Crystal structural prediction of perovskite materials using machine learning: A comparative study
In this study, Machine Learning (ML) techniques have been exploited to classify the crystal structure of ABO3 perovskite compounds. In the present work, seven different ML algorithms are applied to the experimentally determined crystal structure data. The relevance of the data featured is measured b...
Gespeichert in:
| Veröffentlicht in: | Solid state communications Jg. 361; S. 115062 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.02.2023
|
| Schlagworte: | |
| ISSN: | 0038-1098 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this study, Machine Learning (ML) techniques have been exploited to classify the crystal structure of ABO3 perovskite compounds. In the present work, seven different ML algorithms are applied to the experimentally determined crystal structure data. The relevance of the data featured is measured by computing the Chi-Square test and Spearman's correlation matrix. The Z-Score value has been calculated for each attribute to confirm the existence of any outliers in the data. The Synthetic Minority Oversampling (SMOTE) technique is employed to overcome the imbalanced data set. The models' performance is calculated using the stratified k-Fold cross-validation method. Further, to improve the accuracy of the prediction model, the conventional algorithm is supported by boosting algorithm. Comparative model efficiency on prediction of the crystal structure is presented to identify the most suitable model. As per the inferences drawn from the observations, the ensemble model using Xtreme Gradient Boosting (XGBoost) algorithm when applied to the pre-processed and balanced data outperforms the other models.
•The prediction of crystal structure of ABO3 perovskite are implemented using various Machine Learning (ML) models.•The relevance of the features is measured by computing the Chi-Square test and Spearman's correlation matrix.•The SMOTE augmentation technique is employed to overcome the imbalanced of data set.•The models' performance is accessed using stratified k-Fold cross validation method.•The parameters obtained from various model are compared and XGBoost models is found to the most stable and accurate model. |
|---|---|
| AbstractList | In this study, Machine Learning (ML) techniques have been exploited to classify the crystal structure of ABO3 perovskite compounds. In the present work, seven different ML algorithms are applied to the experimentally determined crystal structure data. The relevance of the data featured is measured by computing the Chi-Square test and Spearman's correlation matrix. The Z-Score value has been calculated for each attribute to confirm the existence of any outliers in the data. The Synthetic Minority Oversampling (SMOTE) technique is employed to overcome the imbalanced data set. The models' performance is calculated using the stratified k-Fold cross-validation method. Further, to improve the accuracy of the prediction model, the conventional algorithm is supported by boosting algorithm. Comparative model efficiency on prediction of the crystal structure is presented to identify the most suitable model. As per the inferences drawn from the observations, the ensemble model using Xtreme Gradient Boosting (XGBoost) algorithm when applied to the pre-processed and balanced data outperforms the other models.
•The prediction of crystal structure of ABO3 perovskite are implemented using various Machine Learning (ML) models.•The relevance of the features is measured by computing the Chi-Square test and Spearman's correlation matrix.•The SMOTE augmentation technique is employed to overcome the imbalanced of data set.•The models' performance is accessed using stratified k-Fold cross validation method.•The parameters obtained from various model are compared and XGBoost models is found to the most stable and accurate model. |
| ArticleNumber | 115062 |
| Author | Bisoy, Sukant Kishoro Badapanda, Tanmaya Joardar, Hillol Priyadarshini, Rojalina |
| Author_xml | – sequence: 1 givenname: Rojalina surname: Priyadarshini fullname: Priyadarshini, Rojalina organization: Department of Comp. Sc.& Engg, C.V.Raman Global University, Bhubaneswar, Odisha, India – sequence: 2 givenname: Hillol surname: Joardar fullname: Joardar, Hillol organization: Department of Mechanical Engineering, C.V.Raman Global University, Bhubaneswar, Odisha, India – sequence: 3 givenname: Sukant Kishoro surname: Bisoy fullname: Bisoy, Sukant Kishoro organization: Department of Comp. Sc.& Engg, C.V.Raman Global University, Bhubaneswar, Odisha, India – sequence: 4 givenname: Tanmaya surname: Badapanda fullname: Badapanda, Tanmaya email: badapanda.tanmaya@gmail.com organization: Department of Physics, C.V.Raman Global University, Bhubaneswar, Odisha, India |
| BookMark | eNp9kLtOwzAUhj0UibbwAGx-gYRjJ00cmKqKm1SJBWbLsY_BJU0i26nUt8dVmRg6nYv0_dL_LcisH3ok5I5BzoBV97s8BJ1z4DxnbAUVn5E5QCEyBo24JosQdgBQi5rNidr4Y4iqoyH6ScfJp3X0aJyObujpYOmIfjiEHxeR7lVE71QX6BRc_5Vu_e16pB0q36fHA11TPexH5VV0B0yZkznekCubELz9m0vy-fz0sXnNtu8vb5v1NtO8qWMmsGWlVQ0UZc15iQYKa0RledFwUTSmbaw2UK5Eq60A0yKUXGtAUZtClGiLJanPudoPIXi0UruoTi2iV66TDOTJjtzJZEee7MiznUSyf-To3V7540Xm8cxgqnRw6GXQDnudzHnUUZrBXaB_AUuJg_0 |
| CitedBy_id | crossref_primary_10_1016_j_commatsci_2023_112583 crossref_primary_10_1016_j_jallcom_2025_182102 crossref_primary_10_1016_j_conbuildmat_2023_133377 crossref_primary_10_1016_j_aei_2025_103111 crossref_primary_10_1002_adts_202400652 crossref_primary_10_1002_ente_202300735 crossref_primary_10_1007_s42452_025_07390_7 crossref_primary_10_3390_min13060800 crossref_primary_10_3390_ma17123026 |
| Cites_doi | 10.1016/j.commatsci.2020.109618 10.1038/s41467-018-03821-9 10.1038/32348 10.1016/j.solidstatesciences.2021.106541 10.1103/PhysRev.136.B864 10.1038/srep19660 10.1038/s41524-021-00668-5 10.1126/sciadv.aay4275 10.1038/s41524-018-0085-8 10.1613/jair.1.11192 10.1016/j.optmat.2021.111259 10.1016/j.nanoen.2020.105380 10.1016/j.jeurceramsoc.2016.08.041 10.1038/srep20952 10.1080/10584589808202046 10.1016/j.cpc.2012.12.009 10.1063/5.0012154 10.1016/j.commatsci.2020.110191 10.1126/science.335.6075.1434 10.1016/j.jallcom.2021.160211 10.1016/j.cpc.2012.05.008 10.1007/978-3-030-12767-1_5 10.1021/jp000114x |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ssc.2022.115062 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| ExternalDocumentID | 10_1016_j_ssc_2022_115062 S0038109822003866 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFRF ABJNI ABMAC ABNEU ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSH SSM SSQ SSZ T5K TN5 XPP XSW ZMT ~02 ~G- ~S- 3O- 6TJ 9DU AAQXK AAYWO AAYXX ABFNM ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ H~9 NDZJH R2- SEW UQL WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-8eb14fa90347224ed03fd86f2392839db9fcd0458bcf80dbe042cc0e87d384ef3 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000998081300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-1098 |
| IngestDate | Sat Nov 29 07:27:48 EST 2025 Tue Nov 18 22:26:13 EST 2025 Sun Apr 06 06:56:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | K-nearest neighborhood Perovskite XGBoost Machine learning Boosting algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-8eb14fa90347224ed03fd86f2392839db9fcd0458bcf80dbe042cc0e87d384ef3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ssc_2022_115062 crossref_primary_10_1016_j_ssc_2022_115062 elsevier_sciencedirect_doi_10_1016_j_ssc_2022_115062 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-15 |
| PublicationDateYYYYMMDD | 2023-02-15 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Solid state communications |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Adam, Stamatios-Aggelos, Alexandropoulos, Vrahatis (bib28) 2019 Millis (bib7) 1998; 392 Gosain, Sardana (bib26) 2017 Scott (bib6) 1998; 1 Han, Ma, Xu, Cao, Liu, Xu, Pei (bib8) 2021; 876 Behara, Poonawala, Thomas (bib25) 2021; 188 Zhang, Mu, Shao (bib19) December 2020; 78 Balachandran, Kowalski, Sehirlioglu, Lookman (bib13) 2018; 9 Sun (bib16) 2019; 5 Liu, Niu, Oganov (bib24) 2021; 7 Dai (bib14) 2020; 175 Chu, Albert (bib21) 2006 Hohenberg, Kohn (bib11) 1964; 136 Muller, andRoy (bib4) 1974 Zhang, Xu (bib18) March 2021; 113 Service (bib2) 2012; 335 EMRAssirey (bib1) 2019; vol. 27 Balachandran, Xue, Theiler, Hogden, andLookman (bib20) 2016; 6 Mannodi-Kanakkithodi, Pilania, Huan, Lookman, Ramprasad (bib15) 2016; 6 Fernández, Garcia, Herrera, Chawla (bib27) 2018; 61 Wang, Lv, Zhu, Ma (bib22) 2012; 183 Lyakhov, Artem, Stokes, Zhu (bib23) 2013; 184 West (bib10) 1999 Hussain (bib12) 2020; 128 Stanev (bib17) 2018; 4 Artini (bib3) 2017-02-01; 37 Kažukauskas, Janonis, Vertelis (bib9) 2021; 118 Hill (bib5) 2000; 104 Balachandran (10.1016/j.ssc.2022.115062_bib13) 2018; 9 Liu (10.1016/j.ssc.2022.115062_bib24) 2021; 7 Zhang (10.1016/j.ssc.2022.115062_bib18) 2021; 113 Hohenberg (10.1016/j.ssc.2022.115062_bib11) 1964; 136 Sun (10.1016/j.ssc.2022.115062_bib16) 2019; 5 Chu (10.1016/j.ssc.2022.115062_bib21) 2006 Muller (10.1016/j.ssc.2022.115062_bib4) 1974 Gosain (10.1016/j.ssc.2022.115062_bib26) 2017 Artini (10.1016/j.ssc.2022.115062_bib3) 2017; 37 Fernández (10.1016/j.ssc.2022.115062_bib27) 2018; 61 Han (10.1016/j.ssc.2022.115062_bib8) 2021; 876 Dai (10.1016/j.ssc.2022.115062_bib14) 2020; 175 Hussain (10.1016/j.ssc.2022.115062_bib12) 2020; 128 West (10.1016/j.ssc.2022.115062_bib10) 1999 Behara (10.1016/j.ssc.2022.115062_bib25) 2021; 188 Balachandran (10.1016/j.ssc.2022.115062_bib20) 2016; 6 Stanev (10.1016/j.ssc.2022.115062_bib17) 2018; 4 Service (10.1016/j.ssc.2022.115062_bib2) 2012; 335 Hill (10.1016/j.ssc.2022.115062_bib5) 2000; 104 Zhang (10.1016/j.ssc.2022.115062_bib19) 2020; 78 Adam (10.1016/j.ssc.2022.115062_bib28) 2019 Millis (10.1016/j.ssc.2022.115062_bib7) 1998; 392 Lyakhov (10.1016/j.ssc.2022.115062_bib23) 2013; 184 EMRAssirey (10.1016/j.ssc.2022.115062_bib1) 2019; vol. 27 Kažukauskas (10.1016/j.ssc.2022.115062_bib9) 2021; 118 Mannodi-Kanakkithodi (10.1016/j.ssc.2022.115062_bib15) 2016; 6 Wang (10.1016/j.ssc.2022.115062_bib22) 2012; 183 Scott (10.1016/j.ssc.2022.115062_bib6) 1998; 1 |
| References_xml | – volume: 183 start-page: 2063 year: 2012 end-page: 2070 ident: bib22 article-title: CALYPSO: a method for crystal structure prediction publication-title: Comput. Phys. Commun. – volume: 392 start-page: 147 year: 1998 ident: bib7 publication-title: Nature – volume: 4 start-page: 29 year: 2018 ident: bib17 article-title: Machine learning modeling of superconducting critical temperature publication-title: NPJ Comput. Mater. – start-page: 79 year: 2017 end-page: 85 ident: bib26 article-title: Handling class imbalance problem using oversampling techniques: A review publication-title: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India – volume: 6 year: 2016 ident: bib15 article-title: Machine learning strategy for accelerated design of polymer dielectrics publication-title: Sci. Rep. – volume: 104 start-page: 6694 year: 2000 ident: bib5 publication-title: J. Phys. Chem. B – year: 1974 ident: bib4 article-title: The Major Ternary Structural Families – volume: 136 start-page: B864 year: 1964 end-page: B871 ident: bib11 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. – volume: 175 year: 2020 ident: bib14 article-title: Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys publication-title: Comput. Mater. Sci. – volume: 128 year: 2020 ident: bib12 article-title: Monte Carlo simulation study of electron yields from compound semiconductor materials publication-title: J. Appl. Phys. – start-page: 177 year: 2006 end-page: 198 ident: bib21 article-title: Parallel ant colony optimization for 3D protein structure prediction using the HP lattice model publication-title: Parallel Evolutionary Computations – volume: 184 start-page: 1172 year: 2013 end-page: 1182 ident: bib23 article-title: New developments in evolutionary structure prediction algorithm USPEX publication-title: Comput. Phys. Commun. – volume: 876 start-page: 160 year: 2021 end-page: 211 ident: bib8 article-title: Electrospinning synthesis, crystal structure, and ethylene glycol sensing properties of orthorhombic SmBO3 (B=Fe, Co) perovskites publication-title: J. Alloys Compd. – start-page: 57 year: 2019 end-page: 82 ident: bib28 article-title: No free lunch theorem: a review publication-title: Approximat. Optimizat. – volume: 9 start-page: 1668 year: 2018 ident: bib13 article-title: Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning publication-title: Nat. Commun. – volume: 78 year: December 2020 ident: bib19 article-title: Machine learning for halide perovskite materials publication-title: Nano Energy – volume: 118 start-page: 111 year: 2021 end-page: 259 ident: bib9 article-title: Energy band-gap inhomogenities and defect states affecting carrier transport at low temperatures in Thallium Bromide publication-title: Opt. Mater. – volume: 7 start-page: 1 year: 2021 end-page: 11 ident: bib24 article-title: COPEX: co-evolutionary crystal structure prediction algorithm for complex systems publication-title: npj Computational Materials – volume: 37 start-page: 427 year: 2017-02-01 end-page: 440 ident: bib3 article-title: Crystal chemistry, stability and properties of interlanthanide perovskites: a review publication-title: J. Eur. Ceram. Soc. – volume: vol. 27 start-page: 817 year: 2019 end-page: 829 ident: bib1 publication-title: Perovskite Synthesis, Properties and Their Related Biochemical and Industrial Application – volume: 335 start-page: 1434 year: 2012 ident: bib2 article-title: Materials scientists look to a data-intensive future publication-title: Science – volume: 6 year: 2016 ident: bib20 article-title: Adaptive strategies for materials design using uncertainties publication-title: Sci. Rep. – year: 1999 ident: bib10 article-title: Basic Solid State Chemistry – volume: 61 start-page: 863 year: 2018 end-page: 905 ident: bib27 article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary publication-title: J. Artif. Intell. Res. – volume: 5 year: 2019 ident: bib16 article-title: Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials publication-title: Sci. Adv. – volume: 1 start-page: 1 year: 1998 ident: bib6 publication-title: Ferroelectr. Rev. – volume: 113 year: March 2021 ident: bib18 article-title: Predicting lattice parameters for orthorhombic distorted-perovskite oxides via machine learning publication-title: Solid State Sci. – volume: 188 year: 2021 ident: bib25 article-title: Crystal structure classification in ABO3 perovskites via machine learning publication-title: Comput. Mater. Sci. – volume: 175 year: 2020 ident: 10.1016/j.ssc.2022.115062_bib14 article-title: Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109618 – volume: 9 start-page: 1668 year: 2018 ident: 10.1016/j.ssc.2022.115062_bib13 article-title: Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning publication-title: Nat. Commun. doi: 10.1038/s41467-018-03821-9 – volume: 392 start-page: 147 year: 1998 ident: 10.1016/j.ssc.2022.115062_bib7 publication-title: Nature doi: 10.1038/32348 – volume: 113 year: 2021 ident: 10.1016/j.ssc.2022.115062_bib18 article-title: Predicting lattice parameters for orthorhombic distorted-perovskite oxides via machine learning publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2021.106541 – start-page: 79 year: 2017 ident: 10.1016/j.ssc.2022.115062_bib26 article-title: Handling class imbalance problem using oversampling techniques: A review – volume: 136 start-page: B864 year: 1964 ident: 10.1016/j.ssc.2022.115062_bib11 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 6 year: 2016 ident: 10.1016/j.ssc.2022.115062_bib20 article-title: Adaptive strategies for materials design using uncertainties publication-title: Sci. Rep. doi: 10.1038/srep19660 – start-page: 177 year: 2006 ident: 10.1016/j.ssc.2022.115062_bib21 article-title: Parallel ant colony optimization for 3D protein structure prediction using the HP lattice model – volume: 7 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.ssc.2022.115062_bib24 article-title: COPEX: co-evolutionary crystal structure prediction algorithm for complex systems publication-title: npj Computational Materials doi: 10.1038/s41524-021-00668-5 – volume: 5 year: 2019 ident: 10.1016/j.ssc.2022.115062_bib16 article-title: Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials publication-title: Sci. Adv. doi: 10.1126/sciadv.aay4275 – volume: 4 start-page: 29 year: 2018 ident: 10.1016/j.ssc.2022.115062_bib17 article-title: Machine learning modeling of superconducting critical temperature publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-018-0085-8 – volume: 61 start-page: 863 year: 2018 ident: 10.1016/j.ssc.2022.115062_bib27 article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.1.11192 – volume: 118 start-page: 111 year: 2021 ident: 10.1016/j.ssc.2022.115062_bib9 article-title: Energy band-gap inhomogenities and defect states affecting carrier transport at low temperatures in Thallium Bromide publication-title: Opt. Mater. doi: 10.1016/j.optmat.2021.111259 – volume: 78 year: 2020 ident: 10.1016/j.ssc.2022.115062_bib19 article-title: Machine learning for halide perovskite materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105380 – volume: 37 start-page: 427 issue: 2 year: 2017 ident: 10.1016/j.ssc.2022.115062_bib3 article-title: Crystal chemistry, stability and properties of interlanthanide perovskites: a review publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.08.041 – year: 1974 ident: 10.1016/j.ssc.2022.115062_bib4 – volume: 6 year: 2016 ident: 10.1016/j.ssc.2022.115062_bib15 article-title: Machine learning strategy for accelerated design of polymer dielectrics publication-title: Sci. Rep. doi: 10.1038/srep20952 – volume: 1 start-page: 1 year: 1998 ident: 10.1016/j.ssc.2022.115062_bib6 publication-title: Ferroelectr. Rev. doi: 10.1080/10584589808202046 – volume: 184 start-page: 1172 issue: 4 year: 2013 ident: 10.1016/j.ssc.2022.115062_bib23 article-title: New developments in evolutionary structure prediction algorithm USPEX publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.12.009 – volume: vol. 27 start-page: 817 year: 2019 ident: 10.1016/j.ssc.2022.115062_bib1 – volume: 128 year: 2020 ident: 10.1016/j.ssc.2022.115062_bib12 article-title: Monte Carlo simulation study of electron yields from compound semiconductor materials publication-title: J. Appl. Phys. doi: 10.1063/5.0012154 – volume: 188 year: 2021 ident: 10.1016/j.ssc.2022.115062_bib25 article-title: Crystal structure classification in ABO3 perovskites via machine learning publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.110191 – volume: 335 start-page: 1434 year: 2012 ident: 10.1016/j.ssc.2022.115062_bib2 article-title: Materials scientists look to a data-intensive future publication-title: Science doi: 10.1126/science.335.6075.1434 – volume: 876 start-page: 160 year: 2021 ident: 10.1016/j.ssc.2022.115062_bib8 article-title: Electrospinning synthesis, crystal structure, and ethylene glycol sensing properties of orthorhombic SmBO3 (B=Fe, Co) perovskites publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160211 – volume: 183 start-page: 2063 issue: 10 year: 2012 ident: 10.1016/j.ssc.2022.115062_bib22 article-title: CALYPSO: a method for crystal structure prediction publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.05.008 – start-page: 57 year: 2019 ident: 10.1016/j.ssc.2022.115062_bib28 article-title: No free lunch theorem: a review publication-title: Approximat. Optimizat. doi: 10.1007/978-3-030-12767-1_5 – volume: 104 start-page: 6694 year: 2000 ident: 10.1016/j.ssc.2022.115062_bib5 publication-title: J. Phys. Chem. B doi: 10.1021/jp000114x – year: 1999 ident: 10.1016/j.ssc.2022.115062_bib10 |
| SSID | ssj0007871 |
| Score | 2.4609988 |
| Snippet | In this study, Machine Learning (ML) techniques have been exploited to classify the crystal structure of ABO3 perovskite compounds. In the present work, seven... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 115062 |
| SubjectTerms | Boosting algorithms K-nearest neighborhood Machine learning Perovskite XGBoost |
| Title | Crystal structural prediction of perovskite materials using machine learning: A comparative study |
| URI | https://dx.doi.org/10.1016/j.ssc.2022.115062 |
| Volume | 361 |
| WOSCitedRecordID | wos000998081300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 0038-1098 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007871 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgguCBYQy0s-cCLKKjhp4nAr1aIFpNWKLVJvkWM7S0o2qZK22h7474xfSXkKkLhEVmSnkefT5Ot45huEnseF4ACVyM-VcGsUicRnVCZ-IEM5loEQLM51s4nk9JTO5-nZaPTF1cJsqqSu6dVVuvyvpoZ7YGxVOvsX5u4fCjdgDEaHK5gdrn9k-Gm77VamCmTNjarGslXHMY4bKmnwTaeith7QVfNK3lrHDC51aqV0vSQuTN0631EIH-RoF66-tyqFp-uS1MSh2qQn62dtuWWCqXxp3T_K-9AsWGXbdpvsHYCpSfQ-Kauq6ZM-XpedCRWerz8DArz3ZfepaZsh-irgU18LzX9nrL5kW7YbxSDq7Ng3dZwmtObKa4ZcJu2uQ6U9a9pUO3cdGvH2H1y_iUIsjrpOKVMScqS4rvX03ypqn-vj0UApF6pRHF9D-yQZp-AU9ydvj-fv-k85eDPTctG-hzsW1wmC3_3Qz4nNDlmZ3UG37b8MPDHouItGsj5AN6euud8BuqEzf3l3DzGLFzzgBQ94wU2BB7zgHi9Y4wVbvGCHl1d4gnfQgjVa7qOPb45n0xPf9t3wOUmTlU_h-x0VLA1CpSQaSRGEhaBxQYBLA58WeVpwoQ7Yc17QQOQSHD_ngaSJCGkki_AB2qubWj5EOOXjl_mYEcIpTIJRkEeMSAbEFqg9Cw9R4DYt41aUXvVGqTKXfbjIYJ8ztc-Z2edD9KJfsjSKLL-bHDlLZJZSGqqYAWx-vezRvy17jG4N2H6C9sBu8im6zjersmufWXB9BV0foJo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+structural+prediction+of+perovskite+materials+using+machine+learning%3A+A+comparative+study&rft.jtitle=Solid+state+communications&rft.au=Priyadarshini%2C+Rojalina&rft.au=Joardar%2C+Hillol&rft.au=Bisoy%2C+Sukant+Kishoro&rft.au=Badapanda%2C+Tanmaya&rft.date=2023-02-15&rft.pub=Elsevier+Ltd&rft.issn=0038-1098&rft.volume=361&rft_id=info:doi/10.1016%2Fj.ssc.2022.115062&rft.externalDocID=S0038109822003866 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1098&client=summon |