A polynomial-time approximation scheme for parallel two-stage flowshops under makespan constraint

As a hybrid of the Parallel Two-stage Flowshop problem and the Multiple Knapsack problem, we investigate the scheduling of parallel two-stage flowshops under makespan constraint, which was motivated by applications in cloud computing and introduced by Chen et al. [3] recently. A set of two-stage job...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science Vol. 922; pp. 438 - 446
Main Authors: Tong, Weitian, Xu, Yao, Zhang, Huili
Format: Journal Article
Language:English
Published: Elsevier B.V 24.06.2022
Subjects:
ISSN:0304-3975, 1879-2294
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As a hybrid of the Parallel Two-stage Flowshop problem and the Multiple Knapsack problem, we investigate the scheduling of parallel two-stage flowshops under makespan constraint, which was motivated by applications in cloud computing and introduced by Chen et al. [3] recently. A set of two-stage jobs are selected and scheduled on parallel two-stage flowshops to achieve the maximum total profit while maintaining the given makespan constraint. We give a positive answer to an open question about its approximability proposed by Chen et al. [3]. More specifically, based on guessing strategies and rounding techniques for linear programs, we present a polynomial time approximation scheme (PTAS) for the case when the number of flowshops is a fixed constant. As the case with two flowshops is already strongly NP-hard, our PTAS achieves the best possible approximation ratio.
AbstractList As a hybrid of the Parallel Two-stage Flowshop problem and the Multiple Knapsack problem, we investigate the scheduling of parallel two-stage flowshops under makespan constraint, which was motivated by applications in cloud computing and introduced by Chen et al. [3] recently. A set of two-stage jobs are selected and scheduled on parallel two-stage flowshops to achieve the maximum total profit while maintaining the given makespan constraint. We give a positive answer to an open question about its approximability proposed by Chen et al. [3]. More specifically, based on guessing strategies and rounding techniques for linear programs, we present a polynomial time approximation scheme (PTAS) for the case when the number of flowshops is a fixed constant. As the case with two flowshops is already strongly NP-hard, our PTAS achieves the best possible approximation ratio.
Author Tong, Weitian
Xu, Yao
Zhang, Huili
Author_xml – sequence: 1
  givenname: Weitian
  orcidid: 0000-0002-9815-2330
  surname: Tong
  fullname: Tong, Weitian
  email: wtong.research@gmail.com
  organization: Department of Computer Science, Georgia Southern University, Statesboro, GA 30458, USA
– sequence: 2
  givenname: Yao
  surname: Xu
  fullname: Xu, Yao
  email: yxu@georgiasouthern.edu
  organization: Department of Computer Science, Georgia Southern University, Statesboro, GA 30458, USA
– sequence: 3
  givenname: Huili
  surname: Zhang
  fullname: Zhang, Huili
  email: zhang.huilims@xjtu.edu.cn
  organization: School of Management, Xi'an Jiaotong University; and State Key Lab for Manufacturing Systems Engineering, Xi'an 710049, China
BookMark eNp9kF9LwzAUxYMouE0_gG_5Aq1JmjYtPo3hPxj4os_hNk1dZpuUJDr37c2cTz7scuDCgd_lnjNH59ZZjdANJTkltLrd5lGFnBHGcsKT-Bma0Vo0GWMNP0czUhCeFY0oL9E8hC1JU4pqhmCJJzfsrRsNDFk0o8YwTd59mxGicRYHtdHJ7J3HE3gYBj3guHNZiPCe7MHtwsZNAX_aTns8wocOE1isnA3Rg7HxCl30MAR9_bcX6O3h_nX1lK1fHp9Xy3WmWCNiVvdEVKIVrONtz4ueKg5NA4SRjoJSNRM6WW3V8q4XbcfauiorKIGVlWC8LIoFose7yrsQvO7l5FMIv5eUyENHcitTR_LQkSQ8iSdG_GOUib-5D78PJ8m7I6lTpC-jvQzKaKt0Z7xWUXbOnKB_AFcDhgo
CitedBy_id crossref_primary_10_1016_j_cor_2024_106850
crossref_primary_10_1007_s10878_024_01107_z
Cites_doi 10.1137/S0097539700382820
10.1016/j.tcs.2016.04.046
10.1016/j.mcm.2004.12.016
10.1016/S0021-9800(69)80045-1
10.1016/j.tcs.2018.04.017
10.1145/321906.321909
10.1002/nav.3800010110
10.1016/j.tcs.2017.09.018
10.1016/j.tcs.2019.01.017
10.1016/j.tcs.2018.04.005
10.1137/080731207
10.1080/07408179608966258
10.1016/j.tcs.2019.08.028
10.1080/07408170008967427
10.1016/S0377-0427(00)00433-7
10.1016/j.ejor.2011.08.007
10.1016/j.ejor.2019.08.019
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2022.04.044
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 446
ExternalDocumentID 10_1016_j_tcs_2022_04_044
S0304397522002699
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SEW
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-8f0767b72d4bf43f1c4a99a020d1acc827e1c4b6b4df7bd2b8656a5a256724533
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000850360300033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Tue Nov 18 22:26:11 EST 2025
Sat Nov 29 07:21:08 EST 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiple knapsacks
Rounding
Polynomial-time approximation scheme
Makespan constraint
Parallel two-stage flowshops
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-8f0767b72d4bf43f1c4a99a020d1acc827e1c4b6b4df7bd2b8656a5a256724533
ORCID 0000-0002-9815-2330
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_tcs_2022_04_044
crossref_citationtrail_10_1016_j_tcs_2022_04_044
elsevier_sciencedirect_doi_10_1016_j_tcs_2022_04_044
PublicationCentury 2000
PublicationDate 2022-06-24
PublicationDateYYYYMMDD 2022-06-24
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-24
  day: 24
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jansen (br0100) 2010; 39
Ibarra, Kim (br0090) 1975; 22
Lau, Ravi, Singh (br0150) 2011
Dawande, Gavirneni, Rachamadugu (br0040) 2006; 44
Potra, Wright (br0160) 2000; 124
Chen, Huang, Guo (br0030) 2021
He, Kusiak, Artiba (br0080) 1996; 28
Kellerer (br0130) 1999
Tong, Miyano, Goebel, Lin (br0180) 2018; 734
Wu, Chen, Wang (br0230) 2020; 818
Wu, Chen, Wang (br0220) 2020; 806
Rennie, Dobson (br0170) 1969; 7
Dong, Jin, Luo, Tong (br0050) 2020; 281
Dong, Tong, Luo, Wang, Hu, Xu, Lin (br0060) 2017; 657
Blazewicz, Ecker, Pesch, Schmidt, Weglarz (br0010) 2019
Johnson (br0120) 1954; 1
Zhang, Velde (br0240) 2012; 216
Chekuri, Khanna (br0020) 2005; 35
Kovalyov (br0140) 1985
Wu, Chen, Wang (br0200) 2019; 786
Garey, Johnson (br0070) 1979
Vairaktarakis, Elhafsi (br0190) 2000; 32
Jansen (br0110) 2012
Wu, Chen, Wang (br0210) 2019; 776
Jansen (10.1016/j.tcs.2022.04.044_br0110) 2012
Vairaktarakis (10.1016/j.tcs.2022.04.044_br0190) 2000; 32
Dawande (10.1016/j.tcs.2022.04.044_br0040) 2006; 44
Dong (10.1016/j.tcs.2022.04.044_br0050) 2020; 281
Rennie (10.1016/j.tcs.2022.04.044_br0170) 1969; 7
Johnson (10.1016/j.tcs.2022.04.044_br0120) 1954; 1
Chen (10.1016/j.tcs.2022.04.044_br0030) 2021
Kellerer (10.1016/j.tcs.2022.04.044_br0130) 1999
Lau (10.1016/j.tcs.2022.04.044_br0150) 2011
Tong (10.1016/j.tcs.2022.04.044_br0180) 2018; 734
Wu (10.1016/j.tcs.2022.04.044_br0210) 2019; 776
Dong (10.1016/j.tcs.2022.04.044_br0060) 2017; 657
Ibarra (10.1016/j.tcs.2022.04.044_br0090) 1975; 22
Wu (10.1016/j.tcs.2022.04.044_br0230) 2020; 818
Zhang (10.1016/j.tcs.2022.04.044_br0240) 2012; 216
Wu (10.1016/j.tcs.2022.04.044_br0220) 2020; 806
Garey (10.1016/j.tcs.2022.04.044_br0070) 1979
Kovalyov (10.1016/j.tcs.2022.04.044_br0140) 1985
Blazewicz (10.1016/j.tcs.2022.04.044_br0010) 2019
Potra (10.1016/j.tcs.2022.04.044_br0160) 2000; 124
He (10.1016/j.tcs.2022.04.044_br0080) 1996; 28
Jansen (10.1016/j.tcs.2022.04.044_br0100) 2010; 39
Chekuri (10.1016/j.tcs.2022.04.044_br0020) 2005; 35
Wu (10.1016/j.tcs.2022.04.044_br0200) 2019; 786
References_xml – volume: 39
  start-page: 1392
  year: 2010
  end-page: 1412
  ident: br0100
  article-title: Parameterized approximation scheme for the multiple knapsack problem
  publication-title: SIAM J. Comput.
– volume: 35
  start-page: 713
  year: 2005
  end-page: 728
  ident: br0020
  article-title: A polynomial time approximation scheme for the multiple knapsack problem
  publication-title: SIAM J. Comput.
– year: 1979
  ident: br0070
  article-title: Computers and Intractability, vol. 174
– volume: 776
  start-page: 117
  year: 2019
  end-page: 124
  ident: br0210
  article-title: Scheduling two-stage jobs on multiple flowshops
  publication-title: Theor. Comput. Sci.
– volume: 216
  start-page: 544
  year: 2012
  end-page: 552
  ident: br0240
  article-title: Approximation algorithms for the parallel flow shop problem
  publication-title: Eur. J. Oper. Res.
– start-page: 83
  year: 2021
  end-page: 95
  ident: br0030
  article-title: Scheduling on multiple two-stage flowshops with a deadline
  publication-title: AAIM
– volume: 28
  start-page: 129
  year: 1996
  end-page: 139
  ident: br0080
  article-title: A scheduling problem in glass manufacturing
  publication-title: IIE Trans.
– start-page: 51
  year: 1999
  end-page: 62
  ident: br0130
  article-title: A polynomial time approximation scheme for the multiple knapsack problem
  publication-title: Randomization, Approximation, and Combinatorial Optimization. Algorithms and Techniques
– volume: 734
  start-page: 24
  year: 2018
  end-page: 31
  ident: br0180
  article-title: An approximation scheme for minimizing the makespan of the parallel identical multi-stage flow-shops
  publication-title: Theor. Comput. Sci.
– volume: 1
  start-page: 61
  year: 1954
  end-page: 68
  ident: br0120
  article-title: Optimal two- and three-stage production schedules with setup times included
  publication-title: Nav. Res. Logist. Q.
– year: 2019
  ident: br0010
  article-title: Handbook on Scheduling
– year: 1985
  ident: br0140
  article-title: Efficient epsilon-approximation algorithm for minimizing the makespan in a parallel two-stage system
  publication-title: Vesti Academii Navuk Belaruskai SSR. Seria Phizika-Matematichnikh Navuk
– year: 2011
  ident: br0150
  article-title: Iterative Methods in Combinatorial Optimization, vol. 46
– volume: 7
  start-page: 116
  year: 1969
  end-page: 121
  ident: br0170
  article-title: On Stirling numbers of the second kind
  publication-title: J. Comb. Theory
– volume: 806
  start-page: 509
  year: 2020
  end-page: 515
  ident: br0220
  article-title: Improved approximation algorithms for two-stage flowshops scheduling problem
  publication-title: Theor. Comput. Sci.
– volume: 22
  start-page: 463
  year: 1975
  end-page: 468
  ident: br0090
  article-title: Fast approximation algorithms for the knapsack and sum of subset problems
  publication-title: J. ACM
– volume: 281
  start-page: 16
  year: 2020
  end-page: 24
  ident: br0050
  article-title: A polynomial-time approximation scheme for an arbitrary number of parallel two-stage flow-shops
  publication-title: Eur. J. Oper. Res.
– volume: 124
  start-page: 281
  year: 2000
  end-page: 302
  ident: br0160
  article-title: Interior-point methods
  publication-title: J. Comput. Appl. Math.
– volume: 786
  start-page: 67
  year: 2019
  end-page: 77
  ident: br0200
  article-title: On scheduling inclined jobs on multiple two-stage flowshops
  publication-title: Theor. Comput. Sci.
– start-page: 313
  year: 2012
  end-page: 324
  ident: br0110
  article-title: A fast approximation scheme for the multiple knapsack problem
  publication-title: International Conference on Current Trends in Theory and Practice of Computer Science
– volume: 32
  start-page: 687
  year: 2000
  end-page: 699
  ident: br0190
  article-title: The use of flowlines to simplify routing complexity in two-stage flowshops
  publication-title: IIE Trans.
– volume: 818
  start-page: 74
  year: 2020
  end-page: 82
  ident: br0230
  article-title: On scheduling multiple two-stage flowshops
  publication-title: Theor. Comput. Sci.
– volume: 44
  start-page: 73
  year: 2006
  end-page: 84
  ident: br0040
  article-title: Scheduling a two-stage flowshop under makespan constraint
  publication-title: Math. Comput. Model.
– volume: 657
  start-page: 64
  year: 2017
  end-page: 72
  ident: br0060
  article-title: An fptas for the parallel two-stage flowshop problem
  publication-title: Theor. Comput. Sci.
– volume: 35
  start-page: 713
  issue: 3
  year: 2005
  ident: 10.1016/j.tcs.2022.04.044_br0020
  article-title: A polynomial time approximation scheme for the multiple knapsack problem
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539700382820
– start-page: 313
  year: 2012
  ident: 10.1016/j.tcs.2022.04.044_br0110
  article-title: A fast approximation scheme for the multiple knapsack problem
– volume: 657
  start-page: 64
  year: 2017
  ident: 10.1016/j.tcs.2022.04.044_br0060
  article-title: An fptas for the parallel two-stage flowshop problem
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2016.04.046
– volume: 44
  start-page: 73
  issue: 1–2
  year: 2006
  ident: 10.1016/j.tcs.2022.04.044_br0040
  article-title: Scheduling a two-stage flowshop under makespan constraint
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2004.12.016
– volume: 7
  start-page: 116
  issue: 2
  year: 1969
  ident: 10.1016/j.tcs.2022.04.044_br0170
  article-title: On Stirling numbers of the second kind
  publication-title: J. Comb. Theory
  doi: 10.1016/S0021-9800(69)80045-1
– volume: 818
  start-page: 74
  year: 2020
  ident: 10.1016/j.tcs.2022.04.044_br0230
  article-title: On scheduling multiple two-stage flowshops
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2018.04.017
– volume: 22
  start-page: 463
  issue: 4
  year: 1975
  ident: 10.1016/j.tcs.2022.04.044_br0090
  article-title: Fast approximation algorithms for the knapsack and sum of subset problems
  publication-title: J. ACM
  doi: 10.1145/321906.321909
– year: 1979
  ident: 10.1016/j.tcs.2022.04.044_br0070
– volume: 1
  start-page: 61
  issue: 1
  year: 1954
  ident: 10.1016/j.tcs.2022.04.044_br0120
  article-title: Optimal two- and three-stage production schedules with setup times included
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800010110
– volume: 734
  start-page: 24
  year: 2018
  ident: 10.1016/j.tcs.2022.04.044_br0180
  article-title: An approximation scheme for minimizing the makespan of the parallel identical multi-stage flow-shops
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2017.09.018
– start-page: 83
  year: 2021
  ident: 10.1016/j.tcs.2022.04.044_br0030
  article-title: Scheduling on multiple two-stage flowshops with a deadline
– volume: 776
  start-page: 117
  year: 2019
  ident: 10.1016/j.tcs.2022.04.044_br0210
  article-title: Scheduling two-stage jobs on multiple flowshops
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2019.01.017
– volume: 786
  start-page: 67
  year: 2019
  ident: 10.1016/j.tcs.2022.04.044_br0200
  article-title: On scheduling inclined jobs on multiple two-stage flowshops
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2018.04.005
– volume: 39
  start-page: 1392
  issue: 4
  year: 2010
  ident: 10.1016/j.tcs.2022.04.044_br0100
  article-title: Parameterized approximation scheme for the multiple knapsack problem
  publication-title: SIAM J. Comput.
  doi: 10.1137/080731207
– year: 2011
  ident: 10.1016/j.tcs.2022.04.044_br0150
– volume: 28
  start-page: 129
  year: 1996
  ident: 10.1016/j.tcs.2022.04.044_br0080
  article-title: A scheduling problem in glass manufacturing
  publication-title: IIE Trans.
  doi: 10.1080/07408179608966258
– volume: 806
  start-page: 509
  year: 2020
  ident: 10.1016/j.tcs.2022.04.044_br0220
  article-title: Improved approximation algorithms for two-stage flowshops scheduling problem
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2019.08.028
– volume: 32
  start-page: 687
  year: 2000
  ident: 10.1016/j.tcs.2022.04.044_br0190
  article-title: The use of flowlines to simplify routing complexity in two-stage flowshops
  publication-title: IIE Trans.
  doi: 10.1080/07408170008967427
– year: 2019
  ident: 10.1016/j.tcs.2022.04.044_br0010
– start-page: 51
  year: 1999
  ident: 10.1016/j.tcs.2022.04.044_br0130
  article-title: A polynomial time approximation scheme for the multiple knapsack problem
– volume: 124
  start-page: 281
  issue: 1–2
  year: 2000
  ident: 10.1016/j.tcs.2022.04.044_br0160
  article-title: Interior-point methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00433-7
– volume: 216
  start-page: 544
  year: 2012
  ident: 10.1016/j.tcs.2022.04.044_br0240
  article-title: Approximation algorithms for the parallel flow shop problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2011.08.007
– volume: 281
  start-page: 16
  issue: 1
  year: 2020
  ident: 10.1016/j.tcs.2022.04.044_br0050
  article-title: A polynomial-time approximation scheme for an arbitrary number of parallel two-stage flow-shops
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2019.08.019
– year: 1985
  ident: 10.1016/j.tcs.2022.04.044_br0140
  article-title: Efficient epsilon-approximation algorithm for minimizing the makespan in a parallel two-stage system
SSID ssj0000576
Score 2.3770702
Snippet As a hybrid of the Parallel Two-stage Flowshop problem and the Multiple Knapsack problem, we investigate the scheduling of parallel two-stage flowshops under...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 438
SubjectTerms Makespan constraint
Multiple knapsacks
Parallel two-stage flowshops
Polynomial-time approximation scheme
Rounding
Title A polynomial-time approximation scheme for parallel two-stage flowshops under makespan constraint
URI https://dx.doi.org/10.1016/j.tcs.2022.04.044
Volume 922
WOSCitedRecordID wos000850360300033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELbKxgM8bDBAbAzkB56oMiWOW8ePFdq0IZiQKKJvkWM7LCNLqjbtyr_nHDtJ1wICJKQqqqw6tXyfz3dn33cIvSaBiihNfU8SGnrUMGsLHhAPdiJNwD7XoarZ9d-zy8toMuEfe71lkwuzzFlRRKsVn_5XUUMbCNukzv6FuNuXQgN8B6HDE8QOzz8S_MgUXvhuso1F7pnS8ZY3fJXZJMU-uLP6xlJ9G97vPNd5v7otPTATv0JzXt7Or8rpvC6QO-vfiG8alI65rG64ZkVW3Anmj9fyIKUrENF3u2oXwLb65IvOqjUwTha1-hflVuz6fJHl2Xo4AjxZf-iRLhy5nSdjc7PM-Qu3NVJOtFW1EeMACVviuNHF3CYpO21KLfGL25ipjVVu6Xwbfrg-qaShXyekpq61pJIbVNqfzDjMMIi5mjLk_B7aJWzAQRvuji5OJ--6PXzA7Cm3G3dzHl7fDNz4o59bNGtWyvgR2nPuBR5ZWDxGPV0coP2mdAd2mvwAPfzQ0vXOnyAxwhuYwXcwgy1mMGAGN5jBLWZwixlcYwY3mMEdZp6iz2en47fnnqu9AYuWs8qLUp8NWcKIoklKwzSQVHAuwLlQgZAyIkxDUzJMqEpZokgSgWMgBgIsaEYo-BDP0E5RFvo5wj68JtQhvFFKyhPFFWiNMJBpwrQSJDxEfjN_sXTE9GZsedzcQLyOYcpjM-WxT-FDD9GbtsvUsrL87se0EUrsFoA1F2NA0K-7Hf1btxfoQbcsjtFONVvol-i-XFbZfPbK4ewHxHafOQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+polynomial-time+approximation+scheme+for+parallel+two-stage+flowshops+under+makespan+constraint&rft.jtitle=Theoretical+computer+science&rft.au=Tong%2C+Weitian&rft.au=Xu%2C+Yao&rft.au=Zhang%2C+Huili&rft.date=2022-06-24&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=922&rft.spage=438&rft.epage=446&rft_id=info:doi/10.1016%2Fj.tcs.2022.04.044&rft.externalDocID=S0304397522002699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon