PR-FCM: A polynomial regression-based fuzzy C-means algorithm for attribute-associated data
•A novel fuzzy c-means algorithm is proposed for attribute-associated data clustering.•The parameters of proposed algorithms are fully investigated through synthetic datasets.•The proposed algorithm performs better compared with others on synthetic, real-world, and tunnel boring machine datasets. Pa...
Uloženo v:
| Vydáno v: | Information sciences Ročník 585; s. 209 - 231 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.03.2022
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A novel fuzzy c-means algorithm is proposed for attribute-associated data clustering.•The parameters of proposed algorithms are fully investigated through synthetic datasets.•The proposed algorithm performs better compared with others on synthetic, real-world, and tunnel boring machine datasets.
Partitioning data into internally homogeneous parts is an important problem when mining in situ engineering data. In this paper, a polynomial regression-based fuzzy c-means (PR-FCM) clustering algorithm that utilizes the functional relationships among the attributes of the input dataset is proposed. In this algorithm, a polynomial regression equation is taken as the center of each cluster instead of the cluster prototype used in conventional FCM, and the difference between a sample and a cluster prototype is defined as the distance between the actual value of one attribute and the corresponding predicted value provided by its own polynomial regression equation. An alternating optimization method is designed to optimize the new clustering objective function of the proposed algorithm. A series of experiments on synthetic and real-world datasets are conducted to evaluate the performance of the PR-FCM algorithm, which exhibits higher effectiveness and possesses more advantages than the original FCM algorithm. The PR-FCM algorithm is applied to tunnel boring machine (TBM) operation data from a TBM project in China. The experimental results show that the proposed algorithm can effectively cluster TBM operation data. |
|---|---|
| AbstractList | •A novel fuzzy c-means algorithm is proposed for attribute-associated data clustering.•The parameters of proposed algorithms are fully investigated through synthetic datasets.•The proposed algorithm performs better compared with others on synthetic, real-world, and tunnel boring machine datasets.
Partitioning data into internally homogeneous parts is an important problem when mining in situ engineering data. In this paper, a polynomial regression-based fuzzy c-means (PR-FCM) clustering algorithm that utilizes the functional relationships among the attributes of the input dataset is proposed. In this algorithm, a polynomial regression equation is taken as the center of each cluster instead of the cluster prototype used in conventional FCM, and the difference between a sample and a cluster prototype is defined as the distance between the actual value of one attribute and the corresponding predicted value provided by its own polynomial regression equation. An alternating optimization method is designed to optimize the new clustering objective function of the proposed algorithm. A series of experiments on synthetic and real-world datasets are conducted to evaluate the performance of the PR-FCM algorithm, which exhibits higher effectiveness and possesses more advantages than the original FCM algorithm. The PR-FCM algorithm is applied to tunnel boring machine (TBM) operation data from a TBM project in China. The experimental results show that the proposed algorithm can effectively cluster TBM operation data. |
| Author | Sun, Wei Zhang, Liyong Pang, Yong Song, Xueguan Shi, Maolin |
| Author_xml | – sequence: 1 givenname: Yong surname: Pang fullname: Pang, Yong organization: School of Mechanical Engineering, Dalian University of Technology, Linggong Road, Dalian 116024, China – sequence: 2 givenname: Maolin surname: Shi fullname: Shi, Maolin organization: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 3 givenname: Liyong surname: Zhang fullname: Zhang, Liyong organization: School of Control Science and Engineering, Dalian University of Technology, Linggong Road, Dalian 116024, China – sequence: 4 givenname: Xueguan surname: Song fullname: Song, Xueguan email: sxg@dlut.edu.cn organization: School of Mechanical Engineering, Dalian University of Technology, Linggong Road, Dalian 116024, China – sequence: 5 givenname: Wei surname: Sun fullname: Sun, Wei organization: School of Mechanical Engineering, Dalian University of Technology, Linggong Road, Dalian 116024, China |
| BookMark | eNp90LFOwzAQgGELFYm28ABsfgEH26mdBKaqooBUBEIwMVgX2ymukriyXaT26UlVJgamm77T3T9Bo973FqFrRjNGmbzZZK6PGaecZYxlVMgzNGZlwYnkFRuhMaWcEsqFuECTGDeU0lkh5Rh9vr6R5eL5Fs_x1rf73ncOWhzsOtgYne9JDdEa3OwOhz1ekM5CHzG0ax9c-upw4wOGlIKrd8kSiNFrB2kABhJcovMG2mivfucUfSzv3xePZPXy8LSYr4jmVZFIJUEYamRpSqmNmHEL0lS6KFitNUAhRGNyocuyrHmhqypnmppaWMjBct6IfIqK014dfIzBNkq7BGm4PgVwrWJUHRupjRoaqWMjxZgaGg2S_ZHb4DoI-3_N3cnY4aVvZ4OK2tleW-OC1UkZ7_7RPykDguU |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e40594 crossref_primary_10_1515_bmt_2024_0043 crossref_primary_10_1016_j_heliyon_2024_e36396 crossref_primary_10_1016_j_ins_2023_119567 crossref_primary_10_1016_j_ins_2023_118994 crossref_primary_10_3390_machines11030370 crossref_primary_10_1016_j_asoc_2024_112581 crossref_primary_10_1007_s13042_024_02139_x crossref_primary_10_1016_j_egyr_2022_10_265 crossref_primary_10_1016_j_jksuci_2024_101919 crossref_primary_10_1016_j_rser_2023_113978 crossref_primary_10_1063_5_0125885 crossref_primary_10_1016_j_aei_2022_101563 crossref_primary_10_1016_j_rineng_2025_105247 crossref_primary_10_3390_sym16050537 crossref_primary_10_1016_j_ins_2022_08_082 crossref_primary_10_1007_s12649_022_01935_2 crossref_primary_10_1016_j_jclepro_2024_141903 crossref_primary_10_1007_s11042_022_14250_8 crossref_primary_10_1016_j_heliyon_2023_e16766 crossref_primary_10_1016_j_scs_2024_105957 crossref_primary_10_3390_math10193691 |
| Cites_doi | 10.1109/42.996338 10.1016/0031-3203(89)90066-6 10.1016/j.biosystemseng.2019.02.019 10.1140/epjst/e2015-50136-y 10.1016/j.autcon.2018.11.013 10.1016/j.patrec.2006.11.010 10.1016/j.ins.2011.08.030 10.1109/91.236552 10.1016/j.ins.2020.08.110 10.1016/j.eswa.2019.113159 10.1016/j.asoc.2017.04.071 10.1109/TII.2019.2935749 10.1016/j.ins.2021.04.058 10.1109/91.995126 10.1016/j.ins.2019.04.053 10.1016/j.compositesb.2018.12.145 10.1016/j.ins.2021.05.084 10.1016/j.autcon.2018.03.030 10.1088/1742-6596/1776/1/012054 10.1016/j.ins.2020.02.011 10.1016/j.ins.2019.01.071 10.1007/978-3-030-34135-0_7 10.1109/72.159056 10.1016/j.infrared.2014.07.024 10.1007/s11042-020-09534-w 10.1016/j.ins.2014.04.005 10.1109/TFUZZ.2008.2005008 10.1080/03081079008935087 10.1016/0167-8116(89)90052-9 10.1109/TFUZZ.2018.2859184 10.1016/j.is.2015.04.007 10.1016/j.patcog.2014.06.021 10.1109/TFUZZ.2015.2460732 10.1016/j.knosys.2019.105229 10.1109/IJCNN.1999.830864 10.1016/j.neucom.2017.06.053 10.1007/s10614-020-09975-3 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2021.11.056 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 231 |
| ExternalDocumentID | 10_1016_j_ins_2021_11_056 S0020025521011786 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-96a5d0d68d86cd542ea6d9c771bccaa755fd35c888b27c9931c0db5ea3ae22f53 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000727771200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 07:27:23 EST 2025 Tue Nov 18 22:11:15 EST 2025 Fri Feb 23 02:41:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Tunnel boring machine Polynomial regression In situ engineering data Fuzzy c-means |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-96a5d0d68d86cd542ea6d9c771bccaa755fd35c888b27c9931c0db5ea3ae22f53 |
| PageCount | 23 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2021_11_056 crossref_primary_10_1016_j_ins_2021_11_056 elsevier_sciencedirect_doi_10_1016_j_ins_2021_11_056 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Gao, Shi, Song, Zhang, Zhang (b0015) 2019; 98 Wang, Wu (b0120) 2020; 520 Sun, Shi, Zhang, Zhao, Song (b0010) 2018; 92 Zheng, Zhang, Hu, Wu (b0020) 2021; 546 Yamakawa, Asuka, et al., Simultaneous approach to fuzzy cluster, principal component and multiple regression analysis, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339). Vol. 6. IEEE, 1999. Dave (b0125) 1990; 16 Chatzis, Varvarigou (b0180) 2008; 16 Barraza, Juan, et al.. Optimal number of clusters finding using the fireworks algorithm, Hybrid intelligent systems in control, pattern recognition and medicine. Springer, Cham, 2020. 83-93. Liu, Huang, Sun, Luo, Tan (b0055) 2019; 27 Zhao, Xu, Wu (b0080) 2019; 15 Wedel, Steenkamp (b0200) 1989; 6 Krishnapuram, Nasraoui, Frigui (b0130) 1992; 3 Hathaway, Davenport, Bezdek (b0145) 1989; 22 Zhao, Zhang, Tang, Hao, Luo (b0105) 2019; 161 M. Sato-Ilic, Fuzzy regression analysis using fuzzy clustering, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622). IEEE, 2002. Hathaway, Bezdek (b0195) 1993; 1 Zhao, Ni, Fu-Chun Sun, A modified clustering algorithm for fuzzy modeling using fuzzy c-regression model, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). Vol. 2. IEEE, 2005. Bezdek (b0050) 2013 Delić, Nedović, Pap (b0060) 2019; 494 Kumar, Sirohi (b0225) 2010; 5 Schäfer (b0245) 2016; 225 Hu, Chan (b0160) 2015; 24 Sanchez, Castillo, Castro, Melin (b0040) 2014; 279 Zeng, Chen, Teng (b0025) 2019; 484 Liliana, Rahmat Widyanto, Basaruddin (b0070) 2016 Lemos, Caminhas, Gomide (b0005) 2013; 220 Ting-ting, Yan, Zong, Xiao-lin (b0065) 2020; 79 Dheeru, Casey (b0240) 2019 Kouhi, Seyedarabi, Aghagolzadeh (b0100) 2020; 146 Aghabozorgi, Seyed Shirkhorshidi, Ying Wah, Shirkhorshidi, Wah (b0030) 2015; 53 Peng (b0170) 2021; 571 Shi, Wu, Guo, Zhao, Cui, Wang (b0045) 2021; 574 Kalti, Mahjoub (b0085) 2014; 11 Campello (b0230) 2007; 28 Ahmed, Yamany, Mohamed, Farag, Moriarty (b0150) 2002; 21 Huang, Zhang, Yuan (b0115) 2020; 56 Pratiwi, Nafisa Berliana Indah, D.R.S. Saputro, P. Widyaningsih, Fuzzy c-shells for clustering of data’s LQ45 in Indonesia based on earnings per share and price earning ratio, J. Phys.: Conf. Ser., Vol. 1776. No. 1. IOP Publishing, 2021. Shi (b0190) 2020; 191 Song, Cong, Li (b0165) 2017; 8 Wu, Zhong-dong, Wei-xin Xie, Jian-ping Yu, Fuzzy c-means clustering algorithm based on kernel method, Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003. IEEE, 2003. Junyan, Qingju, Yang, Yumei, Zhiping (b0075) 2014; 67 Fang (b0185) 2021; 126 Rodríguez Ramos, Llanes-Santiago, Bernal de Lázaro, Cruz Corona, Silva Neto, Verdegay Galdeano (b0090) 2017; 58 Gavioli, de Souza, Bazzi, Schenatto, Betzek (b0135) 2019; 181 Saxena, Prasad, Gupta, Bharill, Patel, Tiwari, Er, Ding, Lin (b0035) 2017; 267 Kolen, Hutcheson (b0220) 2002; 10 Khalilia (b0155) 2014; 47 Jamil, Yang (b0235) 2013; 4 Zhang (b0175) 2021 Dheeru (10.1016/j.ins.2021.11.056_b0240) 2019 10.1016/j.ins.2021.11.056_b0140 Wang (10.1016/j.ins.2021.11.056_b0120) 2020; 520 Kolen (10.1016/j.ins.2021.11.056_b0220) 2002; 10 Aghabozorgi (10.1016/j.ins.2021.11.056_b0030) 2015; 53 Hu (10.1016/j.ins.2021.11.056_b0160) 2015; 24 Rodríguez Ramos (10.1016/j.ins.2021.11.056_b0090) 2017; 58 Khalilia (10.1016/j.ins.2021.11.056_b0155) 2014; 47 Krishnapuram (10.1016/j.ins.2021.11.056_b0130) 1992; 3 Song (10.1016/j.ins.2021.11.056_b0165) 2017; 8 Liu (10.1016/j.ins.2021.11.056_b0055) 2019; 27 10.1016/j.ins.2021.11.056_b0110 Delić (10.1016/j.ins.2021.11.056_b0060) 2019; 494 Chatzis (10.1016/j.ins.2021.11.056_b0180) 2008; 16 Schäfer (10.1016/j.ins.2021.11.056_b0245) 2016; 225 Sun (10.1016/j.ins.2021.11.056_b0010) 2018; 92 Peng (10.1016/j.ins.2021.11.056_b0170) 2021; 571 Saxena (10.1016/j.ins.2021.11.056_b0035) 2017; 267 Sanchez (10.1016/j.ins.2021.11.056_b0040) 2014; 279 Hathaway (10.1016/j.ins.2021.11.056_b0195) 1993; 1 10.1016/j.ins.2021.11.056_b0205 Zhang (10.1016/j.ins.2021.11.056_b0175) 2021 Shi (10.1016/j.ins.2021.11.056_b0190) 2020; 191 Ting-ting (10.1016/j.ins.2021.11.056_b0065) 2020; 79 Hathaway (10.1016/j.ins.2021.11.056_b0145) 1989; 22 Lemos (10.1016/j.ins.2021.11.056_b0005) 2013; 220 Dave (10.1016/j.ins.2021.11.056_b0125) 1990; 16 Kalti (10.1016/j.ins.2021.11.056_b0085) 2014; 11 Gao (10.1016/j.ins.2021.11.056_b0015) 2019; 98 Ahmed (10.1016/j.ins.2021.11.056_b0150) 2002; 21 Zhao (10.1016/j.ins.2021.11.056_b0080) 2019; 15 Shi (10.1016/j.ins.2021.11.056_b0045) 2021; 574 Zhao (10.1016/j.ins.2021.11.056_b0105) 2019; 161 Jamil (10.1016/j.ins.2021.11.056_b0235) 2013; 4 Huang (10.1016/j.ins.2021.11.056_b0115) 2020; 56 10.1016/j.ins.2021.11.056_b0215 Liliana (10.1016/j.ins.2021.11.056_b0070) 2016 Bezdek (10.1016/j.ins.2021.11.056_b0050) 2013 10.1016/j.ins.2021.11.056_b0210 Fang (10.1016/j.ins.2021.11.056_b0185) 2021; 126 Wedel (10.1016/j.ins.2021.11.056_b0200) 1989; 6 10.1016/j.ins.2021.11.056_b0095 Gavioli (10.1016/j.ins.2021.11.056_b0135) 2019; 181 Kumar (10.1016/j.ins.2021.11.056_b0225) 2010; 5 Zheng (10.1016/j.ins.2021.11.056_b0020) 2021; 546 Junyan (10.1016/j.ins.2021.11.056_b0075) 2014; 67 Zeng (10.1016/j.ins.2021.11.056_b0025) 2019; 484 Campello (10.1016/j.ins.2021.11.056_b0230) 2007; 28 Kouhi (10.1016/j.ins.2021.11.056_b0100) 2020; 146 |
| References_xml | – volume: 24 start-page: 456 year: 2015 end-page: 470 ident: b0160 article-title: Fuzzy clustering in a complex network based on content relevance and link structures publication-title: IEEE Trans. Fuzzy Syst. – volume: 546 start-page: 1230 year: 2021 end-page: 1255 ident: b0020 article-title: Design of fuzzy system-fuzzy neural network-backstepping control for complex robot system publication-title: Inf. Sci. – year: 2016 ident: b0070 article-title: Human emotion recognition based on active appearance model and semi-supervised fuzzy C-means publication-title: 2016 international conference on advanced computer science and information systems (ICACSIS) – volume: 220 start-page: 64 year: 2013 end-page: 85 ident: b0005 article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier publication-title: Inf. Sci. – volume: 267 start-page: 664 year: 2017 end-page: 681 ident: b0035 article-title: A review of clustering techniques and developments publication-title: Neurocomputing – volume: 279 start-page: 498 year: 2014 end-page: 511 ident: b0040 article-title: Fuzzy granular gravitational clustering algorithm for multivariate data publication-title: Inf. Sci. – year: 2021 ident: b0175 article-title: Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation publication-title: Pattern Recogn. – volume: 126 start-page: 397 year: 2021 end-page: 417 ident: b0185 article-title: Application of FCM algorithm combined with artificial neural network in TBM operation data publication-title: Comput. Model. Eng. Sci. – volume: 15 start-page: 5963 year: 2019 end-page: 5970 ident: b0080 article-title: A new method for bad data identification of oilfield system based on enhanced gravitational search-fuzzy C-means algorithm publication-title: IEEE Trans. Ind. Inf. – volume: 22 start-page: 205 year: 1989 end-page: 212 ident: b0145 article-title: Relational duals of the c-means clustering algorithms publication-title: Pattern Recogn. – volume: 3 start-page: 663 year: 1992 end-page: 671 ident: b0130 article-title: The fuzzy c spherical shells algorithm: a new approach publication-title: IEEE Trans. Neural Networks – volume: 191 year: 2020 ident: b0190 article-title: A fuzzy c-means algorithm based on the relationship among attributes of data and its application in tunnel boring machine publication-title: Knowl.-Based Syst. – volume: 98 start-page: 225 year: 2019 end-page: 235 ident: b0015 article-title: Recurrent neural networks for real-time prediction of TBM operating parameters publication-title: Autom. Constr. – volume: 574 start-page: 490 year: 2021 end-page: 504 ident: b0045 article-title: FCM-RDpA: TSK fuzzy regression model construction using fuzzy C-means clustering, regularization, Droprule, and Powerball Adabelief publication-title: Inf. Sci. – volume: 27 start-page: 72 year: 2019 end-page: 83 ident: b0055 article-title: LDS-FCM: A linear dynamical system based fuzzy C-means method for tactile recognition publication-title: IEEE Trans. Fuzzy Syst. – volume: 8 start-page: 578 year: 2017 end-page: 588 ident: b0165 article-title: A fuzzy C-means clustering algorithm for image segmentation using nonlinear weighted local information publication-title: J. Inf. Hiding Multim. Signal Process. – volume: 146 start-page: 113159 year: 2020 ident: b0100 article-title: Robust FCM clustering algorithm with combined spatial constraint and membership matrix local information for brain MRI segmentation publication-title: Expert Syst. Appl. – volume: 11 start-page: 11 year: 2014 end-page: 18 ident: b0085 article-title: Image segmentation by gaussian mixture models and modified FCM algorithm publication-title: Int. Arab J. Inf. Technol. – volume: 571 start-page: 38 year: 2021 end-page: 49 ident: b0170 article-title: Fuzzy graph clustering publication-title: Inf. Sci. – volume: 53 start-page: 16 year: 2015 end-page: 38 ident: b0030 article-title: Time-series clustering–a decade review publication-title: Inform. Syst. – volume: 1 start-page: 195 year: 1993 end-page: 204 ident: b0195 article-title: Switching regression models and fuzzy clustering publication-title: IEEE Trans. Fuzzy Syst. – reference: Pratiwi, Nafisa Berliana Indah, D.R.S. Saputro, P. Widyaningsih, Fuzzy c-shells for clustering of data’s LQ45 in Indonesia based on earnings per share and price earning ratio, J. Phys.: Conf. Ser., Vol. 1776. No. 1. IOP Publishing, 2021. – volume: 47 start-page: 3920 year: 2014 end-page: 3930 ident: b0155 article-title: Improvements to the relational fuzzy c-means clustering algorithm publication-title: Pattern Recogn. – year: 2019 ident: b0240 article-title: UCI Machine Learning Repository – volume: 16 start-page: 1351 year: 2008 end-page: 1361 ident: b0180 article-title: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation publication-title: IEEE Trans. Fuzzy Syst. – volume: 225 start-page: 569 year: 2016 end-page: 582 ident: b0245 article-title: Taming instabilities in power grid networks by decentralized control publication-title: Eur. Phys. J. Special Topics – volume: 484 start-page: 350 year: 2019 end-page: 366 ident: b0025 article-title: Fuzzy forecasting based on linear combinations of independent variables, subtractive clustering algorithm and artificial bee colony algorithm publication-title: Inf. Sci. – volume: 58 start-page: 605 year: 2017 end-page: 619 ident: b0090 article-title: A novel fault diagnosis scheme applying fuzzy clustering algorithms publication-title: Appl. Soft Comput. – volume: 181 start-page: 86 year: 2019 end-page: 102 ident: b0135 article-title: Identification of management zones in precision agriculture: an evaluation of alternative cluster analysis methods publication-title: Biosyst. Eng. – volume: 21 start-page: 193 year: 2002 end-page: 199 ident: b0150 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 494 start-page: 155 year: 2019 end-page: 173 ident: b0060 article-title: Extended power-based aggregation of distance functions and application in image segmentation publication-title: Inf. Sci. – reference: Yamakawa, Asuka, et al., Simultaneous approach to fuzzy cluster, principal component and multiple regression analysis, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339). Vol. 6. IEEE, 1999. – volume: 10 start-page: 263 year: 2002 end-page: 267 ident: b0220 article-title: Reducing the time complexity of the fuzzy c-means algorithm publication-title: IEEE Trans. Fuzzy Syst. – reference: Wu, Zhong-dong, Wei-xin Xie, Jian-ping Yu, Fuzzy c-means clustering algorithm based on kernel method, Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003. IEEE, 2003. – year: 2013 ident: b0050 article-title: Pattern recognition with fuzzy objective function algorithms – volume: 56 start-page: 187 year: 2020 end-page: 216 ident: b0115 article-title: Predicting extreme financial risks on imbalanced dataset: A combined Kernel FCM and Kernel SMOTE based SVM classifier publication-title: Comput. Econ. – volume: 28 start-page: 833 year: 2007 end-page: 841 ident: b0230 article-title: A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment publication-title: Pattern Recogn. Lett. – volume: 520 start-page: 305 year: 2020 end-page: 323 ident: b0120 article-title: Dynamic imbalanced business credit evaluation based on Learn++ with sliding time window and weight sampling and FCM with multiple kernels publication-title: Inf. Sci. – reference: M. Sato-Ilic, Fuzzy regression analysis using fuzzy clustering, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622). IEEE, 2002. – volume: 5 start-page: 33 year: 2010 end-page: 37 ident: b0225 article-title: Comparative analysis of FCM and HCM algorithm on Iris data set publication-title: Int. J. Comput. Appl. – reference: Barraza, Juan, et al.. Optimal number of clusters finding using the fireworks algorithm, Hybrid intelligent systems in control, pattern recognition and medicine. Springer, Cham, 2020. 83-93. – volume: 6 start-page: 241 year: 1989 end-page: 258 ident: b0200 article-title: A fuzzy clusterwise regression approach to benefit segmentation publication-title: Int. J. Res. Mark. – volume: 16 start-page: 343 year: 1990 end-page: 355 ident: b0125 article-title: Fuzzy shell-clustering and applications to circle detection in digital images publication-title: Int. J. Gener. Syst. – volume: 79 start-page: 30069 year: 2020 end-page: 30085 ident: b0065 article-title: A fault diagnosis method of rolling bearing based on VMD Tsallis entropy and FCM clustering publication-title: Multimedia Tools Appl. – volume: 92 start-page: 23 year: 2018 end-page: 34 ident: b0010 article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data publication-title: Autom. Constr. – volume: 67 start-page: 387 year: 2014 end-page: 390 ident: b0075 article-title: Defects’ geometric feature recognition based on infrared image edge detection publication-title: Infrared Phys. Technol. – volume: 161 start-page: 547 year: 2019 end-page: 554 ident: b0105 article-title: Clustering of AE signals collected during torsional tests of 3D braiding composite shafts using PCA and FCM publication-title: Compos. B Eng. – reference: Zhao, Ni, Fu-Chun Sun, A modified clustering algorithm for fuzzy modeling using fuzzy c-regression model, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). Vol. 2. IEEE, 2005. – volume: 4 start-page: 150 year: 2013 end-page: 194 ident: b0235 article-title: A literature survey of benchmark functions for global optimisation problems publication-title: Int. J. Math. Modell. Numer. Optimis. – volume: 21 start-page: 193 issue: 3 year: 2002 ident: 10.1016/j.ins.2021.11.056_b0150 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.996338 – ident: 10.1016/j.ins.2021.11.056_b0210 – volume: 22 start-page: 205 issue: 2 year: 1989 ident: 10.1016/j.ins.2021.11.056_b0145 article-title: Relational duals of the c-means clustering algorithms publication-title: Pattern Recogn. doi: 10.1016/0031-3203(89)90066-6 – volume: 181 start-page: 86 year: 2019 ident: 10.1016/j.ins.2021.11.056_b0135 article-title: Identification of management zones in precision agriculture: an evaluation of alternative cluster analysis methods publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.02.019 – volume: 225 start-page: 569 issue: 3 year: 2016 ident: 10.1016/j.ins.2021.11.056_b0245 article-title: Taming instabilities in power grid networks by decentralized control publication-title: Eur. Phys. J. Special Topics doi: 10.1140/epjst/e2015-50136-y – volume: 98 start-page: 225 year: 2019 ident: 10.1016/j.ins.2021.11.056_b0015 article-title: Recurrent neural networks for real-time prediction of TBM operating parameters publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.11.013 – volume: 11 start-page: 11 issue: 1 year: 2014 ident: 10.1016/j.ins.2021.11.056_b0085 article-title: Image segmentation by gaussian mixture models and modified FCM algorithm publication-title: Int. Arab J. Inf. Technol. – volume: 28 start-page: 833 issue: 7 year: 2007 ident: 10.1016/j.ins.2021.11.056_b0230 article-title: A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2006.11.010 – volume: 220 start-page: 64 year: 2013 ident: 10.1016/j.ins.2021.11.056_b0005 article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.08.030 – volume: 1 start-page: 195 issue: 3 year: 1993 ident: 10.1016/j.ins.2021.11.056_b0195 article-title: Switching regression models and fuzzy clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.236552 – volume: 546 start-page: 1230 year: 2021 ident: 10.1016/j.ins.2021.11.056_b0020 article-title: Design of fuzzy system-fuzzy neural network-backstepping control for complex robot system publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.08.110 – ident: 10.1016/j.ins.2021.11.056_b0110 – volume: 146 start-page: 113159 year: 2020 ident: 10.1016/j.ins.2021.11.056_b0100 article-title: Robust FCM clustering algorithm with combined spatial constraint and membership matrix local information for brain MRI segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113159 – volume: 58 start-page: 605 year: 2017 ident: 10.1016/j.ins.2021.11.056_b0090 article-title: A novel fault diagnosis scheme applying fuzzy clustering algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.071 – ident: 10.1016/j.ins.2021.11.056_b0215 – year: 2019 ident: 10.1016/j.ins.2021.11.056_b0240 – volume: 15 start-page: 5963 issue: 11 year: 2019 ident: 10.1016/j.ins.2021.11.056_b0080 article-title: A new method for bad data identification of oilfield system based on enhanced gravitational search-fuzzy C-means algorithm publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2935749 – volume: 571 start-page: 38 year: 2021 ident: 10.1016/j.ins.2021.11.056_b0170 article-title: Fuzzy graph clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.04.058 – volume: 10 start-page: 263 issue: 2 year: 2002 ident: 10.1016/j.ins.2021.11.056_b0220 article-title: Reducing the time complexity of the fuzzy c-means algorithm publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.995126 – volume: 494 start-page: 155 year: 2019 ident: 10.1016/j.ins.2021.11.056_b0060 article-title: Extended power-based aggregation of distance functions and application in image segmentation publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.04.053 – volume: 161 start-page: 547 year: 2019 ident: 10.1016/j.ins.2021.11.056_b0105 article-title: Clustering of AE signals collected during torsional tests of 3D braiding composite shafts using PCA and FCM publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.12.145 – volume: 574 start-page: 490 year: 2021 ident: 10.1016/j.ins.2021.11.056_b0045 article-title: FCM-RDpA: TSK fuzzy regression model construction using fuzzy C-means clustering, regularization, Droprule, and Powerball Adabelief publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.05.084 – volume: 92 start-page: 23 year: 2018 ident: 10.1016/j.ins.2021.11.056_b0010 article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.03.030 – ident: 10.1016/j.ins.2021.11.056_b0140 doi: 10.1088/1742-6596/1776/1/012054 – volume: 520 start-page: 305 year: 2020 ident: 10.1016/j.ins.2021.11.056_b0120 article-title: Dynamic imbalanced business credit evaluation based on Learn++ with sliding time window and weight sampling and FCM with multiple kernels publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.02.011 – volume: 126 start-page: 397 issue: 1 year: 2021 ident: 10.1016/j.ins.2021.11.056_b0185 article-title: Application of FCM algorithm combined with artificial neural network in TBM operation data publication-title: Comput. Model. Eng. Sci. – volume: 484 start-page: 350 year: 2019 ident: 10.1016/j.ins.2021.11.056_b0025 article-title: Fuzzy forecasting based on linear combinations of independent variables, subtractive clustering algorithm and artificial bee colony algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.01.071 – ident: 10.1016/j.ins.2021.11.056_b0095 doi: 10.1007/978-3-030-34135-0_7 – volume: 3 start-page: 663 issue: 5 year: 1992 ident: 10.1016/j.ins.2021.11.056_b0130 article-title: The fuzzy c spherical shells algorithm: a new approach publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.159056 – volume: 67 start-page: 387 year: 2014 ident: 10.1016/j.ins.2021.11.056_b0075 article-title: Defects’ geometric feature recognition based on infrared image edge detection publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2014.07.024 – volume: 79 start-page: 30069 issue: 39-40 year: 2020 ident: 10.1016/j.ins.2021.11.056_b0065 article-title: A fault diagnosis method of rolling bearing based on VMD Tsallis entropy and FCM clustering publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-09534-w – volume: 279 start-page: 498 year: 2014 ident: 10.1016/j.ins.2021.11.056_b0040 article-title: Fuzzy granular gravitational clustering algorithm for multivariate data publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.04.005 – volume: 16 start-page: 1351 issue: 5 year: 2008 ident: 10.1016/j.ins.2021.11.056_b0180 article-title: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2008.2005008 – year: 2013 ident: 10.1016/j.ins.2021.11.056_b0050 – volume: 16 start-page: 343 issue: 4 year: 1990 ident: 10.1016/j.ins.2021.11.056_b0125 article-title: Fuzzy shell-clustering and applications to circle detection in digital images publication-title: Int. J. Gener. Syst. doi: 10.1080/03081079008935087 – volume: 4 start-page: 150 issue: 2 year: 2013 ident: 10.1016/j.ins.2021.11.056_b0235 article-title: A literature survey of benchmark functions for global optimisation problems publication-title: Int. J. Math. Modell. Numer. Optimis. – volume: 6 start-page: 241 issue: 4 year: 1989 ident: 10.1016/j.ins.2021.11.056_b0200 article-title: A fuzzy clusterwise regression approach to benefit segmentation publication-title: Int. J. Res. Mark. doi: 10.1016/0167-8116(89)90052-9 – volume: 27 start-page: 72 issue: 1 year: 2019 ident: 10.1016/j.ins.2021.11.056_b0055 article-title: LDS-FCM: A linear dynamical system based fuzzy C-means method for tactile recognition publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2859184 – volume: 53 start-page: 16 year: 2015 ident: 10.1016/j.ins.2021.11.056_b0030 article-title: Time-series clustering–a decade review publication-title: Inform. Syst. doi: 10.1016/j.is.2015.04.007 – year: 2021 ident: 10.1016/j.ins.2021.11.056_b0175 article-title: Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation publication-title: Pattern Recogn. – volume: 8 start-page: 578 issue: 3 year: 2017 ident: 10.1016/j.ins.2021.11.056_b0165 article-title: A fuzzy C-means clustering algorithm for image segmentation using nonlinear weighted local information publication-title: J. Inf. Hiding Multim. Signal Process. – volume: 47 start-page: 3920 issue: 12 year: 2014 ident: 10.1016/j.ins.2021.11.056_b0155 article-title: Improvements to the relational fuzzy c-means clustering algorithm publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2014.06.021 – volume: 24 start-page: 456 issue: 2 year: 2015 ident: 10.1016/j.ins.2021.11.056_b0160 article-title: Fuzzy clustering in a complex network based on content relevance and link structures publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2460732 – volume: 191 year: 2020 ident: 10.1016/j.ins.2021.11.056_b0190 article-title: A fuzzy c-means algorithm based on the relationship among attributes of data and its application in tunnel boring machine publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105229 – year: 2016 ident: 10.1016/j.ins.2021.11.056_b0070 article-title: Human emotion recognition based on active appearance model and semi-supervised fuzzy C-means – ident: 10.1016/j.ins.2021.11.056_b0205 doi: 10.1109/IJCNN.1999.830864 – volume: 267 start-page: 664 year: 2017 ident: 10.1016/j.ins.2021.11.056_b0035 article-title: A review of clustering techniques and developments publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.053 – volume: 5 start-page: 33 issue: 2 year: 2010 ident: 10.1016/j.ins.2021.11.056_b0225 article-title: Comparative analysis of FCM and HCM algorithm on Iris data set publication-title: Int. J. Comput. Appl. – volume: 56 start-page: 187 issue: 1 year: 2020 ident: 10.1016/j.ins.2021.11.056_b0115 article-title: Predicting extreme financial risks on imbalanced dataset: A combined Kernel FCM and Kernel SMOTE based SVM classifier publication-title: Comput. Econ. doi: 10.1007/s10614-020-09975-3 |
| SSID | ssj0004766 |
| Score | 2.4921463 |
| Snippet | •A novel fuzzy c-means algorithm is proposed for attribute-associated data clustering.•The parameters of proposed algorithms are fully investigated through... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 209 |
| SubjectTerms | Fuzzy c-means In situ engineering data Polynomial regression Tunnel boring machine |
| Title | PR-FCM: A polynomial regression-based fuzzy C-means algorithm for attribute-associated data |
| URI | https://dx.doi.org/10.1016/j.ins.2021.11.056 |
| Volume | 585 |
| WOSCitedRecordID | wos000727771200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOCAaIAUM-IA5MRokbxza3atoECKYKDamIQ-TYTunUpVVJp21X_nGeYycN3UCAxCWKojiJ_L687z37_UDoueLAq0UiCShHSpIiZUSBZQGGXKpzY4BDRV43m-BHR2I8lqNe73uTC3M242Upzs_l4r-KGq6BsF3q7F-Iu30oXIBzEDocQexw_CPBjz6Sw_0PPuN8MZ9duLzjunr_xIe8lsQxl9krVpeXoA_IqQW22lOzyXw5rb6e-rDKyjfCskQF8cGAkMbW2rIhk6kGUCDS1kAfhWXoz_PAjHUVyKnPDnJ9gq4sWL-fXnTvDZHC45WdrAKAw9oECLsNzvILZk3SzE8xnc5CJc6V8RTk9a7glKTUN-5qFDMTrKtaI9lhaeq54woB-LWIE_BaXC12Gr9yJVrZRrHtmr7dNnXtUYHTG8dcpDfQFuVMij7aGr49GL9bp9dyv-XdfHezOV6HCW686HrzpmOyHN9Fd4KvgYceI_dQz5bb6HanAuU22g15K_gF7ogTB41_H33xaHqNh3iNJbyJJVxjCQcs4RZLGJ6Ir8MSdlh6gD4dHhzvvyGhHwfRVPKKyFQxE5lUGJFqwxJqVWqk5jzOQQ8ozlhhBkwLIXLKNRi-sY5MzqwaKEtpwQYPUb-cl_YRwkYzZWSsYmmKxLBIUdeJ2WiZyILllO2gqJnGTIdi9a5nyixrohJPMpj5zM08OLEZzPwOetkOWfhKLb-7OWlkk4U_xJuQGQDp18Me_9uwJ-jW-u94ivrVcmV30U19Vk2_LZ8FuP0A2-Oiaw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PR-FCM%3A+A+polynomial+regression-based+fuzzy+C-means+algorithm+for+attribute-associated+data&rft.jtitle=Information+sciences&rft.au=Pang%2C+Yong&rft.au=Shi%2C+Maolin&rft.au=Zhang%2C+Liyong&rft.au=Song%2C+Xueguan&rft.date=2022-03-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=585&rft.spage=209&rft.epage=231&rft_id=info:doi/10.1016%2Fj.ins.2021.11.056&rft.externalDocID=S0020025521011786 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |