A factor graph model for unsupervised feature selection
•A novel filter type unsupervised feature selection algorithm, namely, a factor graph model for unsupervised feature selection (FGUFS) is proposed.•In FGUFS, the maximal information coefficient (MIC) is used to measure the similarities between features, and a message passing algorithm developed for...
Saved in:
| Published in: | Information sciences Vol. 480; pp. 144 - 159 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.04.2019
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A novel filter type unsupervised feature selection algorithm, namely, a factor graph model for unsupervised feature selection (FGUFS) is proposed.•In FGUFS, the maximal information coefficient (MIC) is used to measure the similarities between features, and a message passing algorithm developed for the purpose is used to infer the factor graph.•Extensive experiments show the strengths of FGUFS over existing methods to achieve high clustering accuracy, RI and purity while containing few redundant features.
In this paper, a factor graph model for unsupervised feature selection (FGUFS) is proposed. FGUFS explicitly measures the similarities between features; these similarities are passed to each other as messages in the graph model. The importance score of each feature is calculated using the message-passing algorithm, and then feature selection is performed based on the final importance scores. Extensive experiments were performed on several datasets, and the results demonstrate that FGUFS outperforms other state-of-art unsupervised feature selection algorithms on several performance measures. |
|---|---|
| AbstractList | •A novel filter type unsupervised feature selection algorithm, namely, a factor graph model for unsupervised feature selection (FGUFS) is proposed.•In FGUFS, the maximal information coefficient (MIC) is used to measure the similarities between features, and a message passing algorithm developed for the purpose is used to infer the factor graph.•Extensive experiments show the strengths of FGUFS over existing methods to achieve high clustering accuracy, RI and purity while containing few redundant features.
In this paper, a factor graph model for unsupervised feature selection (FGUFS) is proposed. FGUFS explicitly measures the similarities between features; these similarities are passed to each other as messages in the graph model. The importance score of each feature is calculated using the message-passing algorithm, and then feature selection is performed based on the final importance scores. Extensive experiments were performed on several datasets, and the results demonstrate that FGUFS outperforms other state-of-art unsupervised feature selection algorithms on several performance measures. |
| Author | Zhang, Yinghui Li, Tianrui Zhang, Ji Peng, Lingxi Wang, Hongjun |
| Author_xml | – sequence: 1 givenname: Hongjun surname: Wang fullname: Wang, Hongjun email: wanghongjun@swjtu.edu.cn organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China – sequence: 2 givenname: Yinghui surname: Zhang fullname: Zhang, Yinghui organization: Software Center, Northeastern University, Shenyang 110819, China – sequence: 3 givenname: Ji surname: Zhang fullname: Zhang, Ji email: JiZhang@my.swjtu.edu.cn organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China – sequence: 4 givenname: Tianrui orcidid: 0000-0003-3550-3495 surname: Li fullname: Li, Tianrui email: trli@swjtu.edu.cn organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China – sequence: 5 givenname: Lingxi surname: Peng fullname: Peng, Lingxi email: scu.peng@gmail.com organization: School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China |
| BookMark | eNp9j01rAjEQhkOxULX9Ab3tH9jtzOxHlJ5E2loQevEeYjJpI-uuJKvQf99Ye-pBGGZ4D8_wPhMx6vqOhXhEKBCwedoVvosFAc4KpALK6kaMcSYpb2iOIzEGIMiB6vpOTGLcAUAlm2Ys5CJz2gx9yD6DPnxl-95ym7mUj108HjicfGSbOdbDMXAWuWUz-L67F7dOt5Ef_u5UbF5fNstVvv54e18u1rmhuRzyeVVrckQAGljWGl2J1mhJMi0Dhvh3bIWWts3WIVZGYmpXEvGWy6nAy1sT-hgDO3UIfq_Dt0JQZ3G1U0lcncUVkkriiZH_GOMHfS49BO3bq-TzheRkdPIcVDSeO8PWh6StbO-v0D-0Y3VM |
| CitedBy_id | crossref_primary_10_1109_JIOT_2025_3526812 crossref_primary_10_1016_j_ygeno_2020_07_027 crossref_primary_10_1016_j_ins_2020_09_022 crossref_primary_10_1016_j_knosys_2022_109884 crossref_primary_10_1186_s40537_020_00352_3 crossref_primary_10_1186_s40537_021_00477_z crossref_primary_10_1016_j_ins_2021_02_035 crossref_primary_10_1016_j_ins_2021_04_083 crossref_primary_10_1016_j_compbiomed_2022_105766 crossref_primary_10_1016_j_artmed_2021_102228 crossref_primary_10_1016_j_knosys_2020_105516 crossref_primary_10_1016_j_eswa_2023_122548 crossref_primary_10_1016_j_ins_2024_120121 crossref_primary_10_1007_s13042_020_01180_w crossref_primary_10_1016_j_ins_2020_02_070 crossref_primary_10_1007_s11227_023_05138_x crossref_primary_10_1016_j_ins_2022_12_105 crossref_primary_10_1109_TKDE_2023_3266595 crossref_primary_10_1007_s13042_022_01618_3 crossref_primary_10_1016_j_cose_2020_102062 crossref_primary_10_1016_j_asoc_2022_109715 crossref_primary_10_1016_j_engappai_2021_104210 crossref_primary_10_1016_j_isci_2024_111270 crossref_primary_10_1016_j_knosys_2021_107595 crossref_primary_10_1016_j_ins_2022_11_156 crossref_primary_10_1016_j_cja_2021_09_001 crossref_primary_10_1007_s10489_024_05604_w crossref_primary_10_1016_j_ins_2022_12_036 |
| Cites_doi | 10.1023/A:1025667309714 10.1137/1.9781611972771.75 10.1109/TKDE.2015.2493537 10.1016/j.knosys.2015.12.006 10.1609/aaai.v24i1.7671 10.1109/TNNLS.2014.2314123 10.1145/301250.301257 10.1109/ICCEE.2008.38 10.1007/s10994-016-5570-z 10.1109/34.990133 10.1145/1273496.1273641 10.1109/TCBB.2016.2631164 10.1109/LGRS.2016.2645710 10.1016/j.ins.2009.12.010 10.1609/aaai.v29i1.9211 10.1126/science.1205438 10.1109/TKDE.2015.2455509 10.1109/TIT.2005.850085 10.1126/science.1136800 10.1145/1273496.1273600 10.1609/aaai.v30i1.10168 10.1093/bioinformatics/bth267 10.1145/2499907.2499909 10.1109/TPAMI.2005.159 10.1109/TCBB.2008.35 10.1109/TPAMI.2004.71 10.1016/j.eswa.2015.08.050 10.1109/IJCNN.2014.6889514 10.1016/j.procs.2013.05.011 10.1007/978-3-642-24800-9_24 10.1126/science.1127647 10.1109/ICDM.2015.80 10.1109/TNN.2010.2047114 10.1145/1835804.1835848 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. |
| Copyright_xml | – notice: 2018 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2018.12.034 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 159 |
| ExternalDocumentID | 10_1016_j_ins_2018_12_034 S0020025518309861 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-945a2f2200a0e75a1f31dca727ca7c0c2ec2ec2d41d2b6bf114c71000322ebe3 |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459644700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 18 21:12:34 EST 2025 Sat Nov 29 06:25:08 EST 2025 Fri Feb 23 02:33:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Feature selection Factor graph Message-passing algorithm Unsupervised learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-945a2f2200a0e75a1f31dca727ca7c0c2ec2ec2d41d2b6bf114c71000322ebe3 |
| ORCID | 0000-0003-3550-3495 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2018_12_034 crossref_citationtrail_10_1016_j_ins_2018_12_034 elsevier_sciencedirect_doi_10_1016_j_ins_2018_12_034 |
| PublicationCentury | 2000 |
| PublicationDate | April 2019 2019-04-00 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, pp. 333–342. J. Sun, A. Zhou, Unsupervised robust Bayesian feature selection, in: Proceedings of the International Joint Conference on Neural Networks, 2014, pp. 558–564. Z. Zhao, H. Liu, Semi-supervised feature selection via spectral analysis, in: Proceedings of the 7th SIAM International Conference on Data Mining, SIAM, 2007, pp. 641–646. Robnik-Šikonja, Kononenko (bib0031) 2003; 53 Yedidia, Freeman, Weiss (bib0042) 2005; 51 Frey, Dueck (bib0006) 2007; 315 Tao, Zhang, Ogihara (bib0034) 2004; 20 Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th International Conference on Machine Learning, ACM, 2007, pp. 1151–1157. M. He, Research on feature selection algorithm based on mixed model, in: Proceedings of the IEEE International Conference on Computer and Electrical Engineering, IEEE, 2008, pp. 70–72. M.H. Law, A.K. Jain, M.A.T. Figueiredo, Feature selection in mixture-based clustering, in: Proceedings of the Advances in Neural Information Processing Systems, 2002, pp. 625–632. Yang, Lyu, King (bib0040) 2013; 7 Ma, Li, Gao (bib0025) 2017; 14 S. Wang, J. Tang, H. Liu, Embedded unsupervised feature selection, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 470–476. Luo, Nie, Chang, Yang, Hauptmann, Zheng (bib0024) 2018 Q. Gu, M. Danilevsky, Z. Li, J. Han, Laplacian score for feature selection, in: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 2012, pp. 477–485. Hall (bib0014) 1999 Mitra, Murthy, Pal (bib0026) 2002; 24 Zhao, He, Cai, Zhang, Ng, Zhuang (bib0048) 2016; 28 Z. Zhao, L. Wang, H. Liu, Efficient spectral feature selection with minimum redundancy, in: Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010, pp. 673–678. García, Fernández, Luengo, Herrera (bib0008) 2010; 180 L. Song, A. Smola, A. Gretton, K.M. Borgwardt, J. Bedo, Supervised feature selection via dependence estimation, in: Proceedings of the 24th International Conference on Machine Learning, ACM, 2007, pp. 823–830. Yu, Liu (bib0043) 2004; 5 Hela, Yacine, Maria, Thierry, Emmanuel, Stphane (bib0018) 2016; 237 Peng, Long, Ding (bib0029) 2005; 27 Mocanu, Mocanu, Nguyen, Gibescu, Liotta (bib0027) 2016; 104 Zhao, Deng, Shi (bib0044) 2013; 17 Xu, King, Lyu, Jin (bib0039) 2010; 21 Han, Yang, Yan, Ma, Sebe, Zhou (bib0015) 2015; 26 X. He, D. Cai, P. Niyogi, Locality preserving feature learning, in: Proceedings of the Advances in Neural Information Processing Systems, 2005, pp. 507–514. Y. Yang, H.T. Shen, Z. Ma, Z. Huang, X. Zhou, L 2, 1-norm regularized discriminative feature selection for unsupervised learning, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence-Volume Volume Two, AAAI Press, 2011, pp. 1589–1594. Dy, Brodley (bib0005) 2004; 5 Reshef, Reshef, Finucane, Grossman, McVean, Turnbaugh, Lander, Mitzenmacher, Sabeti (bib0030) 2011; 334 García, Luengo, Herrera (bib0010) 2015 M. Charikar, S. Guha, É. Tardos, D.B. Shmoys, A constant-factor approximation algorithm for the Hinton, Salakhutdinov (bib0019) 2006; 313 Brown, Pocock, Zhao, Luján (bib0002) 2012; 13 median problem, in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, ACM, 1999, pp. 1–10. García, Luengo, Herrera (bib0009) 2016; 98 Y. Guan, J.G. Dy, M.I. Jordan, A unified probabilistic model for global and local unsupervised feature selection, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 1073–1080. Gui, Sun, Ji, Tao, Tan (bib0013) 2016; PP D. Wang, H. Zhang, R. Liu, Gs-orthogonalization based “basis feature” selection from word co-occurrence matrix, in: Proceedings of the IEEE International Conference on Data Mining, 2016, pp. 1027–1032. Gangeh, Zarkoob, Ghodsi (bib0007) 2017; 14 Banerjee, Pal (bib0001) 2015; 27 G. Lastra, O. Luaces, J.R. Quevedo, A. Bahamonde, Graphical feature selection for multilabel classiffication tasks, in: Proceedings of the International Symposium on Intelligent Data Analysis, 2011, pp. 246–257. Zhu, Wang, Yu, Li, Gong (bib0049) 2010; 7 Hou, Nie, Li, Yi, Wu (bib0020) 2017; 44 Uysal (bib0035) 2016; 43 Law, Figueiredo, Jain (bib0023) 2004; 26 F. Nie, W. Zhu, X. Li, Unsupervised feature selection with structured graph optimization, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 1302–1308. Weston, Elisseeff, Schölkopf, Tipping (bib0038) 2003; 3 Hela (10.1016/j.ins.2018.12.034_bib0018) 2016; 237 10.1016/j.ins.2018.12.034_bib0021 10.1016/j.ins.2018.12.034_bib0022 10.1016/j.ins.2018.12.034_bib0028 Zhao (10.1016/j.ins.2018.12.034_bib0044) 2013; 17 Law (10.1016/j.ins.2018.12.034_bib0023) 2004; 26 Hinton (10.1016/j.ins.2018.12.034_bib0019) 2006; 313 Peng (10.1016/j.ins.2018.12.034_bib0029) 2005; 27 Reshef (10.1016/j.ins.2018.12.034_bib0030) 2011; 334 Zhao (10.1016/j.ins.2018.12.034_bib0048) 2016; 28 Frey (10.1016/j.ins.2018.12.034_bib0006) 2007; 315 Hall (10.1016/j.ins.2018.12.034_bib0014) 1999 Gangeh (10.1016/j.ins.2018.12.034_bib0007) 2017; 14 10.1016/j.ins.2018.12.034_bib0032 10.1016/j.ins.2018.12.034_bib0033 Weston (10.1016/j.ins.2018.12.034_bib0038) 2003; 3 10.1016/j.ins.2018.12.034_bib0036 10.1016/j.ins.2018.12.034_bib0037 García (10.1016/j.ins.2018.12.034_bib0008) 2010; 180 Xu (10.1016/j.ins.2018.12.034_bib0039) 2010; 21 Mitra (10.1016/j.ins.2018.12.034_bib0026) 2002; 24 Yang (10.1016/j.ins.2018.12.034_bib0040) 2013; 7 García (10.1016/j.ins.2018.12.034_bib0010) 2015 Mocanu (10.1016/j.ins.2018.12.034_bib0027) 2016; 104 10.1016/j.ins.2018.12.034_bib0045 Luo (10.1016/j.ins.2018.12.034_bib0024) 2018 10.1016/j.ins.2018.12.034_bib0046 10.1016/j.ins.2018.12.034_bib0003 10.1016/j.ins.2018.12.034_bib0047 10.1016/j.ins.2018.12.034_bib0004 García (10.1016/j.ins.2018.12.034_bib0009) 2016; 98 10.1016/j.ins.2018.12.034_bib0041 Uysal (10.1016/j.ins.2018.12.034_bib0035) 2016; 43 Yedidia (10.1016/j.ins.2018.12.034_bib0042) 2005; 51 Yu (10.1016/j.ins.2018.12.034_bib0043) 2004; 5 Robnik-Šikonja (10.1016/j.ins.2018.12.034_bib0031) 2003; 53 Dy (10.1016/j.ins.2018.12.034_bib0005) 2004; 5 10.1016/j.ins.2018.12.034_bib0012 10.1016/j.ins.2018.12.034_bib0011 10.1016/j.ins.2018.12.034_bib0016 10.1016/j.ins.2018.12.034_bib0017 Ma (10.1016/j.ins.2018.12.034_bib0025) 2017; 14 Tao (10.1016/j.ins.2018.12.034_bib0034) 2004; 20 Zhu (10.1016/j.ins.2018.12.034_bib0049) 2010; 7 Brown (10.1016/j.ins.2018.12.034_bib0002) 2012; 13 Han (10.1016/j.ins.2018.12.034_bib0015) 2015; 26 Gui (10.1016/j.ins.2018.12.034_bib0013) 2016; PP Hou (10.1016/j.ins.2018.12.034_bib0020) 2017; 44 Banerjee (10.1016/j.ins.2018.12.034_bib0001) 2015; 27 |
| References_xml | – volume: 7 start-page: 25 year: 2010 end-page: 36 ident: bib0049 article-title: Feature selection for gene expression using model-based entropy publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 5 start-page: 1205 year: 2004 end-page: 1224 ident: bib0043 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. – reference: Z. Zhao, H. Liu, Semi-supervised feature selection via spectral analysis, in: Proceedings of the 7th SIAM International Conference on Data Mining, SIAM, 2007, pp. 641–646. – reference: M.H. Law, A.K. Jain, M.A.T. Figueiredo, Feature selection in mixture-based clustering, in: Proceedings of the Advances in Neural Information Processing Systems, 2002, pp. 625–632. – reference: F. Nie, W. Zhu, X. Li, Unsupervised feature selection with structured graph optimization, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 1302–1308. – volume: 14 start-page: 409 year: 2017 end-page: 413 ident: bib0025 article-title: A novel wrapper approach for feature selection in object-based image classification using polygon-based cross-validation publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 26 start-page: 252 year: 2015 ident: bib0015 article-title: Semisupervised feature selection via spline regression for video semantic recognition publication-title: IEEE Trans. Neural Netw. Learn Syst. – reference: G. Lastra, O. Luaces, J.R. Quevedo, A. Bahamonde, Graphical feature selection for multilabel classiffication tasks, in: Proceedings of the International Symposium on Intelligent Data Analysis, 2011, pp. 246–257. – volume: 334 start-page: 1518 year: 2011 end-page: 1524 ident: bib0030 article-title: Detecting novel associations in large data sets publication-title: Science – volume: 13 start-page: 27 year: 2012 end-page: 66 ident: bib0002 article-title: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection publication-title: J. Mach. Learn. Res. – volume: 44 start-page: 793 year: 2017 end-page: 804 ident: bib0020 article-title: Joint embedding learning and sparse regression: a framework for unsupervised feature selection. publication-title: IEEE Trans. Cybern. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib0019 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – year: 1999 ident: bib0014 publication-title: Correlation-based feature selection for machine learning – volume: PP start-page: 1 year: 2016 end-page: 18 ident: bib0013 article-title: Feature selection based on structured sparsity: a comprehensive study publication-title: IEEE Trans. Neural Netw. Learn Syst. – volume: 315 start-page: 972 year: 2007 end-page: 976 ident: bib0006 article-title: Clustering by passing messages between data points publication-title: Science – volume: 104 start-page: 243 year: 2016 end-page: 270 ident: bib0027 article-title: A topological insight into restricted Boltzmann machines publication-title: Mach. Learn. – volume: 53 start-page: 23 year: 2003 end-page: 69 ident: bib0031 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Mach. Learn. – volume: 20 start-page: 2429 year: 2004 end-page: 2437 ident: bib0034 article-title: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression publication-title: Bioinformatics – volume: 28 start-page: 689 year: 2016 end-page: 700 ident: bib0048 article-title: Graph regularized feature selection with data reconstruction publication-title: IEEE Trans. Knowl. Data Eng. – reference: D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, pp. 333–342. – reference: M. He, Research on feature selection algorithm based on mixed model, in: Proceedings of the IEEE International Conference on Computer and Electrical Engineering, IEEE, 2008, pp. 70–72. – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: bib0029 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: M. Charikar, S. Guha, É. Tardos, D.B. Shmoys, A constant-factor approximation algorithm for the – volume: 43 start-page: 82 year: 2016 end-page: 92 ident: bib0035 article-title: An improved global feature selection scheme for text classification publication-title: Expert Syst. Appl. – volume: 98 start-page: 1 year: 2016 end-page: 29 ident: bib0009 article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining publication-title: Knowl. Based Syst. – volume: 51 start-page: 2282 year: 2005 end-page: 2312 ident: bib0042 article-title: Constructing free-energy approximations and generalized belief propagation algorithms publication-title: IEEE Trans. Inf. Theory – reference: X. He, D. Cai, P. Niyogi, Locality preserving feature learning, in: Proceedings of the Advances in Neural Information Processing Systems, 2005, pp. 507–514. – volume: 237 start-page: 79 year: 2016 end-page: 91 ident: bib0018 article-title: Wood moisture content prediction using feature selection techniques and a kernel method publication-title: Neurocomputing – reference: Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th International Conference on Machine Learning, ACM, 2007, pp. 1151–1157. – volume: 27 start-page: 3390 year: 2015 end-page: 3403 ident: bib0001 article-title: Unsupervised feature selection with controlled redundancy (UFeSCoR) publication-title: IEEE Trans. Knowl. Data Eng. – reference: Z. Zhao, L. Wang, H. Liu, Efficient spectral feature selection with minimum redundancy, in: Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010, pp. 673–678. – volume: 24 start-page: 301 year: 2002 end-page: 312 ident: bib0026 article-title: Unsupervised feature selection using feature similarity publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Q. Gu, M. Danilevsky, Z. Li, J. Han, Laplacian score for feature selection, in: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 2012, pp. 477–485. – volume: 7 start-page: 1 year: 2013 end-page: 27 ident: bib0040 article-title: Efficient online learning for multitask feature selection publication-title: ACM Trans. Knowl. Discov. Data – volume: 180 start-page: 2044 year: 2010 end-page: 2064 ident: bib0008 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power publication-title: Inf. Sci. (Ny) – reference: L. Song, A. Smola, A. Gretton, K.M. Borgwardt, J. Bedo, Supervised feature selection via dependence estimation, in: Proceedings of the 24th International Conference on Machine Learning, ACM, 2007, pp. 823–830. – reference: D. Wang, H. Zhang, R. Liu, Gs-orthogonalization based “basis feature” selection from word co-occurrence matrix, in: Proceedings of the IEEE International Conference on Data Mining, 2016, pp. 1027–1032. – reference: S. Wang, J. Tang, H. Liu, Embedded unsupervised feature selection, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 470–476. – volume: 3 start-page: 1439 year: 2003 end-page: 1461 ident: bib0038 article-title: Use of the zero norm with linear models and kernel methods publication-title: J. Mach. Learn. Res. – reference: Y. Yang, H.T. Shen, Z. Ma, Z. Huang, X. Zhou, L 2, 1-norm regularized discriminative feature selection for unsupervised learning, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence-Volume Volume Two, AAAI Press, 2011, pp. 1589–1594. – volume: 14 start-page: 167 year: 2017 end-page: 181 ident: bib0007 article-title: Fast and scalable feature selection for gene expression data using hilbert-schmidt independence criterion publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 17 start-page: 70 year: 2013 end-page: 79 ident: bib0044 article-title: Feature selection with attributes clustering by maximal information coefficient publication-title: Proced. Comput. Sci. – volume: 5 start-page: 845 year: 2004 end-page: 889 ident: bib0005 article-title: Feature selection for unsupervised learning publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2018 end-page: 13 ident: bib0024 article-title: Adaptive unsupervised feature selection with structure regularization publication-title: IEEE Trans. Neural Netw. Learn Syst. – reference: Y. Guan, J.G. Dy, M.I. Jordan, A unified probabilistic model for global and local unsupervised feature selection, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 1073–1080. – reference: -median problem, in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, ACM, 1999, pp. 1–10. – volume: 26 start-page: 1154 year: 2004 end-page: 1166 ident: bib0023 article-title: Simultaneous feature selection and clustering using mixture models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 21 start-page: 1033 year: 2010 end-page: 1047 ident: bib0039 article-title: Discriminative semi-supervised feature selection via manifold regularization publication-title: IEEE Trans. Neural Netw. – year: 2015 ident: bib0010 article-title: Data Preprocessing in Data Mining – reference: J. Sun, A. Zhou, Unsupervised robust Bayesian feature selection, in: Proceedings of the International Joint Conference on Neural Networks, 2014, pp. 558–564. – volume: 13 start-page: 27 issue: 1 year: 2012 ident: 10.1016/j.ins.2018.12.034_bib0002 article-title: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection publication-title: J. Mach. Learn. Res. – volume: 53 start-page: 23 issue: 1 year: 2003 ident: 10.1016/j.ins.2018.12.034_bib0031 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Mach. Learn. doi: 10.1023/A:1025667309714 – ident: 10.1016/j.ins.2018.12.034_bib0045 doi: 10.1137/1.9781611972771.75 – start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.ins.2018.12.034_bib0024 article-title: Adaptive unsupervised feature selection with structure regularization publication-title: IEEE Trans. Neural Netw. Learn Syst. – volume: 28 start-page: 689 issue: 3 year: 2016 ident: 10.1016/j.ins.2018.12.034_bib0048 article-title: Graph regularized feature selection with data reconstruction publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2493537 – volume: 98 start-page: 1 year: 2016 ident: 10.1016/j.ins.2018.12.034_bib0009 article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.12.006 – volume: 44 start-page: 793 issue: 6 year: 2017 ident: 10.1016/j.ins.2018.12.034_bib0020 article-title: Joint embedding learning and sparse regression: a framework for unsupervised feature selection. publication-title: IEEE Trans. Cybern. – volume: 5 start-page: 1205 issue: 12 year: 2004 ident: 10.1016/j.ins.2018.12.034_bib0043 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.ins.2018.12.034_bib0047 doi: 10.1609/aaai.v24i1.7671 – year: 2015 ident: 10.1016/j.ins.2018.12.034_bib0010 – volume: 5 start-page: 845 issue: 4 year: 2004 ident: 10.1016/j.ins.2018.12.034_bib0005 article-title: Feature selection for unsupervised learning publication-title: J. Mach. Learn. Res. – volume: 26 start-page: 252 issue: 2 year: 2015 ident: 10.1016/j.ins.2018.12.034_bib0015 article-title: Semisupervised feature selection via spline regression for video semantic recognition publication-title: IEEE Trans. Neural Netw. Learn Syst. doi: 10.1109/TNNLS.2014.2314123 – ident: 10.1016/j.ins.2018.12.034_bib0004 doi: 10.1145/301250.301257 – ident: 10.1016/j.ins.2018.12.034_bib0016 doi: 10.1109/ICCEE.2008.38 – volume: 104 start-page: 243 issue: 2–3 year: 2016 ident: 10.1016/j.ins.2018.12.034_bib0027 article-title: A topological insight into restricted Boltzmann machines publication-title: Mach. Learn. doi: 10.1007/s10994-016-5570-z – year: 1999 ident: 10.1016/j.ins.2018.12.034_bib0014 – volume: 24 start-page: 301 issue: 3 year: 2002 ident: 10.1016/j.ins.2018.12.034_bib0026 article-title: Unsupervised feature selection using feature similarity publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.990133 – ident: 10.1016/j.ins.2018.12.034_bib0046 doi: 10.1145/1273496.1273641 – ident: 10.1016/j.ins.2018.12.034_bib0017 – volume: 14 start-page: 167 issue: 1 year: 2017 ident: 10.1016/j.ins.2018.12.034_bib0007 article-title: Fast and scalable feature selection for gene expression data using hilbert-schmidt independence criterion publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2016.2631164 – volume: 237 start-page: 79 year: 2016 ident: 10.1016/j.ins.2018.12.034_bib0018 article-title: Wood moisture content prediction using feature selection techniques and a kernel method publication-title: Neurocomputing – volume: 14 start-page: 409 issue: 3 year: 2017 ident: 10.1016/j.ins.2018.12.034_bib0025 article-title: A novel wrapper approach for feature selection in object-based image classification using polygon-based cross-validation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2645710 – volume: 3 start-page: 1439 year: 2003 ident: 10.1016/j.ins.2018.12.034_bib0038 article-title: Use of the zero norm with linear models and kernel methods publication-title: J. Mach. Learn. Res. – volume: 180 start-page: 2044 issue: 10 year: 2010 ident: 10.1016/j.ins.2018.12.034_bib0008 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2009.12.010 – volume: PP start-page: 1 issue: 99 year: 2016 ident: 10.1016/j.ins.2018.12.034_bib0013 article-title: Feature selection based on structured sparsity: a comprehensive study publication-title: IEEE Trans. Neural Netw. Learn Syst. – ident: 10.1016/j.ins.2018.12.034_bib0012 – ident: 10.1016/j.ins.2018.12.034_bib0037 doi: 10.1609/aaai.v29i1.9211 – volume: 334 start-page: 1518 issue: 6062 year: 2011 ident: 10.1016/j.ins.2018.12.034_bib0030 article-title: Detecting novel associations in large data sets publication-title: Science doi: 10.1126/science.1205438 – volume: 27 start-page: 3390 issue: 12 year: 2015 ident: 10.1016/j.ins.2018.12.034_bib0001 article-title: Unsupervised feature selection with controlled redundancy (UFeSCoR) publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2455509 – ident: 10.1016/j.ins.2018.12.034_bib0022 – volume: 51 start-page: 2282 issue: 7 year: 2005 ident: 10.1016/j.ins.2018.12.034_bib0042 article-title: Constructing free-energy approximations and generalized belief propagation algorithms publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.850085 – volume: 315 start-page: 972 issue: 5814 year: 2007 ident: 10.1016/j.ins.2018.12.034_bib0006 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – ident: 10.1016/j.ins.2018.12.034_bib0032 doi: 10.1145/1273496.1273600 – ident: 10.1016/j.ins.2018.12.034_bib0028 doi: 10.1609/aaai.v30i1.10168 – ident: 10.1016/j.ins.2018.12.034_bib0041 – volume: 20 start-page: 2429 issue: 15 year: 2004 ident: 10.1016/j.ins.2018.12.034_bib0034 article-title: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth267 – volume: 7 start-page: 1 issue: 2 year: 2013 ident: 10.1016/j.ins.2018.12.034_bib0040 article-title: Efficient online learning for multitask feature selection publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/2499907.2499909 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.ins.2018.12.034_bib0029 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – ident: 10.1016/j.ins.2018.12.034_bib0011 – volume: 7 start-page: 25 issue: 1 year: 2010 ident: 10.1016/j.ins.2018.12.034_bib0049 article-title: Feature selection for gene expression using model-based entropy publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2008.35 – volume: 26 start-page: 1154 issue: 9 year: 2004 ident: 10.1016/j.ins.2018.12.034_bib0023 article-title: Simultaneous feature selection and clustering using mixture models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.71 – volume: 43 start-page: 82 issue: C year: 2016 ident: 10.1016/j.ins.2018.12.034_bib0035 article-title: An improved global feature selection scheme for text classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.08.050 – ident: 10.1016/j.ins.2018.12.034_bib0033 doi: 10.1109/IJCNN.2014.6889514 – volume: 17 start-page: 70 issue: 2 year: 2013 ident: 10.1016/j.ins.2018.12.034_bib0044 article-title: Feature selection with attributes clustering by maximal information coefficient publication-title: Proced. Comput. Sci. doi: 10.1016/j.procs.2013.05.011 – ident: 10.1016/j.ins.2018.12.034_bib0021 doi: 10.1007/978-3-642-24800-9_24 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.ins.2018.12.034_bib0019 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: 10.1016/j.ins.2018.12.034_bib0036 doi: 10.1109/ICDM.2015.80 – volume: 21 start-page: 1033 issue: 7 year: 2010 ident: 10.1016/j.ins.2018.12.034_bib0039 article-title: Discriminative semi-supervised feature selection via manifold regularization publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2047114 – ident: 10.1016/j.ins.2018.12.034_bib0003 doi: 10.1145/1835804.1835848 |
| SSID | ssj0004766 |
| Score | 2.442369 |
| Snippet | •A novel filter type unsupervised feature selection algorithm, namely, a factor graph model for unsupervised feature selection (FGUFS) is proposed.•In FGUFS,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 144 |
| SubjectTerms | Factor graph Feature selection Message-passing algorithm Unsupervised learning |
| Title | A factor graph model for unsupervised feature selection |
| URI | https://dx.doi.org/10.1016/j.ins.2018.12.034 |
| Volume | 480 |
| WOSCitedRecordID | wos000459644700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_Oqw_6ULQq1lrJg_jgsbDZ5i6bx0MqtUgRPPB8WpJsoneU7XF3W_rnO5uvrq0V-yAsYQnZ7Mf8MpmZnQ-At1QyXlvLslrpImNW5ZmsDcsU42OpdS2Vka7YBD87K-dz8WUw-BpjYS7PedOUV1di9V9JjX1I7C509h7kTpNiB54j0bFFsmP7T4Sfhho6I5eL2pe6cc6EbbNpVx1r2KCQaY3L6DnauDo4kTjL6NeeYhpHYYtMove3YGA-uWh-LNsErWR4_o574c92cav_NHV9XniQyGYdxgWrAxU9Z5UYBZBnnT7S56TMF2UKvJD6xI5hW6U-8fctju2NB0tUM7rk6bR0xtlg3_wtO_aNXSv5EkY3tWWFU1TdFBUtKpziAewUfCzKIexMPx3PT6_DZbn_hR1fIf7sdm5_N57jz-JKTwSZPYHdoDuQqaf5UxiYZg8e9zJK7sFhiEMh70iPiCRw8GfAp8Sjgzh0EIcOggNJHx0koIMkdDyH2cfj2YeTLNTOyHQh-DYTbCwLW-DCkLnBZUftEa21RGkVG53rwrijZrQu1ERZVIt1l-gpRwaP6_roBQybi8a8BKInggtluTKoWddWCIsaKerZE5T8SyPVPuTxC1U65JXvypucV3dSZh_ep0tWPqnK3waz-NmrAHkv7VUIobsve3WfexzAo2uQv4bhdt2aQ3ioL7eLzfpNwM8vL2SDQQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+factor+graph+model+for+unsupervised+feature+selection&rft.jtitle=Information+sciences&rft.au=Wang%2C+Hongjun&rft.au=Zhang%2C+Yinghui&rft.au=Zhang%2C+Ji&rft.au=Li%2C+Tianrui&rft.date=2019-04-01&rft.issn=0020-0255&rft.volume=480&rft.spage=144&rft.epage=159&rft_id=info:doi/10.1016%2Fj.ins.2018.12.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2018_12_034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |