraction and partial directed coherence
  publication-title: IEEE Access
– volume: 6
  start-page: 39
  year: 2022
  ident: b0115
  article-title: EarlyScreen: multi-scale instance fusion for predicting neural activation and psychopathology in preschool children
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
– volume: 20
  year: 2020
  ident: b0240
  article-title: Pattern recognition of cognitive load using EEG and ECG signals
  publication-title: Sensors
– volume: 25
  year: 2018
  ident: b0110
  article-title: Workload alerts-using physiological measures of mental workload to provide feedback during tasks
  publication-title: ACM Trans. Comput.-Hum. Interact.
– volume: 11
  start-page: 56
  year: 2020
  end-page: 64
  ident: b0175
  article-title: Heart rate variability based assessment of cognitive workload in smart operators
  publication-title: Manage. Prod. Eng. Rev.
– volume: 118
  start-page: 18
  year: 2020
  end-page: 26
  ident: b0070
  article-title: ERP based measures of cognitive workload: a review
  publication-title: Neurosci. Biobehav. Rev.
– volume: 147
  year: 2021
  ident: b0280
  article-title: Measuring mental workload variations in office work tasks using fNIRS
  publication-title: Int. J. Human–Computer Stud.
– volume: 14
  start-page: 709
  year: 2020
  end-page: 721
  ident: b0195
  article-title: Assessing cognitive load in adolescent and adult students using photoplethysmogram morphometrics
  publication-title: Cogn. Neurodyn.
– start-page: 130
  year: 2023
  end-page: 131
  ident: b0245
  article-title: Ieee, predicting cognitive load with wearable sensor signals
  publication-title: IEEE Conference on Artificial Intelligence (IEEE CAI) Santa Clara, CA
– start-page: 1093
  year: 2015
  end-page: 1098
  ident: b0035
  article-title: An integrated approach to subjective measuring commercial aviation pilot workload
  publication-title: 2015 IEEE 10th Conference on Industrial Electronics and Applications
– reference: A.W. Joseph, J.S. Vaiz, R. Murugesh, Modeling Cognitive Load in Mobile Human Computer Interaction Using Eye Tracking Metrics, AHFE Virtual Conferences on Human Factors in Software and Systems Engineering, Artificial Intelligence and Social Computing, and EnergyElectr Network, 2021, pp. 99–106.
– start-page: 1
  year: 2021
  end-page: 6
  ident: b0170
  article-title: Feasibility of evaluating temporal changes in cognitive load factors using ocular features
  publication-title: ACM Symposium on Eye Tracking Research and Applications.
– start-page: 1
  year: 2023
  end-page: 12
  ident: b0155
  article-title: Development and validation of a task load index for process control room operators (PCRO-TLX)
  publication-title: Ergonomics
– volume: 53
  year: 2022
  ident: b0005
  article-title: Cognitive characteristics in firefighter wayfinding tasks: an eye-tracking analysis
  publication-title: Adv. Eng. Inf.
– reference: Z. Qadir, E. Chowdhury, L. Ghosh, A. Konar, Quantitative Analysis of Cognitive Load Test While Driving in a VR vs Non-VR Environment, 8th International Conference on Pattern Recognition and Machine Intelligence (PReMI)Tezpur Univ, Tezpur, INDIA, 2019, pp. 481-489.
– volume: 16
  year: 2019
  ident: 10.1016/j.aei.2024.102765_b0215
  article-title: Photoplethysmogram-based cognitive load assessment using multi-feature fusion model
  publication-title: ACM Trans. Appl. Percept.
  doi: 10.1145/3340962
– volume: 53
  year: 2022
  ident: 10.1016/j.aei.2024.102765_b0005
  article-title: Cognitive characteristics in firefighter wayfinding tasks: an eye-tracking analysis
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2022.101668
– volume: 147
  year: 2021
  ident: 10.1016/j.aei.2024.102765_b0280
  article-title: Measuring mental workload variations in office work tasks using fNIRS
  publication-title: Int. J. Human–Computer Stud.
  doi: 10.1016/j.ijhcs.2020.102580
– volume: 297
  start-page: 38
  year: 2015
  ident: 10.1016/j.aei.2024.102765_b0190
  article-title: Behavioral and fMRI evidence of the differing cognitive load of domain-specific assessments
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.03.047
– volume: 55
  start-page: 1001
  year: 2013
  ident: 10.1016/j.aei.2024.102765_b0085
  article-title: The impact of eye movements and cognitive workload on lateral position variability in driving
  publication-title: Hum. Factors
  doi: 10.1177/0018720813480177
– start-page: 1458
  year: 2020
  ident: 10.1016/j.aei.2024.102765_b0105
  article-title: Ieee, Driver's mental workload measurement concerning cognitive channels
– start-page: 568
  year: 2011
  ident: 10.1016/j.aei.2024.102765_b0075
  article-title: Measuring cognitive workload with low-cost electroencephalograph
– volume: 57
  year: 2023
  ident: 10.1016/j.aei.2024.102765_b0010
  article-title: Air traffic controller workload level prediction using conformalized dynamical graph learning
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2023.102113
– volume: 57
  year: 2023
  ident: 10.1016/j.aei.2024.102765_b0135
  article-title: Air traffic controllers' mental fatigue recognition: a multi-sensor information fusion-based deep learning approach
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2023.102123
– volume: 112
  start-page: 37
  year: 2016
  ident: 10.1016/j.aei.2024.102765_b0125
  article-title: Cognitive pilot-aircraft interface for single-pilot operations
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.08.031
– volume: 46
  start-page: 1230
  year: 1999
  ident: 10.1016/j.aei.2024.102765_b0255
  article-title: Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.790500
– volume: 61
  year: 2024
  ident: 10.1016/j.aei.2024.102765_b0270
  article-title: Design recommendations for voluntary blink interactions based on pressure sensors
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102489
– volume: 61
  start-page: 393
  year: 2019
  ident: 10.1016/j.aei.2024.102765_b0015
  article-title: Cardiac measures of cognitive workload: a meta-analysis
  publication-title: Hum. Factors
  doi: 10.1177/0018720819830553
– volume: 182
  year: 2024
  ident: 10.1016/j.aei.2024.102765_b0065
  article-title: From driver to supervisor: comparing cognitive load and EEG-based attentional resource allocation across automation levels
  publication-title: Int. J. Hum Comput Stud.
  doi: 10.1016/j.ijhcs.2023.103169
– ident: 10.1016/j.aei.2024.102765_b0030
  doi: 10.1177/107118139704100173
– ident: 10.1016/j.aei.2024.102765_b0200
  doi: 10.1007/978-3-030-34872-4_53
– volume: 17
  start-page: 181
  year: 2018
  ident: 10.1016/j.aei.2024.102765_b0260
  article-title: Single-trial classification of fNIRS signals in four directions motor imagery tasks measured from prefrontal cortex
  publication-title: IEEE Trans. NanoBiosci.
  doi: 10.1109/TNB.2018.2839736
– volume: 20
  year: 2020
  ident: 10.1016/j.aei.2024.102765_b0240
  article-title: Pattern recognition of cognitive load using EEG and ECG signals
  publication-title: Sensors
  doi: 10.3390/s20185122
– volume: 83
  start-page: 96
  year: 2012
  ident: 10.1016/j.aei.2024.102765_b0055
  article-title: Respiratory sinus arrhythmia as a measure of cognitive workload
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2011.10.011
– start-page: 1
  year: 2023
  ident: 10.1016/j.aei.2024.102765_b0155
  article-title: Development and validation of a task load index for process control room operators (PCRO-TLX)
  publication-title: Ergonomics
– volume: 11
  start-page: 56
  year: 2020
  ident: 10.1016/j.aei.2024.102765_b0175
  article-title: Heart rate variability based assessment of cognitive workload in smart operators
  publication-title: Manage. Prod. Eng. Rev.
– volume: 106
  year: 2023
  ident: 10.1016/j.aei.2024.102765_b0180
  article-title: Distracted worker: using pupil size and blink rate to detect cognitive load during manufacturing tasks
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2022.103867
– volume: 25
  year: 2018
  ident: 10.1016/j.aei.2024.102765_b0110
  article-title: Workload alerts-using physiological measures of mental workload to provide feedback during tasks
  publication-title: ACM Trans. Comput.-Hum. Interact.
  doi: 10.1145/3173380
– ident: 10.1016/j.aei.2024.102765_b0150
  doi: 10.2991/aebmr.k.200306.057
– start-page: 130
  year: 2023
  ident: 10.1016/j.aei.2024.102765_b0245
  article-title: Ieee, predicting cognitive load with wearable sensor signals
– volume: 8
  start-page: 211482
  year: 2020
  ident: 10.1016/j.aei.2024.102765_b0290
  article-title: Long-term cognitive tasks impair the ability of resource allocation in working memory: a study of time-frequency analysis and event-related potentials
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039268
– volume: 53
  year: 2022
  ident: 10.1016/j.aei.2024.102765_b0025
  article-title: Towards safe and collaborative aerodrome operations: assessing shared situational awareness for adverse weather detection with EEG-enabled Bayesian neural networks
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2022.101698
– start-page: 1
  year: 2021
  ident: 10.1016/j.aei.2024.102765_b0170
  article-title: Feasibility of evaluating temporal changes in cognitive load factors using ocular features
  publication-title: ACM Symposium on Eye Tracking Research and Applications.
– volume: 6
  year: 2021
  ident: 10.1016/j.aei.2024.102765_b0210
  article-title: Analyzing relationships between causal and assessment factors of cognitive load: associations between objective and subjective measures of cognitive load, stress, interest, and self-concept
  publication-title: Front. Educ.
  doi: 10.3389/feduc.2021.632907
– volume: 27
  year: 2020
  ident: 10.1016/j.aei.2024.102765_b0130
  article-title: Multimodal coordination measures to understand users and tasks
  publication-title: ACM Trans. Comput.-Hum. Interact.
  doi: 10.1145/3412365
– volume: 30
  year: 2023
  ident: 10.1016/j.aei.2024.102765_b0100
  article-title: CLERA: a unified model for joint cognitive load and eye region analysis in the wild
  publication-title: ACM Trans. Comput.-Hum. Interact.
  doi: 10.1145/3603622
– volume: 14
  year: 2023
  ident: 10.1016/j.aei.2024.102765_b0285
  article-title: Using electroencephalography to analyse drivers' different cognitive workload characteristics based on on-road experiment
  publication-title: Front. Psychol.
– volume: 44
  year: 2020
  ident: 10.1016/j.aei.2024.102765_b0020
  article-title: Psychophysiological evaluation of seafarers to improve training in maritime virtual simulator
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2020.101048
– ident: 10.1016/j.aei.2024.102765_b0165
  doi: 10.1007/978-3-030-94277-9_110
– volume: 20
  year: 2023
  ident: 10.1016/j.aei.2024.102765_b0050
  article-title: Cognitive analyses for interface design using dual N-back tasks for mental workload (MWL) evaluation
  publication-title: Int. J. Environ. Res. Public Health
– volume: 118
  start-page: 18
  year: 2020
  ident: 10.1016/j.aei.2024.102765_b0070
  article-title: ERP based measures of cognitive workload: a review
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2020.07.020
– volume: 28
  year: 2021
  ident: 10.1016/j.aei.2024.102765_b0265
  article-title: Investigating the effects of individual cognitive styles on collaborative gameplay
  publication-title: ACM Trans. Comput.-Hum. Interact.
  doi: 10.1145/3445792
– volume: 14
  start-page: 709
  year: 2020
  ident: 10.1016/j.aei.2024.102765_b0195
  article-title: Assessing cognitive load in adolescent and adult students using photoplethysmogram morphometrics
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-020-09617-2
– start-page: 1093
  year: 2015
  ident: 10.1016/j.aei.2024.102765_b0035
  article-title: An integrated approach to subjective measuring commercial aviation pilot workload
– volume: 5
  start-page: 27
  year: 2021
  ident: 10.1016/j.aei.2024.102765_b0090
  article-title: Exploration of person-independent BCIs for internal and external attention-detection in augmented reality
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3463507
– start-page: 345
  year: 2017
  ident: 10.1016/j.aei.2024.102765_b0235
  article-title: Ieee, classification of cognitive load using voice features: a preliminary investigation
– volume: 63
  start-page: 772
  year: 2021
  ident: 10.1016/j.aei.2024.102765_b0080
  article-title: The impacts of temporal variation and individual differences in driver cognitive workload on ECG-based detection
  publication-title: Hum. Factors
  doi: 10.1177/0018720821990484
– volume: 6
  start-page: 39
  year: 2022
  ident: 10.1016/j.aei.2024.102765_b0115
  article-title: EarlyScreen: multi-scale instance fusion for predicting neural activation and psychopathology in preschool children
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3534583
– start-page: 59
  year: 2018
  ident: 10.1016/j.aei.2024.102765_b0230
  article-title: Classification of EEG signals for cognitive load estimation using deep learning architectures
– ident: 10.1016/j.aei.2024.102765_b0275
  doi: 10.1109/CogInfoCom.2015.7390617
– ident: 10.1016/j.aei.2024.102765_b0225
  doi: 10.1186/s12938-018-0555-8
– volume: 41
  start-page: 1199
  year: 2022
  ident: 10.1016/j.aei.2024.102765_b0045
  article-title: Evaluating instructional designs with mental workload assessments in university classrooms
  publication-title: Behav. Inform. Technol.
  doi: 10.1080/0144929X.2020.1864019
– ident: 10.1016/j.aei.2024.102765_b0060
  doi: 10.1145/2556288.2557068
– ident: 10.1016/j.aei.2024.102765_b0220
  doi: 10.1007/978-3-030-80624-8_13
– start-page: 1
  year: 2022
  ident: 10.1016/j.aei.2024.102765_b0040
  article-title: Profiling cognitive workload in an unmanned vehicle control task with cognitive models and physiological metrics
  publication-title: Mil. Psychol.
– start-page: 11
  year: 2016
  ident: 10.1016/j.aei.2024.102765_b0120
  article-title: Ieee, towards the integration and evaluation of online workload measures in a cognitive architecture
– ident: 10.1016/j.aei.2024.102765_b0140
  doi: 10.1109/SMC42975.2020.9283168
– start-page: 178
  year: 2011
  ident: 10.1016/j.aei.2024.102765_b0095
  article-title: Pupillary response based cognitive workload measurement under luminance changes
– volume: 5
  start-page: 14819
  year: 2017
  ident: 10.1016/j.aei.2024.102765_b0185
  article-title: An EEG-based cognitive load assessment in multimedia learning using feature extraction and partial directed coherence
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2731784
– volume: 3
  year: 2018
  ident: 10.1016/j.aei.2024.102765_b0205
  article-title: Schema-related cognitive load influences performance, speech, and physiology in a dual-task setting: a continuous multi-measure approach
  publication-title: Cogn. Res.-Principl. Impl.
– ident: 10.1016/j.aei.2024.102765_b0160
  doi: 10.1109/ICHI48887.2020.9374342
– volume: 239
  year: 2022
  ident: 10.1016/j.aei.2024.102765_b0145
  article-title: Artificial intelligence-enabled non-intrusive vigilance assessment approach to reducing traffic controller's human errors
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.108047
– start-page: 1
  year: 2022
  ident: 10.1016/j.aei.2024.102765_b0250
  article-title: Heart rate and pupil dilation as reliable measures of neuro-cognitive load classification
SSID ssj0016897
Score 2.427683
Snippet In the domain of engineering interactive product design, the optimization of Human-Computer Interaction (HCI) is central to enhancing user experience and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102765
SubjectTerms Cognitive workload
Eye-tracking
fNIRS
Multimodal fusion
Title A training and assessment system for human-computer interaction combining fNIRS and eye-tracking data
URI https://dx.doi.org/10.1016/j.aei.2024.102765
Volume 62
WOSCitedRecordID wos001294249700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1474-0346
  databaseCode: AIEXJ
  dateStart: 20020101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016897
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6loYde-q5KodUeeiraCNvrePdoVaBSoagPKqUnyx7vpkHIQSFBIP48sy_b0FKVQy-WtfJO7HyfxrPj2fkIeZ_WaQlJVDGuU2BcjAWrqqpkyA6MviOZKof0YTaZiOlUfhkMrsJemPOTrGnExYU8_a9Q4xiCbbbO3gPu1igO4DmCjkeEHY__BHzeyj64Rqxt603ftdkWFlppPgZe0sE2jVh61XAcrNx0PTn49t0aUZeKoVUwefUdv52tjWnzUEagut6GO74h66pXTP91bSkT3pV2D4VPC8xm60UvhW3Tt4dq3mX7nUf6uWhmv9bzfqYi5m3NW3CuPONsN_EpR-99vS927hOjncxJR_zm2V2S4XhUqvnIGB91197son3r7dbWHIZytuMCTRTGROFMPCAbcZZKMSQb-cHe9HP7EWosnDZPuO3wUdyWB966jz-HNb1Q5egpeezXGDR33HhGBqp5Tp749Qb13vzsBVE5DVShiDLtqEIdVShiSG9ShfaoQluqUEsVa6RPFWqo8pL82N87-viJedkNBrHMVkwCr7NEZCBjELFOU5VyCVBrUYEpoqq1riEqI4AEFwdxVIsyNtJTesyViitIXpFhs2jUa0IT0CBVLRIFRtZmXEnOeQ06wxOloNwku-FfK8D3pDcPflLcidYm-dBOOXUNWf52MQ9QFD6idJFigbS6e9qb-_zGFnnUkX2bDFfLtXpLHsL5an62fOc5dQ0n9Zix
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+training+and+assessment+system+for+human-computer+interaction+combining+fNIRS+and+eye-tracking+data&rft.jtitle=Advanced+engineering+informatics&rft.au=Qu%2C+Jing&rft.au=Bu%2C+Lingguo&rft.au=Zhao%2C+Lei&rft.au=Wang%2C+Yonghui&rft.date=2024-10-01&rft.issn=1474-0346&rft.volume=62&rft.spage=102765&rft_id=info:doi/10.1016%2Fj.aei.2024.102765&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aei_2024_102765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon