An efficient parallel algorithm for mining weighted clickstream patterns

•We propose a parallel depth-first search with dynamic load balancing.•We propose a parallel algorithm called PCompact-SPADE for mining weighted frequent clickstream patterns.•We experiment on various datasets to illustrate the algorithm’s performance and scalability. In the Internet age, analyzing...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 582; s. 349 - 368
Hlavní autoři: Huynh, Huy M., Nguyen, Loan T.T., Vo, Bay, Oplatková, Zuzana Komínková, Fournier-Viger, Philippe, Yun, Unil
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.01.2022
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We propose a parallel depth-first search with dynamic load balancing.•We propose a parallel algorithm called PCompact-SPADE for mining weighted frequent clickstream patterns.•We experiment on various datasets to illustrate the algorithm’s performance and scalability. In the Internet age, analyzing the behavior of online users can help webstore owners understand customers’ interests. Insights from such analysis can be used to improve both user experience and website design. A prominent task for online behavior analysis is clickstream mining, which consists of identifying customer browsing patterns that reveal how users interact with websites. Recently, this task was extended to consider weights to find more impactful patterns. However, most algorithms for mining weighted clickstream patterns are serial algorithms, which are sequentially executed from the start to the end on one running thread. In real life, data is often very large, and serial algorithms can have long runtimes as they do not fully take advantage of the parallelism capabilities of modern multi-core CPUs. To address this limitation, this paper presents two parallel algorithms named DPCompact-SPADE (Depth load balancing Parallel Compact-SPADE) and APCompact-SPADE (Adaptive Parallel Compact-SPADE) for weighted clickstream pattern mining. Experiments on various datasets show that the proposed parallel algorithm is efficient, and outperforms state-of-the-art serial algorithms in terms of runtime, memory consumption, and scalability.
AbstractList •We propose a parallel depth-first search with dynamic load balancing.•We propose a parallel algorithm called PCompact-SPADE for mining weighted frequent clickstream patterns.•We experiment on various datasets to illustrate the algorithm’s performance and scalability. In the Internet age, analyzing the behavior of online users can help webstore owners understand customers’ interests. Insights from such analysis can be used to improve both user experience and website design. A prominent task for online behavior analysis is clickstream mining, which consists of identifying customer browsing patterns that reveal how users interact with websites. Recently, this task was extended to consider weights to find more impactful patterns. However, most algorithms for mining weighted clickstream patterns are serial algorithms, which are sequentially executed from the start to the end on one running thread. In real life, data is often very large, and serial algorithms can have long runtimes as they do not fully take advantage of the parallelism capabilities of modern multi-core CPUs. To address this limitation, this paper presents two parallel algorithms named DPCompact-SPADE (Depth load balancing Parallel Compact-SPADE) and APCompact-SPADE (Adaptive Parallel Compact-SPADE) for weighted clickstream pattern mining. Experiments on various datasets show that the proposed parallel algorithm is efficient, and outperforms state-of-the-art serial algorithms in terms of runtime, memory consumption, and scalability.
Author Vo, Bay
Yun, Unil
Huynh, Huy M.
Oplatková, Zuzana Komínková
Nguyen, Loan T.T.
Fournier-Viger, Philippe
Author_xml – sequence: 1
  givenname: Huy M.
  surname: Huynh
  fullname: Huynh, Huy M.
  email: huynh@utb.cz
  organization: Faculty of Applied Informatics, Tomas Bata University in Zlín, Nám. T.G. Masaryka 5555, Zlín 76001, Czech Republic
– sequence: 2
  givenname: Loan T.T.
  orcidid: 0000-0001-6440-6462
  surname: Nguyen
  fullname: Nguyen, Loan T.T.
  email: nttloan@hcmiu.edu.vn
  organization: School of Computer Science and Engineering, International University, Ho Chi Minh City 700000, Viet Nam
– sequence: 3
  givenname: Bay
  surname: Vo
  fullname: Vo, Bay
  email: vd.bay@hutech.edu.vn
  organization: Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam
– sequence: 4
  givenname: Zuzana Komínková
  surname: Oplatková
  fullname: Oplatková, Zuzana Komínková
  email: oplatkova@utb.cz
  organization: Faculty of Applied Informatics, Tomas Bata University in Zlín, Nám. T.G. Masaryka 5555, Zlín 76001, Czech Republic
– sequence: 5
  givenname: Philippe
  orcidid: 0000-0002-7680-9899
  surname: Fournier-Viger
  fullname: Fournier-Viger, Philippe
  email: philfv@hit.edu.cn
  organization: School of Humanities and Social Sciences, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 6
  givenname: Unil
  orcidid: 0000-0002-3720-0861
  surname: Yun
  fullname: Yun, Unil
  email: yunei@sejong.ac.kr
  organization: Department of Computer Engineering, Sejong University, Seoul 05006, Republic of Korea
BookMark eNp90LFOwzAQgGELFYlSeAC2vEDCndPYjpiqCihSJRaYLeNcWpfEqWwLxNuTqEwMnW44fSfdf81mfvDE2B1CgYDi_lA4HwsOHAtQBUi4YHNUkueC1zhjcwAOOfCqumLXMR4AYCmFmLPNymfUts468ik7mmC6jrrMdLshuLTvs3YIWe-887vsm9xun6jJbOfsZ0yBTD-SlCj4eMMuW9NFuv2bC_b-9Pi23uTb1-eX9WqbW17LlNe2FBbVR1VZgaWSSjWIZcORlLR2aagGMlQuObY1n3YC0SjRVE0pJam2XDB5umvDEGOgVluXTHKDT8G4TiPoKYg-6DGInoJoUHoMMkr8J4_B9Sb8nDUPJ0PjS1-Ogo5TKUuNC2STbgZ3Rv8ChC17kQ
CitedBy_id crossref_primary_10_1016_j_teler_2024_100125
crossref_primary_10_1016_j_knosys_2024_111449
crossref_primary_10_1145_3716390
crossref_primary_10_1016_j_knosys_2024_112713
crossref_primary_10_1002_widm_1566
crossref_primary_10_1007_s10660_022_09543_x
crossref_primary_10_1016_j_ins_2023_119924
crossref_primary_10_1109_ACCESS_2021_3131577
crossref_primary_10_1007_s10489_022_03699_7
crossref_primary_10_1109_TSC_2025_3536359
crossref_primary_10_1016_j_ins_2022_07_037
crossref_primary_10_3390_s22249626
crossref_primary_10_1016_j_knosys_2021_107946
crossref_primary_10_1016_j_knosys_2023_110441
crossref_primary_10_1109_TSC_2023_3294945
Cites_doi 10.1016/j.knosys.2019.105241
10.1016/j.eswa.2009.07.072
10.1016/j.eswa.2019.112993
10.1007/s10115-018-1161-6
10.1007/s10489-018-1182-6
10.1016/j.future.2020.01.034
10.1142/S0218488517500052
10.1007/s10489-020-01664-w
10.1016/j.ins.2018.07.020
10.1016/j.knosys.2013.10.011
10.1007/s10489-016-0859-y
10.1016/j.knosys.2019.105076
10.1109/TKDE.2016.2515622
10.1145/3314107
10.1109/TCYB.2019.2896267
10.1016/j.eswa.2017.05.021
10.1109/TKDE.2013.124
10.1007/s11280-018-0566-1
10.1016/j.inffus.2021.05.011
10.1145/3363571
10.1023/A:1007652502315
10.1016/j.eswa.2017.10.025
10.1016/j.jcss.2009.05.008
10.1016/j.ins.2018.08.009
10.1007/s10618-016-0467-9
10.1016/j.eswa.2012.08.065
10.4218/etrij.10.1510.0066
10.1016/j.ins.2018.05.031
10.1016/j.asoc.2021.107422
10.1109/ACCESS.2019.2939937
10.1006/jpdc.2000.1695
10.1016/j.ins.2007.03.018
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.08.070
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 368
ExternalDocumentID 10_1016_j_ins_2021_08_070
S0020025521008781
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-9c36c18b55c6138788d113d21e87cc4ae90eae3421f928d11611a86d5d377e8f3
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000705073700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:25:19 EST 2025
Tue Nov 18 20:53:00 EST 2025
Fri Feb 23 02:44:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Frequent pattern mining
Parallelism
Weighted clickstream patterns
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-9c36c18b55c6138788d113d21e87cc4ae90eae3421f928d11611a86d5d377e8f3
ORCID 0000-0001-6440-6462
0000-0002-7680-9899
0000-0002-3720-0861
PageCount 20
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2021_08_070
crossref_primary_10_1016_j_ins_2021_08_070
elsevier_sciencedirect_doi_10_1016_j_ins_2021_08_070
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ting, Kimble, Kudenko (b0175) 2005
Van, Yoshitaka, Le (b0185) 2018; 48
Yu, Li, Liu (b0210) 2019; 22
Yun (b0215) 2007; 177
Zaki (b0230) 2001; 61
Demiriz (b0050) 2002
Petitjean, Li, Tatti, Webb (b0165) 2016; 30
Riondato, DeBrabant, Fonseca, Upfal (b0170) 2012
Agrawal, Imieliński, Swami (b0005) 1993
Andrzejewski, Boinski (b0025) 2018; 93
Fournier-Viger, Lin, Gomariz, Gueniche, Soltani, Deng, Lam (b0075) 2016
Lin, Djenouri, Srivastava, Yun, Fournier-Viger (b0150) 2021; 108
Agrawal, Srikant (b0015) 1996
Djenouri, Belhadi, Fournier-Viger, Fujita (b0055) 2018; 459
Djenouri, Djenouri, Belhadi, Cano (b0060) 2019; 496
Kim, Yi (b0130) 2019; 7
Gan, Lin, Fournier-Viger, Chao, Yu (b0085) 2019; 13
Gouda, Hassaan, Zaki (b0095) 2010; 76
Agrawal, Srikant (b0010) 1995
Ahmed, Tanbeer, Jeong (b0020) 2010; 32
Pei, Han, Chen, Hsu, Mortazavi-Asl, Pinto, Dayal (b0160) 2001
Zaki (b0235) 2001; 42
Huynh, Nguyen, Vo, Nguyen, Tseng (b0105) 2019; 142
Gan, Lin, Fournier-Viger, Chao, Yu (b0090) 2020; 50
Fowkes, Sutton (b0080) 2016
Fournier-Viger, Gomariz, Campos, Thomas (b0065) 2014
Cooley, Mobasher, Srivastava (b0045) 1997
Patel, Modi, Passi (b0155) 2016
Fournier-Viger, Li, Lin, Chi, Uday Kiran (b0070) 2020; 191
Zhao, Yan, Ng (b0240) 2014; 26
Huynh, Nguyen, Vo, Yun, Oplatková, Hong (b0115) 2020; 107
Huynh, Vo, Snasel (b0100) 2017; 46
Yu, Zhou (b0205) 2010; 37
Vo, Coenen, Le (b0195) 2013; 40
Lee, Yun, Ryu (b0135) 2017; 25
Wu, Lin, Tamrakar (b0200) 2019; 13
Yun, Leggett (b0225) 2006
Yun, Lee, Ryu (b0220) 2014; 55
Ayres, Flannick, Gehrke, Yiu (b0030) 2002
Belhadi, Djenouri, Lin, Cano (b0035) 2020; 50
Bermingham, Lee (b0040) 2020; 189
Kessl (b0120) 2016; 28
Kieu, Vo, Le, Deng, Le (b0125) 2017; 85
Van, Vo, Le (b0180) 2018; 57
Lin, Djenouri, Srivastava (b0145) 2021; 76
Huynh, Nguyen, Vo, Nguyen, Tseng (b0110) 2020; 142
Lee, Stolfo (b0140) 1998
Vanahalli, Patil (b0190) 2019; 496
Bermingham (10.1016/j.ins.2021.08.070_b0040) 2020; 189
Zaki (10.1016/j.ins.2021.08.070_b0230) 2001; 61
Fournier-Viger (10.1016/j.ins.2021.08.070_b0065) 2014
Andrzejewski (10.1016/j.ins.2021.08.070_b0025) 2018; 93
Van (10.1016/j.ins.2021.08.070_b0180) 2018; 57
Zhao (10.1016/j.ins.2021.08.070_b0240) 2014; 26
Agrawal (10.1016/j.ins.2021.08.070_b0010) 1995
Belhadi (10.1016/j.ins.2021.08.070_b0035) 2020; 50
Kieu (10.1016/j.ins.2021.08.070_b0125) 2017; 85
Lee (10.1016/j.ins.2021.08.070_b0135) 2017; 25
Pei (10.1016/j.ins.2021.08.070_b0160) 2001
Cooley (10.1016/j.ins.2021.08.070_b0045) 1997
Fournier-Viger (10.1016/j.ins.2021.08.070_b0075) 2016
Lin (10.1016/j.ins.2021.08.070_b0150) 2021; 108
Lin (10.1016/j.ins.2021.08.070_b0145) 2021; 76
Petitjean (10.1016/j.ins.2021.08.070_b0165) 2016; 30
Kessl (10.1016/j.ins.2021.08.070_b0120) 2016; 28
Huynh (10.1016/j.ins.2021.08.070_b0100) 2017; 46
Yun (10.1016/j.ins.2021.08.070_b0220) 2014; 55
Gan (10.1016/j.ins.2021.08.070_b0090) 2020; 50
Yun (10.1016/j.ins.2021.08.070_b0215) 2007; 177
Gouda (10.1016/j.ins.2021.08.070_b0095) 2010; 76
Vanahalli (10.1016/j.ins.2021.08.070_b0190) 2019; 496
Fowkes (10.1016/j.ins.2021.08.070_b0080) 2016
Wu (10.1016/j.ins.2021.08.070_b0200) 2019; 13
Vo (10.1016/j.ins.2021.08.070_b0195) 2013; 40
Riondato (10.1016/j.ins.2021.08.070_b0170) 2012
Ahmed (10.1016/j.ins.2021.08.070_b0020) 2010; 32
Yu (10.1016/j.ins.2021.08.070_b0205) 2010; 37
Huynh (10.1016/j.ins.2021.08.070_b0115) 2020; 107
Djenouri (10.1016/j.ins.2021.08.070_b0055) 2018; 459
Van (10.1016/j.ins.2021.08.070_b0185) 2018; 48
Demiriz (10.1016/j.ins.2021.08.070_b0050) 2002
Djenouri (10.1016/j.ins.2021.08.070_b0060) 2019; 496
Huynh (10.1016/j.ins.2021.08.070_b0110) 2020; 142
Lee (10.1016/j.ins.2021.08.070_b0140) 1998
Gan (10.1016/j.ins.2021.08.070_b0085) 2019; 13
Ayres (10.1016/j.ins.2021.08.070_b0030) 2002
Huynh (10.1016/j.ins.2021.08.070_b0105) 2019; 142
Zaki (10.1016/j.ins.2021.08.070_b0235) 2001; 42
Agrawal (10.1016/j.ins.2021.08.070_b0005) 1993
Agrawal (10.1016/j.ins.2021.08.070_b0015) 1996
Fournier-Viger (10.1016/j.ins.2021.08.070_b0070) 2020; 191
Ting (10.1016/j.ins.2021.08.070_b0175) 2005
Yun (10.1016/j.ins.2021.08.070_b0225) 2006
Kim (10.1016/j.ins.2021.08.070_b0130) 2019; 7
Patel (10.1016/j.ins.2021.08.070_b0155) 2016
Yu (10.1016/j.ins.2021.08.070_b0210) 2019; 22
References_xml – volume: 61
  start-page: 401
  year: 2001
  end-page: 426
  ident: b0230
  article-title: Parallel sequence mining on shared-memory machines
  publication-title: J. Parallel Distrib. Comput.
– volume: 7
  start-page: 128651
  year: 2019
  end-page: 128658
  ident: b0130
  article-title: Location-based parallel sequential pattern mining algorithm
  publication-title: IEEE Access
– start-page: 429
  year: 2002
  end-page: 435
  ident: b0030
  article-title: Sequential pattern mining using a bitmap representation
  publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
– start-page: 215
  year: 2001
  end-page: 224
  ident: b0160
  article-title: PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth
  publication-title: Proc. Int. Conf. Data Eng.
– volume: 76
  start-page: 88
  year: 2010
  end-page: 102
  ident: b0095
  article-title: Prism: an effective approach for frequent sequence mining via prime-block encoding
  publication-title: J. Comput. Syst. Sci.
– volume: 189
  year: 2020
  ident: b0040
  article-title: Mining distinct and contiguous sequential patterns from large vehicle trajectories
  publication-title: Knowledge-Based Syst.
– start-page: 85
  year: 2012
  ident: b0170
  article-title: PARMA: a parallel randomized algorithm for approximate association rules mining in map reduce
  publication-title: Proc. 21st ACM Int. Conf. Inf. Knowl. Manag.
– volume: 191
  year: 2020
  ident: b0070
  article-title: Mining cost-effective patterns in event logs
  publication-title: Knowledge-Based Syst.
– volume: 28
  start-page: 1299
  year: 2016
  end-page: 1311
  ident: b0120
  article-title: Probabilistic static load-balancing of parallel mining of frequent sequences
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 3
  year: 1995
  end-page: 14
  ident: b0010
  article-title: Mining sequential patterns
  publication-title: Proc. Int. Conf. Data Eng.
– volume: 37
  start-page: 2486
  year: 2010
  end-page: 2494
  ident: b0205
  article-title: Parallel TID-based frequent pattern mining algorithm on a PC Cluster and grid computing system
  publication-title: Expert Syst. Appl.
– volume: 46
  start-page: 703
  year: 2017
  end-page: 716
  ident: b0100
  article-title: An efficient method for mining frequent sequential patterns using multi-Core processors
  publication-title: Appl. Intell.
– start-page: 512
  year: 2006
  end-page: 517
  ident: b0225
  article-title: WSpan: Weighted sequential pattern mining in large sequence databases
  publication-title: Proc. Int. IEEE Conf. Intell. Syst.
– volume: 25
  start-page: 111
  year: 2017
  end-page: 144
  ident: b0135
  article-title: Mining frequent weighted itemsets without storing transaction IDs and generating candidates
  publication-title: Int. J. Uncertainty, Fuzziness Knowledge-Based Syst.
– start-page: 558
  year: 1997
  end-page: 567
  ident: b0045
  article-title: Web mining: information and pattern discovery on the World Wide Web,
  publication-title: Proc. IEEE Int. Conf. Tools with Artif. Intell.
– start-page: 179
  year: 2005
  end-page: 185
  ident: b0175
  article-title: UBB mining: Finding unexpected browsing behaviour in clickstream data to improve a web site’s design
  publication-title: Proc. ACM Int. Conf. Web Intell.
– volume: 48
  start-page: 3902
  year: 2018
  end-page: 3914
  ident: b0185
  article-title: Mining web access patterns with super-pattern constraint
  publication-title: Appl. Intell.
– volume: 13
  start-page: 1
  year: 2019
  end-page: 34
  ident: b0085
  article-title: A survey of parallel sequential pattern mining
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 40
  start-page: 1256
  year: 2013
  end-page: 1264
  ident: b0195
  article-title: A new method for mining frequent weighted itemsets based on WIT-trees
  publication-title: Expert Syst. Appl.
– volume: 177
  start-page: 3477
  year: 2007
  end-page: 3499
  ident: b0215
  article-title: Efficient mining of weighted interesting patterns with a strong weight and/or support affinity
  publication-title: Inf. Sci. (Ny)
– volume: 55
  start-page: 49
  year: 2014
  end-page: 65
  ident: b0220
  article-title: Mining maximal frequent patterns by considering weight conditions over data streams
  publication-title: Knowledge-Based Syst.
– volume: 108
  year: 2021
  ident: b0150
  article-title: A predictive GA-based model for closed high-utility itemset mining
  publication-title: Appl. Soft Comput.
– volume: 93
  start-page: 465
  year: 2018
  end-page: 483
  ident: b0025
  article-title: Efficient spatial co-location pattern mining on multiple GPUs
  publication-title: Expert Syst. Appl.
– volume: 50
  start-page: 1195
  year: 2020
  end-page: 1208
  ident: b0090
  article-title: HUOPM: high-utility occupancy pattern mining
  publication-title: IEEE Trans. Cybern.
– volume: 22
  start-page: 295
  year: 2019
  end-page: 324
  ident: b0210
  article-title: Scalable and parallel sequential pattern mining using spark
  publication-title: World Wide Web.
– start-page: 40
  year: 2014
  end-page: 52
  ident: b0065
  article-title: Fast vertical mining of sequential patterns using co-occurrence information
  publication-title: Proc. Pacific-Asia Conf. Knowl. Discov. Data Min
– volume: 13
  start-page: 1
  year: 2019
  end-page: 22
  ident: b0200
  article-title: High-utility itemset mining with effective pruning strategies
  publication-title: ACM Trans. Knowl. Discov. Data.
– volume: 26
  start-page: 1171
  year: 2014
  end-page: 1184
  ident: b0240
  article-title: Mining probabilistically frequent sequential patterns in large uncertain databases
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 36
  year: 2016
  end-page: 40
  ident: b0075
  article-title: The SPMF open-source data mining library version 2
  publication-title: Proc. Jt. Eur. Conf. Mach. Learn. Knowl. Discov. Databases
– year: 1998
  ident: b0140
  article-title: Data mining approaches for intrusion detection data mining approaches for intrusion detection
  publication-title: Proc. Conf. USENIX Secur.
– start-page: 3
  year: 1996
  end-page: 14
  ident: b0015
  article-title: Mining sequential patterns
  publication-title: Proc. Elev. Int. Conf. Data Eng.
– volume: 496
  start-page: 363
  year: 2019
  end-page: 377
  ident: b0060
  article-title: Exploiting GPU and cluster parallelism in single scan frequent itemset mining
  publication-title: Inf. Sci. (Ny)
– volume: 30
  start-page: 1086
  year: 2016
  end-page: 1111
  ident: b0165
  article-title: Skopus: Mining top-k sequential patterns under leverage
  publication-title: Data Min. Knowl. Discov.
– start-page: 835
  year: 2016
  end-page: 844
  ident: b0080
  article-title: A subsequence interleaving model for sequential pattern mining
  publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
– volume: 142
  year: 2019
  ident: b0105
  article-title: Efficient methods for mining weighted clickstream patterns
  publication-title: Expert Syst. Appl.
– volume: 50
  start-page: 2647
  year: 2020
  end-page: 2662
  ident: b0035
  article-title: A general-purpose distributed pattern mining system
  publication-title: Appl. Intell.
– volume: 107
  start-page: 18
  year: 2020
  end-page: 30
  ident: b0115
  article-title: Efficient algorithms for mining clickstream patterns using pseudo-IDLists
  publication-title: Futur. Gener. Comput. Syst.
– volume: 57
  start-page: 311
  year: 2018
  end-page: 330
  ident: b0180
  article-title: Mining sequential patterns with itemset constraints
  publication-title: Knowl. Inf. Syst.
– volume: 42
  start-page: 31
  year: 2001
  end-page: 60
  ident: b0235
  article-title: SPADE: an efficient algorithm for mining frequent sequences
  publication-title: Mach. Learn.
– volume: 32
  start-page: 676
  year: 2010
  end-page: 686
  ident: b0020
  article-title: A novel approach for mining high-utility sequential patterns in sequence databases
  publication-title: ETRI J.
– volume: 459
  start-page: 117
  year: 2018
  end-page: 134
  ident: b0055
  article-title: Mining diversified association rules in big datasets: a cluster/GPU/genetic approach
  publication-title: Inf. Sci. (Ny)
– volume: 142
  start-page: 112993
  year: 2020
  ident: b0110
  article-title: Efficient methods for mining weighted clickstream patterns
  publication-title: Expert Syst. Appl.
– volume: 85
  start-page: 123
  year: 2017
  end-page: 133
  ident: b0125
  article-title: Mining top-k co-occurrence items with sequential pattern
  publication-title: Expert Syst. Appl.
– volume: 76
  start-page: 122
  year: 2021
  end-page: 132
  ident: b0145
  article-title: Efficient closed high-utility pattern fusion model in large-scale databases
  publication-title: Inf. Fusion
– start-page: 207
  year: 1993
  end-page: 216
  ident: b0005
  article-title: Mining association rules between sets of items in large databases
  publication-title: Proc. ACM SIGMOD Int. Conf. Manag. Data
– start-page: 755
  year: 2002
  end-page: 758
  ident: b0050
  article-title: webSPADE: a parallel sequence mining algorithm to analyze web log data
  publication-title: Proc. Int. Conf. Data Min.
– volume: 496
  start-page: 343
  year: 2019
  end-page: 362
  ident: b0190
  article-title: An efficient parallel row enumerated algorithm for mining frequent colossal closed itemsets from high dimensional datasets
  publication-title: Inf. Sci. (Ny)
– start-page: 904
  year: 2016
  end-page: 915
  ident: b0155
  article-title: An effective approach for mining weighted sequential patterns
  publication-title: Proc. Int. Conf. Smart Trends Inf. Technol. Comput. Commun.
– volume: 191
  year: 2020
  ident: 10.1016/j.ins.2021.08.070_b0070
  article-title: Mining cost-effective patterns in event logs
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2019.105241
– start-page: 85
  year: 2012
  ident: 10.1016/j.ins.2021.08.070_b0170
  article-title: PARMA: a parallel randomized algorithm for approximate association rules mining in map reduce
– volume: 37
  start-page: 2486
  issue: 3
  year: 2010
  ident: 10.1016/j.ins.2021.08.070_b0205
  article-title: Parallel TID-based frequent pattern mining algorithm on a PC Cluster and grid computing system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.07.072
– start-page: 429
  year: 2002
  ident: 10.1016/j.ins.2021.08.070_b0030
  article-title: Sequential pattern mining using a bitmap representation
– volume: 142
  start-page: 112993
  year: 2020
  ident: 10.1016/j.ins.2021.08.070_b0110
  article-title: Efficient methods for mining weighted clickstream patterns
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112993
– volume: 57
  start-page: 311
  issue: 2
  year: 2018
  ident: 10.1016/j.ins.2021.08.070_b0180
  article-title: Mining sequential patterns with itemset constraints
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-018-1161-6
– volume: 48
  start-page: 3902
  issue: 11
  year: 2018
  ident: 10.1016/j.ins.2021.08.070_b0185
  article-title: Mining web access patterns with super-pattern constraint
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1182-6
– start-page: 558
  year: 1997
  ident: 10.1016/j.ins.2021.08.070_b0045
  article-title: Web mining: information and pattern discovery on the World Wide Web,
– volume: 107
  start-page: 18
  year: 2020
  ident: 10.1016/j.ins.2021.08.070_b0115
  article-title: Efficient algorithms for mining clickstream patterns using pseudo-IDLists
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.01.034
– volume: 25
  start-page: 111
  issue: 01
  year: 2017
  ident: 10.1016/j.ins.2021.08.070_b0135
  article-title: Mining frequent weighted itemsets without storing transaction IDs and generating candidates
  publication-title: Int. J. Uncertainty, Fuzziness Knowledge-Based Syst.
  doi: 10.1142/S0218488517500052
– start-page: 215
  year: 2001
  ident: 10.1016/j.ins.2021.08.070_b0160
  article-title: PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth
– volume: 50
  start-page: 2647
  issue: 9
  year: 2020
  ident: 10.1016/j.ins.2021.08.070_b0035
  article-title: A general-purpose distributed pattern mining system
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01664-w
– volume: 496
  start-page: 363
  year: 2019
  ident: 10.1016/j.ins.2021.08.070_b0060
  article-title: Exploiting GPU and cluster parallelism in single scan frequent itemset mining
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2018.07.020
– volume: 55
  start-page: 49
  year: 2014
  ident: 10.1016/j.ins.2021.08.070_b0220
  article-title: Mining maximal frequent patterns by considering weight conditions over data streams
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2013.10.011
– start-page: 755
  year: 2002
  ident: 10.1016/j.ins.2021.08.070_b0050
  article-title: webSPADE: a parallel sequence mining algorithm to analyze web log data
– volume: 46
  start-page: 703
  issue: 3
  year: 2017
  ident: 10.1016/j.ins.2021.08.070_b0100
  article-title: An efficient method for mining frequent sequential patterns using multi-Core processors
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-016-0859-y
– start-page: 904
  year: 2016
  ident: 10.1016/j.ins.2021.08.070_b0155
  article-title: An effective approach for mining weighted sequential patterns
– volume: 189
  year: 2020
  ident: 10.1016/j.ins.2021.08.070_b0040
  article-title: Mining distinct and contiguous sequential patterns from large vehicle trajectories
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2019.105076
– year: 1998
  ident: 10.1016/j.ins.2021.08.070_b0140
  article-title: Data mining approaches for intrusion detection data mining approaches for intrusion detection
– volume: 28
  start-page: 1299
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2021.08.070_b0120
  article-title: Probabilistic static load-balancing of parallel mining of frequent sequences
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2515622
– volume: 13
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2021.08.070_b0085
  article-title: A survey of parallel sequential pattern mining
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3314107
– volume: 50
  start-page: 1195
  year: 2020
  ident: 10.1016/j.ins.2021.08.070_b0090
  article-title: HUOPM: high-utility occupancy pattern mining
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2896267
– start-page: 835
  year: 2016
  ident: 10.1016/j.ins.2021.08.070_b0080
  article-title: A subsequence interleaving model for sequential pattern mining
– volume: 85
  start-page: 123
  year: 2017
  ident: 10.1016/j.ins.2021.08.070_b0125
  article-title: Mining top-k co-occurrence items with sequential pattern
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.05.021
– start-page: 3
  year: 1996
  ident: 10.1016/j.ins.2021.08.070_b0015
  article-title: Mining sequential patterns
– volume: 26
  start-page: 1171
  year: 2014
  ident: 10.1016/j.ins.2021.08.070_b0240
  article-title: Mining probabilistically frequent sequential patterns in large uncertain databases
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.124
– volume: 22
  start-page: 295
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2021.08.070_b0210
  article-title: Scalable and parallel sequential pattern mining using spark
  publication-title: World Wide Web.
  doi: 10.1007/s11280-018-0566-1
– start-page: 207
  year: 1993
  ident: 10.1016/j.ins.2021.08.070_b0005
  article-title: Mining association rules between sets of items in large databases
– start-page: 36
  year: 2016
  ident: 10.1016/j.ins.2021.08.070_b0075
  article-title: The SPMF open-source data mining library version 2
– volume: 76
  start-page: 122
  year: 2021
  ident: 10.1016/j.ins.2021.08.070_b0145
  article-title: Efficient closed high-utility pattern fusion model in large-scale databases
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.05.011
– volume: 13
  start-page: 1
  year: 2019
  ident: 10.1016/j.ins.2021.08.070_b0200
  article-title: High-utility itemset mining with effective pruning strategies
  publication-title: ACM Trans. Knowl. Discov. Data.
  doi: 10.1145/3363571
– volume: 42
  start-page: 31
  year: 2001
  ident: 10.1016/j.ins.2021.08.070_b0235
  article-title: SPADE: an efficient algorithm for mining frequent sequences
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007652502315
– volume: 93
  start-page: 465
  year: 2018
  ident: 10.1016/j.ins.2021.08.070_b0025
  article-title: Efficient spatial co-location pattern mining on multiple GPUs
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.10.025
– start-page: 512
  year: 2006
  ident: 10.1016/j.ins.2021.08.070_b0225
  article-title: WSpan: Weighted sequential pattern mining in large sequence databases
– volume: 76
  start-page: 88
  year: 2010
  ident: 10.1016/j.ins.2021.08.070_b0095
  article-title: Prism: an effective approach for frequent sequence mining via prime-block encoding
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2009.05.008
– start-page: 179
  year: 2005
  ident: 10.1016/j.ins.2021.08.070_b0175
  article-title: UBB mining: Finding unexpected browsing behaviour in clickstream data to improve a web site’s design
– volume: 496
  start-page: 343
  year: 2019
  ident: 10.1016/j.ins.2021.08.070_b0190
  article-title: An efficient parallel row enumerated algorithm for mining frequent colossal closed itemsets from high dimensional datasets
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2018.08.009
– volume: 30
  start-page: 1086
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2021.08.070_b0165
  article-title: Skopus: Mining top-k sequential patterns under leverage
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-016-0467-9
– volume: 40
  start-page: 1256
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2021.08.070_b0195
  article-title: A new method for mining frequent weighted itemsets based on WIT-trees
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.08.065
– start-page: 3
  year: 1995
  ident: 10.1016/j.ins.2021.08.070_b0010
  article-title: Mining sequential patterns
– start-page: 40
  year: 2014
  ident: 10.1016/j.ins.2021.08.070_b0065
  article-title: Fast vertical mining of sequential patterns using co-occurrence information
– volume: 32
  start-page: 676
  year: 2010
  ident: 10.1016/j.ins.2021.08.070_b0020
  article-title: A novel approach for mining high-utility sequential patterns in sequence databases
  publication-title: ETRI J.
  doi: 10.4218/etrij.10.1510.0066
– volume: 459
  start-page: 117
  year: 2018
  ident: 10.1016/j.ins.2021.08.070_b0055
  article-title: Mining diversified association rules in big datasets: a cluster/GPU/genetic approach
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2018.05.031
– volume: 108
  year: 2021
  ident: 10.1016/j.ins.2021.08.070_b0150
  article-title: A predictive GA-based model for closed high-utility itemset mining
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107422
– volume: 142
  year: 2019
  ident: 10.1016/j.ins.2021.08.070_b0105
  article-title: Efficient methods for mining weighted clickstream patterns
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 128651
  year: 2019
  ident: 10.1016/j.ins.2021.08.070_b0130
  article-title: Location-based parallel sequential pattern mining algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939937
– volume: 61
  start-page: 401
  issue: 3
  year: 2001
  ident: 10.1016/j.ins.2021.08.070_b0230
  article-title: Parallel sequence mining on shared-memory machines
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1006/jpdc.2000.1695
– volume: 177
  start-page: 3477
  issue: 17
  year: 2007
  ident: 10.1016/j.ins.2021.08.070_b0215
  article-title: Efficient mining of weighted interesting patterns with a strong weight and/or support affinity
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2007.03.018
SSID ssj0004766
Score 2.4695363
Snippet •We propose a parallel depth-first search with dynamic load balancing.•We propose a parallel algorithm called PCompact-SPADE for mining weighted frequent...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 349
SubjectTerms Frequent pattern mining
Parallelism
Weighted clickstream patterns
Title An efficient parallel algorithm for mining weighted clickstream patterns
URI https://dx.doi.org/10.1016/j.ins.2021.08.070
Volume 582
WOSCitedRecordID wos000705073700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiA0QAzb5gDhQZUqcpI6PFQxtDAaHgnqLXMcb2VKnatNq48wfzvNXGgZD7MAliuzYafN-fn7v-X0g9DKKQa0qiiRIizQGBQWWVMZBWREymfBEEMqKiSk2QU9OsvGYfe71fvhYmFVFlcouL9nsv5Ia2oDYOnT2FuRuJ4UGuAeiwxXIDtd_IvxQaSeN0gQ69nVm76qS2g35rJ6Xzbep8SucltYIa-yiIHKKqhQXOmyET3WmVW0kXHTFVhe0ZLDi9szFGhBXythm4Kb_cb-1Lp8tryxL-1ADDxntj9qur7U96Wit-Z9mFW8u6pU5tY_MecnyO1e8f1xPTdtb1fZ2zRSEdMwUPmwgDLQC02W9qS085JhnbJOXun04tuV2fmPx1tpwDnqJzrZObAZWW3zk13Ta17a51vnQ-7Wd5zBFrqfIdSVOGt5Bm4SmDHjj5vDoYPx-HV9L7Zm3_wv-dNz4CV77HX-Wbzoyy-gheuCUDTy0INlCPam20f1OCspttOsCV_Ar3CEydiz_ETocKtzCCXs44RZOGMZgCyfs4YQ7cMIeTo_Rl3cHozeHgau-EQjCaBMwEQ9ElE3SVIDIl1FY0lEUFySSGRUi4ZKFkss4IdEpI7pvEEU8GxRpEVMqs9P4CdpQtZJPEU5oWoQ6M2UIwiubZFww2DZ07kgZCpLwHRT6b5YLl5peV0ip8htptYNet0NmNi_L3x5OPCFyt0iswJgDqG4e9uw273iO7q1h_wJtNPOl3EV3xaopF_M9h6ifsKOVyA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+parallel+algorithm+for+mining+weighted+clickstream+patterns&rft.jtitle=Information+sciences&rft.au=Huynh%2C+Huy+M.&rft.au=Nguyen%2C+Loan+T.T.&rft.au=Vo%2C+Bay&rft.au=Oplatkov%C3%A1%2C+Zuzana+Kom%C3%ADnkov%C3%A1&rft.date=2022-01-01&rft.issn=0020-0255&rft.volume=582&rft.spage=349&rft.epage=368&rft_id=info:doi/10.1016%2Fj.ins.2021.08.070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_08_070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon