Crystal structural prediction of perovskite materials using machine learning: A comparative study

In this study, Machine Learning (ML) techniques have been exploited to classify the crystal structure of ABO3 perovskite compounds. In the present work, seven different ML algorithms are applied to the experimentally determined crystal structure data. The relevance of the data featured is measured b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state communications Jg. 361; S. 115062
Hauptverfasser: Priyadarshini, Rojalina, Joardar, Hillol, Bisoy, Sukant Kishoro, Badapanda, Tanmaya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.02.2023
Schlagworte:
ISSN:0038-1098
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, Machine Learning (ML) techniques have been exploited to classify the crystal structure of ABO3 perovskite compounds. In the present work, seven different ML algorithms are applied to the experimentally determined crystal structure data. The relevance of the data featured is measured by computing the Chi-Square test and Spearman's correlation matrix. The Z-Score value has been calculated for each attribute to confirm the existence of any outliers in the data. The Synthetic Minority Oversampling (SMOTE) technique is employed to overcome the imbalanced data set. The models' performance is calculated using the stratified k-Fold cross-validation method. Further, to improve the accuracy of the prediction model, the conventional algorithm is supported by boosting algorithm. Comparative model efficiency on prediction of the crystal structure is presented to identify the most suitable model. As per the inferences drawn from the observations, the ensemble model using Xtreme Gradient Boosting (XGBoost) algorithm when applied to the pre-processed and balanced data outperforms the other models. •The prediction of crystal structure of ABO3 perovskite are implemented using various Machine Learning (ML) models.•The relevance of the features is measured by computing the Chi-Square test and Spearman's correlation matrix.•The SMOTE augmentation technique is employed to overcome the imbalanced of data set.•The models' performance is accessed using stratified k-Fold cross validation method.•The parameters obtained from various model are compared and XGBoost models is found to the most stable and accurate model.
AbstractList In this study, Machine Learning (ML) techniques have been exploited to classify the crystal structure of ABO3 perovskite compounds. In the present work, seven different ML algorithms are applied to the experimentally determined crystal structure data. The relevance of the data featured is measured by computing the Chi-Square test and Spearman's correlation matrix. The Z-Score value has been calculated for each attribute to confirm the existence of any outliers in the data. The Synthetic Minority Oversampling (SMOTE) technique is employed to overcome the imbalanced data set. The models' performance is calculated using the stratified k-Fold cross-validation method. Further, to improve the accuracy of the prediction model, the conventional algorithm is supported by boosting algorithm. Comparative model efficiency on prediction of the crystal structure is presented to identify the most suitable model. As per the inferences drawn from the observations, the ensemble model using Xtreme Gradient Boosting (XGBoost) algorithm when applied to the pre-processed and balanced data outperforms the other models. •The prediction of crystal structure of ABO3 perovskite are implemented using various Machine Learning (ML) models.•The relevance of the features is measured by computing the Chi-Square test and Spearman's correlation matrix.•The SMOTE augmentation technique is employed to overcome the imbalanced of data set.•The models' performance is accessed using stratified k-Fold cross validation method.•The parameters obtained from various model are compared and XGBoost models is found to the most stable and accurate model.
ArticleNumber 115062
Author Bisoy, Sukant Kishoro
Badapanda, Tanmaya
Joardar, Hillol
Priyadarshini, Rojalina
Author_xml – sequence: 1
  givenname: Rojalina
  surname: Priyadarshini
  fullname: Priyadarshini, Rojalina
  organization: Department of Comp. Sc.& Engg, C.V.Raman Global University, Bhubaneswar, Odisha, India
– sequence: 2
  givenname: Hillol
  surname: Joardar
  fullname: Joardar, Hillol
  organization: Department of Mechanical Engineering, C.V.Raman Global University, Bhubaneswar, Odisha, India
– sequence: 3
  givenname: Sukant Kishoro
  surname: Bisoy
  fullname: Bisoy, Sukant Kishoro
  organization: Department of Comp. Sc.& Engg, C.V.Raman Global University, Bhubaneswar, Odisha, India
– sequence: 4
  givenname: Tanmaya
  surname: Badapanda
  fullname: Badapanda, Tanmaya
  email: badapanda.tanmaya@gmail.com
  organization: Department of Physics, C.V.Raman Global University, Bhubaneswar, Odisha, India
BookMark eNp9kLtOwzAUhj0UibbwAGx-gYRjJ00cmKqKm1SJBWbLsY_BJU0i26nUt8dVmRg6nYv0_dL_LcisH3ok5I5BzoBV97s8BJ1z4DxnbAUVn5E5QCEyBo24JosQdgBQi5rNidr4Y4iqoyH6ScfJp3X0aJyObujpYOmIfjiEHxeR7lVE71QX6BRc_5Vu_e16pB0q36fHA11TPexH5VV0B0yZkznekCubELz9m0vy-fz0sXnNtu8vb5v1NtO8qWMmsGWlVQ0UZc15iQYKa0RledFwUTSmbaw2UK5Eq60A0yKUXGtAUZtClGiLJanPudoPIXi0UruoTi2iV66TDOTJjtzJZEee7MiznUSyf-To3V7540Xm8cxgqnRw6GXQDnudzHnUUZrBXaB_AUuJg_0
CitedBy_id crossref_primary_10_1016_j_commatsci_2023_112583
crossref_primary_10_1016_j_jallcom_2025_182102
crossref_primary_10_1016_j_conbuildmat_2023_133377
crossref_primary_10_1016_j_aei_2025_103111
crossref_primary_10_1002_adts_202400652
crossref_primary_10_1002_ente_202300735
crossref_primary_10_1007_s42452_025_07390_7
crossref_primary_10_3390_min13060800
crossref_primary_10_3390_ma17123026
Cites_doi 10.1016/j.commatsci.2020.109618
10.1038/s41467-018-03821-9
10.1038/32348
10.1016/j.solidstatesciences.2021.106541
10.1103/PhysRev.136.B864
10.1038/srep19660
10.1038/s41524-021-00668-5
10.1126/sciadv.aay4275
10.1038/s41524-018-0085-8
10.1613/jair.1.11192
10.1016/j.optmat.2021.111259
10.1016/j.nanoen.2020.105380
10.1016/j.jeurceramsoc.2016.08.041
10.1038/srep20952
10.1080/10584589808202046
10.1016/j.cpc.2012.12.009
10.1063/5.0012154
10.1016/j.commatsci.2020.110191
10.1126/science.335.6075.1434
10.1016/j.jallcom.2021.160211
10.1016/j.cpc.2012.05.008
10.1007/978-3-030-12767-1_5
10.1021/jp000114x
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ssc.2022.115062
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
ExternalDocumentID 10_1016_j_ssc_2022_115062
S0038109822003866
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSH
SSM
SSQ
SSZ
T5K
TN5
XPP
XSW
ZMT
~02
~G-
~S-
3O-
6TJ
9DU
AAQXK
AAYWO
AAYXX
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
H~9
NDZJH
R2-
SEW
UQL
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-8eb14fa90347224ed03fd86f2392839db9fcd0458bcf80dbe042cc0e87d384ef3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000998081300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-1098
IngestDate Sat Nov 29 07:27:48 EST 2025
Tue Nov 18 22:26:13 EST 2025
Sun Apr 06 06:56:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords K-nearest neighborhood
Perovskite
XGBoost
Machine learning
Boosting algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-8eb14fa90347224ed03fd86f2392839db9fcd0458bcf80dbe042cc0e87d384ef3
ParticipantIDs crossref_citationtrail_10_1016_j_ssc_2022_115062
crossref_primary_10_1016_j_ssc_2022_115062
elsevier_sciencedirect_doi_10_1016_j_ssc_2022_115062
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Solid state communications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Adam, Stamatios-Aggelos, Alexandropoulos, Vrahatis (bib28) 2019
Millis (bib7) 1998; 392
Gosain, Sardana (bib26) 2017
Scott (bib6) 1998; 1
Han, Ma, Xu, Cao, Liu, Xu, Pei (bib8) 2021; 876
Behara, Poonawala, Thomas (bib25) 2021; 188
Zhang, Mu, Shao (bib19) December 2020; 78
Balachandran, Kowalski, Sehirlioglu, Lookman (bib13) 2018; 9
Sun (bib16) 2019; 5
Liu, Niu, Oganov (bib24) 2021; 7
Dai (bib14) 2020; 175
Chu, Albert (bib21) 2006
Hohenberg, Kohn (bib11) 1964; 136
Muller, andRoy (bib4) 1974
Zhang, Xu (bib18) March 2021; 113
Service (bib2) 2012; 335
EMRAssirey (bib1) 2019; vol. 27
Balachandran, Xue, Theiler, Hogden, andLookman (bib20) 2016; 6
Mannodi-Kanakkithodi, Pilania, Huan, Lookman, Ramprasad (bib15) 2016; 6
Fernández, Garcia, Herrera, Chawla (bib27) 2018; 61
Wang, Lv, Zhu, Ma (bib22) 2012; 183
Lyakhov, Artem, Stokes, Zhu (bib23) 2013; 184
West (bib10) 1999
Hussain (bib12) 2020; 128
Stanev (bib17) 2018; 4
Artini (bib3) 2017-02-01; 37
Kažukauskas, Janonis, Vertelis (bib9) 2021; 118
Hill (bib5) 2000; 104
Balachandran (10.1016/j.ssc.2022.115062_bib13) 2018; 9
Liu (10.1016/j.ssc.2022.115062_bib24) 2021; 7
Zhang (10.1016/j.ssc.2022.115062_bib18) 2021; 113
Hohenberg (10.1016/j.ssc.2022.115062_bib11) 1964; 136
Sun (10.1016/j.ssc.2022.115062_bib16) 2019; 5
Chu (10.1016/j.ssc.2022.115062_bib21) 2006
Muller (10.1016/j.ssc.2022.115062_bib4) 1974
Gosain (10.1016/j.ssc.2022.115062_bib26) 2017
Artini (10.1016/j.ssc.2022.115062_bib3) 2017; 37
Fernández (10.1016/j.ssc.2022.115062_bib27) 2018; 61
Han (10.1016/j.ssc.2022.115062_bib8) 2021; 876
Dai (10.1016/j.ssc.2022.115062_bib14) 2020; 175
Hussain (10.1016/j.ssc.2022.115062_bib12) 2020; 128
West (10.1016/j.ssc.2022.115062_bib10) 1999
Behara (10.1016/j.ssc.2022.115062_bib25) 2021; 188
Balachandran (10.1016/j.ssc.2022.115062_bib20) 2016; 6
Stanev (10.1016/j.ssc.2022.115062_bib17) 2018; 4
Service (10.1016/j.ssc.2022.115062_bib2) 2012; 335
Hill (10.1016/j.ssc.2022.115062_bib5) 2000; 104
Zhang (10.1016/j.ssc.2022.115062_bib19) 2020; 78
Adam (10.1016/j.ssc.2022.115062_bib28) 2019
Millis (10.1016/j.ssc.2022.115062_bib7) 1998; 392
Lyakhov (10.1016/j.ssc.2022.115062_bib23) 2013; 184
EMRAssirey (10.1016/j.ssc.2022.115062_bib1) 2019; vol. 27
Kažukauskas (10.1016/j.ssc.2022.115062_bib9) 2021; 118
Mannodi-Kanakkithodi (10.1016/j.ssc.2022.115062_bib15) 2016; 6
Wang (10.1016/j.ssc.2022.115062_bib22) 2012; 183
Scott (10.1016/j.ssc.2022.115062_bib6) 1998; 1
References_xml – volume: 183
  start-page: 2063
  year: 2012
  end-page: 2070
  ident: bib22
  article-title: CALYPSO: a method for crystal structure prediction
  publication-title: Comput. Phys. Commun.
– volume: 392
  start-page: 147
  year: 1998
  ident: bib7
  publication-title: Nature
– volume: 4
  start-page: 29
  year: 2018
  ident: bib17
  article-title: Machine learning modeling of superconducting critical temperature
  publication-title: NPJ Comput. Mater.
– start-page: 79
  year: 2017
  end-page: 85
  ident: bib26
  article-title: Handling class imbalance problem using oversampling techniques: A review
  publication-title: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India
– volume: 6
  year: 2016
  ident: bib15
  article-title: Machine learning strategy for accelerated design of polymer dielectrics
  publication-title: Sci. Rep.
– volume: 104
  start-page: 6694
  year: 2000
  ident: bib5
  publication-title: J. Phys. Chem. B
– year: 1974
  ident: bib4
  article-title: The Major Ternary Structural Families
– volume: 136
  start-page: B864
  year: 1964
  end-page: B871
  ident: bib11
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
– volume: 175
  year: 2020
  ident: bib14
  article-title: Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys
  publication-title: Comput. Mater. Sci.
– volume: 128
  year: 2020
  ident: bib12
  article-title: Monte Carlo simulation study of electron yields from compound semiconductor materials
  publication-title: J. Appl. Phys.
– start-page: 177
  year: 2006
  end-page: 198
  ident: bib21
  article-title: Parallel ant colony optimization for 3D protein structure prediction using the HP lattice model
  publication-title: Parallel Evolutionary Computations
– volume: 184
  start-page: 1172
  year: 2013
  end-page: 1182
  ident: bib23
  article-title: New developments in evolutionary structure prediction algorithm USPEX
  publication-title: Comput. Phys. Commun.
– volume: 876
  start-page: 160
  year: 2021
  end-page: 211
  ident: bib8
  article-title: Electrospinning synthesis, crystal structure, and ethylene glycol sensing properties of orthorhombic SmBO3 (B=Fe, Co) perovskites
  publication-title: J. Alloys Compd.
– start-page: 57
  year: 2019
  end-page: 82
  ident: bib28
  article-title: No free lunch theorem: a review
  publication-title: Approximat. Optimizat.
– volume: 9
  start-page: 1668
  year: 2018
  ident: bib13
  article-title: Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
  publication-title: Nat. Commun.
– volume: 78
  year: December 2020
  ident: bib19
  article-title: Machine learning for halide perovskite materials
  publication-title: Nano Energy
– volume: 118
  start-page: 111
  year: 2021
  end-page: 259
  ident: bib9
  article-title: Energy band-gap inhomogenities and defect states affecting carrier transport at low temperatures in Thallium Bromide
  publication-title: Opt. Mater.
– volume: 7
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib24
  article-title: COPEX: co-evolutionary crystal structure prediction algorithm for complex systems
  publication-title: npj Computational Materials
– volume: 37
  start-page: 427
  year: 2017-02-01
  end-page: 440
  ident: bib3
  article-title: Crystal chemistry, stability and properties of interlanthanide perovskites: a review
  publication-title: J. Eur. Ceram. Soc.
– volume: vol. 27
  start-page: 817
  year: 2019
  end-page: 829
  ident: bib1
  publication-title: Perovskite Synthesis, Properties and Their Related Biochemical and Industrial Application
– volume: 335
  start-page: 1434
  year: 2012
  ident: bib2
  article-title: Materials scientists look to a data-intensive future
  publication-title: Science
– volume: 6
  year: 2016
  ident: bib20
  article-title: Adaptive strategies for materials design using uncertainties
  publication-title: Sci. Rep.
– year: 1999
  ident: bib10
  article-title: Basic Solid State Chemistry
– volume: 61
  start-page: 863
  year: 2018
  end-page: 905
  ident: bib27
  article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary
  publication-title: J. Artif. Intell. Res.
– volume: 5
  year: 2019
  ident: bib16
  article-title: Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials
  publication-title: Sci. Adv.
– volume: 1
  start-page: 1
  year: 1998
  ident: bib6
  publication-title: Ferroelectr. Rev.
– volume: 113
  year: March 2021
  ident: bib18
  article-title: Predicting lattice parameters for orthorhombic distorted-perovskite oxides via machine learning
  publication-title: Solid State Sci.
– volume: 188
  year: 2021
  ident: bib25
  article-title: Crystal structure classification in ABO3 perovskites via machine learning
  publication-title: Comput. Mater. Sci.
– volume: 175
  year: 2020
  ident: 10.1016/j.ssc.2022.115062_bib14
  article-title: Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.109618
– volume: 9
  start-page: 1668
  year: 2018
  ident: 10.1016/j.ssc.2022.115062_bib13
  article-title: Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03821-9
– volume: 392
  start-page: 147
  year: 1998
  ident: 10.1016/j.ssc.2022.115062_bib7
  publication-title: Nature
  doi: 10.1038/32348
– volume: 113
  year: 2021
  ident: 10.1016/j.ssc.2022.115062_bib18
  article-title: Predicting lattice parameters for orthorhombic distorted-perovskite oxides via machine learning
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2021.106541
– start-page: 79
  year: 2017
  ident: 10.1016/j.ssc.2022.115062_bib26
  article-title: Handling class imbalance problem using oversampling techniques: A review
– volume: 136
  start-page: B864
  year: 1964
  ident: 10.1016/j.ssc.2022.115062_bib11
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 6
  year: 2016
  ident: 10.1016/j.ssc.2022.115062_bib20
  article-title: Adaptive strategies for materials design using uncertainties
  publication-title: Sci. Rep.
  doi: 10.1038/srep19660
– start-page: 177
  year: 2006
  ident: 10.1016/j.ssc.2022.115062_bib21
  article-title: Parallel ant colony optimization for 3D protein structure prediction using the HP lattice model
– volume: 7
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.ssc.2022.115062_bib24
  article-title: COPEX: co-evolutionary crystal structure prediction algorithm for complex systems
  publication-title: npj Computational Materials
  doi: 10.1038/s41524-021-00668-5
– volume: 5
  year: 2019
  ident: 10.1016/j.ssc.2022.115062_bib16
  article-title: Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay4275
– volume: 4
  start-page: 29
  year: 2018
  ident: 10.1016/j.ssc.2022.115062_bib17
  article-title: Machine learning modeling of superconducting critical temperature
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-018-0085-8
– volume: 61
  start-page: 863
  year: 2018
  ident: 10.1016/j.ssc.2022.115062_bib27
  article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.11192
– volume: 118
  start-page: 111
  year: 2021
  ident: 10.1016/j.ssc.2022.115062_bib9
  article-title: Energy band-gap inhomogenities and defect states affecting carrier transport at low temperatures in Thallium Bromide
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2021.111259
– volume: 78
  year: 2020
  ident: 10.1016/j.ssc.2022.115062_bib19
  article-title: Machine learning for halide perovskite materials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105380
– volume: 37
  start-page: 427
  issue: 2
  year: 2017
  ident: 10.1016/j.ssc.2022.115062_bib3
  article-title: Crystal chemistry, stability and properties of interlanthanide perovskites: a review
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.08.041
– year: 1974
  ident: 10.1016/j.ssc.2022.115062_bib4
– volume: 6
  year: 2016
  ident: 10.1016/j.ssc.2022.115062_bib15
  article-title: Machine learning strategy for accelerated design of polymer dielectrics
  publication-title: Sci. Rep.
  doi: 10.1038/srep20952
– volume: 1
  start-page: 1
  year: 1998
  ident: 10.1016/j.ssc.2022.115062_bib6
  publication-title: Ferroelectr. Rev.
  doi: 10.1080/10584589808202046
– volume: 184
  start-page: 1172
  issue: 4
  year: 2013
  ident: 10.1016/j.ssc.2022.115062_bib23
  article-title: New developments in evolutionary structure prediction algorithm USPEX
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.12.009
– volume: vol. 27
  start-page: 817
  year: 2019
  ident: 10.1016/j.ssc.2022.115062_bib1
– volume: 128
  year: 2020
  ident: 10.1016/j.ssc.2022.115062_bib12
  article-title: Monte Carlo simulation study of electron yields from compound semiconductor materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0012154
– volume: 188
  year: 2021
  ident: 10.1016/j.ssc.2022.115062_bib25
  article-title: Crystal structure classification in ABO3 perovskites via machine learning
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.110191
– volume: 335
  start-page: 1434
  year: 2012
  ident: 10.1016/j.ssc.2022.115062_bib2
  article-title: Materials scientists look to a data-intensive future
  publication-title: Science
  doi: 10.1126/science.335.6075.1434
– volume: 876
  start-page: 160
  year: 2021
  ident: 10.1016/j.ssc.2022.115062_bib8
  article-title: Electrospinning synthesis, crystal structure, and ethylene glycol sensing properties of orthorhombic SmBO3 (B=Fe, Co) perovskites
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.160211
– volume: 183
  start-page: 2063
  issue: 10
  year: 2012
  ident: 10.1016/j.ssc.2022.115062_bib22
  article-title: CALYPSO: a method for crystal structure prediction
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.05.008
– start-page: 57
  year: 2019
  ident: 10.1016/j.ssc.2022.115062_bib28
  article-title: No free lunch theorem: a review
  publication-title: Approximat. Optimizat.
  doi: 10.1007/978-3-030-12767-1_5
– volume: 104
  start-page: 6694
  year: 2000
  ident: 10.1016/j.ssc.2022.115062_bib5
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp000114x
– year: 1999
  ident: 10.1016/j.ssc.2022.115062_bib10
SSID ssj0007871
Score 2.4609988
Snippet In this study, Machine Learning (ML) techniques have been exploited to classify the crystal structure of ABO3 perovskite compounds. In the present work, seven...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115062
SubjectTerms Boosting algorithms
K-nearest neighborhood
Machine learning
Perovskite
XGBoost
Title Crystal structural prediction of perovskite materials using machine learning: A comparative study
URI https://dx.doi.org/10.1016/j.ssc.2022.115062
Volume 361
WOSCitedRecordID wos000998081300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0038-1098
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007871
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgguCBYQy0s-cCLKKjhp4nAr1aIFpNWKLVJvkWM7S0o2qZK22h7474xfSXkKkLhEVmSnkefT5Ot45huEnseF4ACVyM-VcGsUicRnVCZ-IEM5loEQLM51s4nk9JTO5-nZaPTF1cJsqqSu6dVVuvyvpoZ7YGxVOvsX5u4fCjdgDEaHK5gdrn9k-Gm77VamCmTNjarGslXHMY4bKmnwTaeith7QVfNK3lrHDC51aqV0vSQuTN0631EIH-RoF66-tyqFp-uS1MSh2qQn62dtuWWCqXxp3T_K-9AsWGXbdpvsHYCpSfQ-Kauq6ZM-XpedCRWerz8DArz3ZfepaZsh-irgU18LzX9nrL5kW7YbxSDq7Ng3dZwmtObKa4ZcJu2uQ6U9a9pUO3cdGvH2H1y_iUIsjrpOKVMScqS4rvX03ypqn-vj0UApF6pRHF9D-yQZp-AU9ydvj-fv-k85eDPTctG-hzsW1wmC3_3Qz4nNDlmZ3UG37b8MPDHouItGsj5AN6euud8BuqEzf3l3DzGLFzzgBQ94wU2BB7zgHi9Y4wVbvGCHl1d4gnfQgjVa7qOPb45n0xPf9t3wOUmTlU_h-x0VLA1CpSQaSRGEhaBxQYBLA58WeVpwoQ7Yc17QQOQSHD_ngaSJCGkki_AB2qubWj5EOOXjl_mYEcIpTIJRkEeMSAbEFqg9Cw9R4DYt41aUXvVGqTKXfbjIYJ8ztc-Z2edD9KJfsjSKLL-bHDlLZJZSGqqYAWx-vezRvy17jG4N2H6C9sBu8im6zjersmufWXB9BV0foJo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+structural+prediction+of+perovskite+materials+using+machine+learning%3A+A+comparative+study&rft.jtitle=Solid+state+communications&rft.au=Priyadarshini%2C+Rojalina&rft.au=Joardar%2C+Hillol&rft.au=Bisoy%2C+Sukant+Kishoro&rft.au=Badapanda%2C+Tanmaya&rft.date=2023-02-15&rft.pub=Elsevier+Ltd&rft.issn=0038-1098&rft.volume=361&rft_id=info:doi/10.1016%2Fj.ssc.2022.115062&rft.externalDocID=S0038109822003866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1098&client=summon