T-GAE: A Timespan-aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion

Temporal knowledge graphs (TKGs) often suffer from incompleteness, leading to an important research issue: Temporal Knowledge Graph Completion (TKGC). Knowledge Graph Embedding (KGE) methods have proven to be effective in solving this issue. However, most of them handle triples independently and do...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 642; p. 119225
Main Authors: Hou, Xiangning, Ma, Ruizhe, Yan, Li, Ma, Zongmin
Format: Journal Article
Language:English
Published: Elsevier Inc 01.09.2023
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Temporal knowledge graphs (TKGs) often suffer from incompleteness, leading to an important research issue: Temporal Knowledge Graph Completion (TKGC). Knowledge Graph Embedding (KGE) methods have proven to be effective in solving this issue. However, most of them handle triples independently and do not capture complex information embedded in the neighborhood topology of central entities. To this end, we propose a Timespan-awareGraphAttention-basedEmbedding Model named T-GAE to tackle the TKGC task. To the best of our knowledge, T-GAE is the first KGE model in which Graph-Attention-Networks (GATs) and Long Short-Term Memory (LSTM) Networks are simultaneously applied to the TKGC task. In essence, our model is an Encoder-Decoder architecture, where the encoder consists of an LSTM network and a GAT network. Firstly, we employ LSTM layers to learn new time-aware relational embeddings to incorporate time information. Then, we utilize these time-aware relational embedding and GATs considered as neighborhood aggregators to learn the entity and relational features of the central entity neighborhoods. Thus, T-GAE can capture the interaction features between multi-relational facts and the abundant temporal information in TKGs. As for the decoder, we choose the ConvKB model, which is essentially a scoring function. Our experiments demonstrate that T-GAE significantly outperforms most of the existing baseline methods for TKGC in terms of MRR and Hit@1/3/10.
AbstractList Temporal knowledge graphs (TKGs) often suffer from incompleteness, leading to an important research issue: Temporal Knowledge Graph Completion (TKGC). Knowledge Graph Embedding (KGE) methods have proven to be effective in solving this issue. However, most of them handle triples independently and do not capture complex information embedded in the neighborhood topology of central entities. To this end, we propose a Timespan-awareGraphAttention-basedEmbedding Model named T-GAE to tackle the TKGC task. To the best of our knowledge, T-GAE is the first KGE model in which Graph-Attention-Networks (GATs) and Long Short-Term Memory (LSTM) Networks are simultaneously applied to the TKGC task. In essence, our model is an Encoder-Decoder architecture, where the encoder consists of an LSTM network and a GAT network. Firstly, we employ LSTM layers to learn new time-aware relational embeddings to incorporate time information. Then, we utilize these time-aware relational embedding and GATs considered as neighborhood aggregators to learn the entity and relational features of the central entity neighborhoods. Thus, T-GAE can capture the interaction features between multi-relational facts and the abundant temporal information in TKGs. As for the decoder, we choose the ConvKB model, which is essentially a scoring function. Our experiments demonstrate that T-GAE significantly outperforms most of the existing baseline methods for TKGC in terms of MRR and Hit@1/3/10.
ArticleNumber 119225
Author Ma, Zongmin
Hou, Xiangning
Yan, Li
Ma, Ruizhe
Author_xml – sequence: 1
  givenname: Xiangning
  surname: Hou
  fullname: Hou, Xiangning
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
– sequence: 2
  givenname: Ruizhe
  surname: Ma
  fullname: Ma, Ruizhe
  organization: Richard A. Miner School of Computer & Information Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
– sequence: 3
  givenname: Li
  surname: Yan
  fullname: Yan, Li
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
– sequence: 4
  givenname: Zongmin
  orcidid: 0000-0001-7780-6473
  surname: Ma
  fullname: Ma, Zongmin
  email: zongminma@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
BookMark eNp90L9OwzAQBnALFYkWeAA2v0CC7cT5A1NUlYIoYgmzZceX4iqxIzui4u1JVFgYOt30u_vuW6GFdRYQuqMkpoRm94fY2BAzwpKY0pIxfoGWtMhZlLGSLtCSEEYiwji_QqsQDoSQNM-yJYI62labB1zh2vQQBmkjeZQe8NbL4RNX4wh2NM5GSgbQeNMr0NrYPX5zGjrcOo9r6AfnZYdfrTt2oPd_eO36oYNZ36DLVnYBbn_nNfp42tTr52j3vn1ZV7uoYWU-RoVUrGUsKTM55Ut1oxqgmgPlKufQTpdBMd6qotBKyYxLSIErYDyHNCsTlVyj_LS38S4ED61ozCjnBKOXphOUiLktcRBTW2JuS5zamiT9Jwdveum_z5rHk4HppS8DXoTGgG1AGw_NKLQzZ_QPMQaF0A
CitedBy_id crossref_primary_10_1016_j_ins_2023_119857
crossref_primary_10_1177_14727978251380802
crossref_primary_10_1016_j_neucom_2025_131067
crossref_primary_10_1016_j_ipm_2024_104001
crossref_primary_10_26599_TST_2023_9010142
crossref_primary_10_1016_j_engappai_2024_109717
crossref_primary_10_1016_j_asoc_2025_113144
crossref_primary_10_1016_j_cosrev_2025_100809
crossref_primary_10_3390_app14198871
crossref_primary_10_1109_TFUZZ_2023_3300295
crossref_primary_10_1016_j_neucom_2024_127680
crossref_primary_10_1016_j_eswa_2025_128016
crossref_primary_10_1016_j_ipm_2024_103848
crossref_primary_10_1016_j_ins_2024_121357
crossref_primary_10_3390_math12091324
crossref_primary_10_1016_j_neucom_2025_129693
crossref_primary_10_1007_s10489_023_05254_4
crossref_primary_10_23919_cje_2024_00_182
crossref_primary_10_3390_app15073727
Cites_doi 10.1162/neco_a_01199
10.3390/electronics9050750
10.1016/j.knosys.2022.109234
10.18653/v1/2020.emnlp-main.593
10.1002/isaf.1500
10.1609/aaai.v35i7.16802
10.1609/aaai.v29i1.9491
10.18653/v1/2020.emnlp-main.305
10.1007/s10994-013-5363-6
10.18653/v1/2020.emnlp-main.541
10.1609/aaai.v35i5.16604
10.1609/aaai.v34i04.5815
10.1609/aaai.v32i1.11573
10.18653/v1/D15-1082
10.1609/aaai.v28i1.8870
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2023.119225
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
ExternalDocumentID 10_1016_j_ins_2023_119225
S0020025523008101
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-8ab2f22396a0044dcbce1d5e15b75efeddeb25fb88dbba65ae4e5be257e4693b3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001011529700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:25:59 EST 2025
Tue Nov 18 22:18:50 EST 2025
Fri Feb 23 02:38:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Temporal Knowledge Graph
Encoder-Decoder architecture
Long Short-Term Memory Network
Graph Attention Network
Temporal Knowledge Graph Completion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-8ab2f22396a0044dcbce1d5e15b75efeddeb25fb88dbba65ae4e5be257e4693b3
ORCID 0000-0001-7780-6473
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2023_119225
crossref_primary_10_1016_j_ins_2023_119225
elsevier_sciencedirect_doi_10_1016_j_ins_2023_119225
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Trouillon, Welbl, Riedel (b0120) 2016
Sun, Deng, Nie (b0080) 2018
Nickel, Rosasco, Poggio (b0075) 2016
Welling, Kipf (b0185) 2016
T. Dettmers, P. Minervini, P. Stenetorp, et al., Convolutional 2D knowledge graph embeddings. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. 2018. pp. 1811-1818.
Diefenbach, Singh, Maret (b0010) 2018
Garcia-Duran, Dumančić, Niepert (b0065) 2018
B. Yang, S.W. Yih, X. He, et al. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. In Proceedings of the 2015 International Conference on Learning Representations, 2015. 2015.
Cao, Wang, He (b0005) 2019
Schlichtkrull, Kipf, Bloem (b0135) 2018
Veličković, Cucurull, Casanova (b0095) 2018
Lacroix, Obozinski, Usunier (b0165) 2019
Han, Chen, Ma (b0215) 2021
Perozzi, Al-Rfou, Deepwalk (b0130) 2014
Jain P, Rathi S, Chakrabarti S. Temporal Knowledge Base Completion: New Algorithms and Evaluation Protocols. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020: 3733-3747.
Vaswani, Shazeer, Parmar (b0190) 2017; 30
C. Zhu, M. Chen, C. Fan, et al., Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks. In Proceedings of the AAAI Conference on Artificial Intelligence. 2021. pp. 4732-4740.
Socher, Chen, Manning (b0055) 2013
Kazemi, Poole (b0125) 2018; 31
Y. Lin, Z. Liu, M. Sun, et al. Learning entity and relation embeddings for knowledge graph completion. In Proceedings of the Twenty-ninth AAAI Conference on Artificial Intelligence. 2015. pp. 2181-2187.
A. Sadeghian, M. Armandpour, A. Colas, et al., ChronoR: rotation based temporal knowledge graph embedding. In Proceedings of the AAAI Conference on Artificial Intelligence. 2021. pp. 6471-6479.
Ji, He, Xu (b0115) 2015
A. Bordes, N. Usunier, A. Garcia-Duran, et al., Translating embeddings for modeling multi-relational data. Advances in neural information processing systems. 2013. 26.
Jørgensen, Igel (b0105) 2021; 28
Z. Han, P. Chen, Y. Ma, et al. DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for Temporal Knowledge Graph Completion. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020: 7301-7316.
Zhang, Sheng, Wang (b0145) 2020
Xu, Chen, Nayyeri (b0220) 2021
R. Jenatton, N. Roux, A. Bordes, et al. A latent factor model for highly multi-relational data. Advances in neural information processing systems, 2012. 25. pp. 3176-3184.
Dasgupta, Ray, Hyte (b0070) 2018
Fu, Meng, Han (b0195) 2022
L. Feddoul, Semantics-driven Keyword Search over Knowledge Graphs. In DC@ ISWC. 2020. pp. 17-24.
Liu, Hua, Xin (b0150) 2020
W. Jin, M. Qu, X. Jin, et al. Recurrent Event Network: Autoregressive Structure Inferenceover Temporal Knowledge Graphs. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020: 6669-6683.
Wu, Cao, Cheung (b0205) 2020
Y. Lin, Z. Liu, H. Luan, et al., Modeling Relation Paths for Representation Learning of Knowledge Bases. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 705-714.
T.D.N. Dai Quoc Nguyen, D.Q. Nguyen, D. Phung, A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. 2018. pp. 327-333.
Jiang, Liu, Ge (b0140) 2016
Z. Wang, J. Zhang, J. Feng, et al. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the 2014 AAAI Conference on Artificial Intelligence. 2014. pp. 1112-1119.
Zhang, Liang, Sheng, Shao (b0225) 2022; 251
Bordes, Glorot, Weston, Bengio (b0050) 2014; 94
R. Goel, S.M. Kazemi, M. Brubaker, et al. Diachronic embedding for temporal knowledge graph completion. In Proceedings of the AAAI Conference on Artificial Intelligence. 2020. pp. 3988-3995.
Nickel, Tresp, Kriegel (b0025) 2011
Dai, Wang, Xiong, Guo (b0060) 2020; 9
Yu, Si, Hu, Zhang (b0100) 2019; 31
Vashishth, Sanyal, Nitin (b0210) 2020
Dai (10.1016/j.ins.2023.119225_b0060) 2020; 9
Schlichtkrull (10.1016/j.ins.2023.119225_b0135) 2018
Kazemi (10.1016/j.ins.2023.119225_b0125) 2018; 31
Fu (10.1016/j.ins.2023.119225_b0195) 2022
Han (10.1016/j.ins.2023.119225_b0215) 2021
Wu (10.1016/j.ins.2023.119225_b0205) 2020
10.1016/j.ins.2023.119225_b0180
Vaswani (10.1016/j.ins.2023.119225_b0190) 2017; 30
10.1016/j.ins.2023.119225_b0160
Lacroix (10.1016/j.ins.2023.119225_b0165) 2019
10.1016/j.ins.2023.119225_b0085
10.1016/j.ins.2023.119225_b0040
10.1016/j.ins.2023.119225_b0020
10.1016/j.ins.2023.119225_b0045
Diefenbach (10.1016/j.ins.2023.119225_b0010) 2018
Bordes (10.1016/j.ins.2023.119225_b0050) 2014; 94
Veličković (10.1016/j.ins.2023.119225_b0095) 2018
Jørgensen (10.1016/j.ins.2023.119225_b0105) 2021; 28
10.1016/j.ins.2023.119225_b0200
Perozzi (10.1016/j.ins.2023.119225_b0130) 2014
Xu (10.1016/j.ins.2023.119225_b0220) 2021
Dasgupta (10.1016/j.ins.2023.119225_b0070) 2018
Cao (10.1016/j.ins.2023.119225_b0005) 2019
Welling (10.1016/j.ins.2023.119225_b0185) 2016
Ji (10.1016/j.ins.2023.119225_b0115) 2015
Sun (10.1016/j.ins.2023.119225_b0080) 2018
10.1016/j.ins.2023.119225_b0090
Yu (10.1016/j.ins.2023.119225_b0100) 2019; 31
Liu (10.1016/j.ins.2023.119225_b0150) 2020
10.1016/j.ins.2023.119225_b0170
Vashishth (10.1016/j.ins.2023.119225_b0210) 2020
10.1016/j.ins.2023.119225_b0030
10.1016/j.ins.2023.119225_b0175
Zhang (10.1016/j.ins.2023.119225_b0225) 2022; 251
Jiang (10.1016/j.ins.2023.119225_b0140) 2016
10.1016/j.ins.2023.119225_b0155
10.1016/j.ins.2023.119225_b0110
10.1016/j.ins.2023.119225_b0035
10.1016/j.ins.2023.119225_b0015
Trouillon (10.1016/j.ins.2023.119225_b0120) 2016
Socher (10.1016/j.ins.2023.119225_b0055) 2013
Nickel (10.1016/j.ins.2023.119225_b0025) 2011
Zhang (10.1016/j.ins.2023.119225_b0145) 2020
Nickel (10.1016/j.ins.2023.119225_b0075) 2016
Garcia-Duran (10.1016/j.ins.2023.119225_b0065) 2018
References_xml – reference: B. Yang, S.W. Yih, X. He, et al. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. In Proceedings of the 2015 International Conference on Learning Representations, 2015. 2015.
– reference: A. Sadeghian, M. Armandpour, A. Colas, et al., ChronoR: rotation based temporal knowledge graph embedding. In Proceedings of the AAAI Conference on Artificial Intelligence. 2021. pp. 6471-6479.
– year: 2011
  ident: b0025
  article-title: A three-way model for collective learning on multi-relational data
  publication-title: Proceedings of the 2011 International Conference on Machine Learning
– reference: C. Zhu, M. Chen, C. Fan, et al., Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks. In Proceedings of the AAAI Conference on Artificial Intelligence. 2021. pp. 4732-4740.
– reference: Jain P, Rathi S, Chakrabarti S. Temporal Knowledge Base Completion: New Algorithms and Evaluation Protocols. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020: 3733-3747.
– start-page: 701
  year: 2014
  end-page: 710
  ident: b0130
  article-title: Online learning of social representations
  publication-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2016
  ident: b0185
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proceedings of the 2016 International Conference on Learning Representations
– start-page: 2350
  year: 2016
  end-page: 2354
  ident: b0140
  article-title: Encoding temporal information for time-aware link prediction
  publication-title: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing
– start-page: 687
  year: 2015
  end-page: 696
  ident: b0115
  article-title: Knowledge graph embedding via dynamic mapping matrix
  publication-title: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing
– year: 2020
  ident: b0210
  article-title: Composition-based Multi-Relational Graph Convolutional Networks
  publication-title: Proceedings of the 2020 International Conference on Learning Representations
– year: 2021
  ident: b0215
  article-title: Explainable subgraph reasoning for forecasting on temporal knowledge graphs
  publication-title: Proceedings of the 2021 International Conference on Learning Representations
– volume: 94
  start-page: 233
  year: 2014
  end-page: 259
  ident: b0050
  article-title: A semantic matching energy function for learning with multi-relational data
  publication-title: Machine Learning.
– start-page: 1955
  year: 2016
  end-page: 1961
  ident: b0075
  article-title: Holographic embeddings of knowledge graphs
  publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
– reference: Z. Han, P. Chen, Y. Ma, et al. DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for Temporal Knowledge Graph Completion. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020: 7301-7316.
– start-page: 2071
  year: 2016
  end-page: 2080
  ident: b0120
  article-title: Complex embeddings for simple link prediction
  publication-title: Proceedings of the 2016 International Conference on Machine Learning
– volume: 30
  year: 2017
  ident: b0190
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems
– year: 2019
  ident: b0165
  article-title: Tensor decompositions for temporal knowledge base completion
  publication-title: Proceedings of the 2019 International Conference on Learning Representations
– reference: Y. Lin, Z. Liu, H. Luan, et al., Modeling Relation Paths for Representation Learning of Knowledge Bases. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 705-714.
– reference: L. Feddoul, Semantics-driven Keyword Search over Knowledge Graphs. In DC@ ISWC. 2020. pp. 17-24.
– start-page: 4816
  year: 2018
  end-page: 4821
  ident: b0065
  article-title: Learning sequence encoders for temporal knowledge graph completion
  publication-title: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
– start-page: 2001
  year: 2018
  end-page: 2011
  ident: b0070
  article-title: Hyperplane-based temporally aware knowledge graph embedding
  publication-title: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
– reference: T.D.N. Dai Quoc Nguyen, D.Q. Nguyen, D. Phung, A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. 2018. pp. 327-333.
– volume: 251
  start-page: 109234
  year: 2022
  ident: b0225
  article-title: Temporal knowledge graph representation learning with local and global evolutions
  publication-title: Knowledge-Based Systems
– reference: W. Jin, M. Qu, X. Jin, et al. Recurrent Event Network: Autoregressive Structure Inferenceover Temporal Knowledge Graphs. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020: 6669-6683.
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: b0100
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Computation
– start-page: 926
  year: 2013
  end-page: 934
  ident: b0055
  article-title: Reasoning with neural tensor networks for knowledge base completion
  publication-title: Proceedings of the 26th International Conference on Neural Information Processing Systems
– volume: 31
  year: 2018
  ident: b0125
  article-title: Simple embedding for link prediction in knowledge graphs
  publication-title: Advances in neural information processing systems
– reference: T. Dettmers, P. Minervini, P. Stenetorp, et al., Convolutional 2D knowledge graph embeddings. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. 2018. pp. 1811-1818.
– start-page: 593
  year: 2018
  end-page: 607
  ident: b0135
  article-title: Modeling relational data with graph convolutional networks
  publication-title: Proceedings of the 2018 European Semantic Web Conference
– volume: 28
  start-page: 159
  year: 2021
  end-page: 172
  ident: b0105
  article-title: Machine learning for financial transaction classification across companies using character-level word embeddings of text fields
  publication-title: Intelligent Systems in Accounting, Finance and Management.
– reference: A. Bordes, N. Usunier, A. Garcia-Duran, et al., Translating embeddings for modeling multi-relational data. Advances in neural information processing systems. 2013. 26.
– start-page: 2569
  year: 2021
  end-page: 2578
  ident: b0220
  article-title: Temporal knowledge graph completion using a linear temporal regularizer and multivector embeddings
  publication-title: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
– start-page: 151
  year: 2019
  end-page: 161
  ident: b0005
  article-title: Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences
  publication-title: Proceedings of the 2019 World Wide Web Conference
– volume: 9
  start-page: 750
  year: 2020
  ident: b0060
  article-title: A survey on knowledge graph embedding: Approaches, applications and benchmarks
  publication-title: Electronics
– year: 2018
  ident: b0095
  article-title: Graph Attention Networks
  publication-title: Proceedings of the 2018 International Conference on Learning Representations
– start-page: 22
  year: 2022
  end-page: 31
  ident: b0195
  article-title: TempCaps: a capsule network-based embedding model for temporal knowledge graph completion
  publication-title: Proceedings of the Sixth Workshop on Structured Prediction for NLP
– year: 2018
  ident: b0080
  article-title: RotatE: knowledge graph embedding by relational rotation in complex space
  publication-title: Proceedings of the 2018 International Conference on Learning Representations
– start-page: 583
  year: 2020
  end-page: 598
  ident: b0150
  article-title: Context-aware temporal knowledge graph embedding
  publication-title: Proceedings of the 2020 International Conference on Web Information Systems Engineering
– start-page: 196
  year: 2020
  end-page: 211
  ident: b0145
  article-title: TKGFrame: a two-phase framework for temporal-aware knowledge graph completion
  publication-title: Proceedings of the 2020 Asia-Pacific Web and Web-Age Information Management Joint International Conference on Web and Big Data
– reference: R. Goel, S.M. Kazemi, M. Brubaker, et al. Diachronic embedding for temporal knowledge graph completion. In Proceedings of the AAAI Conference on Artificial Intelligence. 2020. pp. 3988-3995.
– start-page: 5730
  year: 2020
  end-page: 5746
  ident: b0205
  article-title: TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion
  publication-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
– reference: Y. Lin, Z. Liu, M. Sun, et al. Learning entity and relation embeddings for knowledge graph completion. In Proceedings of the Twenty-ninth AAAI Conference on Artificial Intelligence. 2015. pp. 2181-2187.
– reference: R. Jenatton, N. Roux, A. Bordes, et al. A latent factor model for highly multi-relational data. Advances in neural information processing systems, 2012. 25. pp. 3176-3184.
– start-page: 1087
  year: 2018
  end-page: 1091
  ident: b0010
  article-title: Wdaqua-core1: a question answering service for rdf knowledge bases
  publication-title: Companion Proceedings of the Web Conference 2018
– reference: Z. Wang, J. Zhang, J. Feng, et al. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the 2014 AAAI Conference on Artificial Intelligence. 2014. pp. 1112-1119.
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  ident: 10.1016/j.ins.2023.119225_b0100
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Computation
  doi: 10.1162/neco_a_01199
– volume: 9
  start-page: 750
  issue: 5
  year: 2020
  ident: 10.1016/j.ins.2023.119225_b0060
  article-title: A survey on knowledge graph embedding: Approaches, applications and benchmarks
  publication-title: Electronics
  doi: 10.3390/electronics9050750
– year: 2019
  ident: 10.1016/j.ins.2023.119225_b0165
  article-title: Tensor decompositions for temporal knowledge base completion
– year: 2016
  ident: 10.1016/j.ins.2023.119225_b0185
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 251
  start-page: 109234
  year: 2022
  ident: 10.1016/j.ins.2023.119225_b0225
  article-title: Temporal knowledge graph representation learning with local and global evolutions
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109234
– ident: 10.1016/j.ins.2023.119225_b0160
  doi: 10.18653/v1/2020.emnlp-main.593
– volume: 28
  start-page: 159
  issue: 3
  year: 2021
  ident: 10.1016/j.ins.2023.119225_b0105
  article-title: Machine learning for financial transaction classification across companies using character-level word embeddings of text fields
  publication-title: Intelligent Systems in Accounting, Finance and Management.
  doi: 10.1002/isaf.1500
– ident: 10.1016/j.ins.2023.119225_b0170
  doi: 10.1609/aaai.v35i7.16802
– year: 2011
  ident: 10.1016/j.ins.2023.119225_b0025
  article-title: A three-way model for collective learning on multi-relational data
– start-page: 2350
  year: 2016
  ident: 10.1016/j.ins.2023.119225_b0140
  article-title: Encoding temporal information for time-aware link prediction
– ident: 10.1016/j.ins.2023.119225_b0020
– year: 2018
  ident: 10.1016/j.ins.2023.119225_b0080
  article-title: RotatE: knowledge graph embedding by relational rotation in complex space
– start-page: 593
  year: 2018
  ident: 10.1016/j.ins.2023.119225_b0135
  article-title: Modeling relational data with graph convolutional networks
– volume: 31
  year: 2018
  ident: 10.1016/j.ins.2023.119225_b0125
  article-title: Simple embedding for link prediction in knowledge graphs
  publication-title: Advances in neural information processing systems
– start-page: 2001
  year: 2018
  ident: 10.1016/j.ins.2023.119225_b0070
  article-title: Hyperplane-based temporally aware knowledge graph embedding
– ident: 10.1016/j.ins.2023.119225_b0040
  doi: 10.1609/aaai.v29i1.9491
– ident: 10.1016/j.ins.2023.119225_b0200
  doi: 10.18653/v1/2020.emnlp-main.305
– ident: 10.1016/j.ins.2023.119225_b0045
– ident: 10.1016/j.ins.2023.119225_b0085
– volume: 94
  start-page: 233
  issue: 2
  year: 2014
  ident: 10.1016/j.ins.2023.119225_b0050
  article-title: A semantic matching energy function for learning with multi-relational data
  publication-title: Machine Learning.
  doi: 10.1007/s10994-013-5363-6
– year: 2018
  ident: 10.1016/j.ins.2023.119225_b0095
  article-title: Graph Attention Networks
– ident: 10.1016/j.ins.2023.119225_b0175
  doi: 10.18653/v1/2020.emnlp-main.541
– start-page: 2569
  year: 2021
  ident: 10.1016/j.ins.2023.119225_b0220
  article-title: Temporal knowledge graph completion using a linear temporal regularizer and multivector embeddings
– start-page: 1087
  year: 2018
  ident: 10.1016/j.ins.2023.119225_b0010
  article-title: Wdaqua-core1: a question answering service for rdf knowledge bases
– start-page: 196
  year: 2020
  ident: 10.1016/j.ins.2023.119225_b0145
  article-title: TKGFrame: a two-phase framework for temporal-aware knowledge graph completion
– ident: 10.1016/j.ins.2023.119225_b0030
– start-page: 151
  year: 2019
  ident: 10.1016/j.ins.2023.119225_b0005
  article-title: Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences
– ident: 10.1016/j.ins.2023.119225_b0180
  doi: 10.1609/aaai.v35i5.16604
– ident: 10.1016/j.ins.2023.119225_b0155
  doi: 10.1609/aaai.v34i04.5815
– ident: 10.1016/j.ins.2023.119225_b0090
  doi: 10.1609/aaai.v32i1.11573
– start-page: 1955
  year: 2016
  ident: 10.1016/j.ins.2023.119225_b0075
  article-title: Holographic embeddings of knowledge graphs
– start-page: 701
  year: 2014
  ident: 10.1016/j.ins.2023.119225_b0130
  article-title: Online learning of social representations
– start-page: 5730
  year: 2020
  ident: 10.1016/j.ins.2023.119225_b0205
  article-title: TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion
– year: 2021
  ident: 10.1016/j.ins.2023.119225_b0215
  article-title: Explainable subgraph reasoning for forecasting on temporal knowledge graphs
– start-page: 583
  year: 2020
  ident: 10.1016/j.ins.2023.119225_b0150
  article-title: Context-aware temporal knowledge graph embedding
– ident: 10.1016/j.ins.2023.119225_b0015
– start-page: 926
  year: 2013
  ident: 10.1016/j.ins.2023.119225_b0055
  article-title: Reasoning with neural tensor networks for knowledge base completion
– year: 2020
  ident: 10.1016/j.ins.2023.119225_b0210
  article-title: Composition-based Multi-Relational Graph Convolutional Networks
– start-page: 4816
  year: 2018
  ident: 10.1016/j.ins.2023.119225_b0065
  article-title: Learning sequence encoders for temporal knowledge graph completion
– start-page: 687
  year: 2015
  ident: 10.1016/j.ins.2023.119225_b0115
  article-title: Knowledge graph embedding via dynamic mapping matrix
– volume: 30
  year: 2017
  ident: 10.1016/j.ins.2023.119225_b0190
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems
– start-page: 2071
  year: 2016
  ident: 10.1016/j.ins.2023.119225_b0120
  article-title: Complex embeddings for simple link prediction
– ident: 10.1016/j.ins.2023.119225_b0110
  doi: 10.18653/v1/D15-1082
– ident: 10.1016/j.ins.2023.119225_b0035
  doi: 10.1609/aaai.v28i1.8870
– start-page: 22
  year: 2022
  ident: 10.1016/j.ins.2023.119225_b0195
  article-title: TempCaps: a capsule network-based embedding model for temporal knowledge graph completion
SSID ssj0004766
Score 2.511304
Snippet Temporal knowledge graphs (TKGs) often suffer from incompleteness, leading to an important research issue: Temporal Knowledge Graph Completion (TKGC)....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119225
SubjectTerms Encoder-Decoder architecture
Graph Attention Network
Long Short-Term Memory Network
Temporal Knowledge Graph
Temporal Knowledge Graph Completion
Title T-GAE: A Timespan-aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion
URI https://dx.doi.org/10.1016/j.ins.2023.119225
Volume 642
WOSCitedRecordID wos001011529700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg48AOEwwQ2xjyAXEgMmp-OI65RahsgDRxKFLhEsWxO1pt6bSl28Rfz_PPtIUhduASVZHtRP0-v_fsvO8ZoVcwfyh4Uk4a85kxZxkRijFSw8yjA8nSlElz2AQ7Pi7GY_7F7SpdmuMEWNsWNzf8_L9CDfcAbC2dvQPcYVC4Ab8BdLgC7HD9N-DJYTm0gnOj74DpTuprneB1qItTR2XX2RRHoj2YjIZnQkkjbdHnohk5YzSyBatOo89-y8111uZDl-t2YM58HnzQQEbOpYZQ_Wi-0DCOgYYnrfeTZgvcoLuY_vwRuPXNCSGmq42-z9uTM1ch3G1QJGnIwOoFAwOily7LRje3NbWc2YwhzrT6598sut1cmMEyRBdXT9K3fdvV6tlrXi3kGvo0tlkFQ1R6iMoOcR9tJoxyMIWb5cfh-FMvp2X2E7d_b_8x3KQFrr3Hn8OZpRBl9Ahtu7UFLi0nHqN7qt1BW0sVJ3fQgdOp4Nd4CTTsLPwTpAx73uESr3IHG_jxGndw4A423MEwIvbcwYE7rnPPnafo64fh6P0RcSdxkCbhrCNFLZIJBJI8r3UGgGxEo2JJVUwFo2oCT1IioRNRFFKIOqe1yhQVCtyBynKeivQZ2mjnrXqOcNZwGXPdTMqsGeSwwMhNFC3jmlKZ7KKB_0OrxpWp16elnFa3ArmL3oQu57ZGy98aZx6lys0IGzxWwLjbu-3d5Rn76GE_EV6gje5ioQ7Qg-aqm15evHR0-wW7j5rE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T-GAE%3A+A+Timespan-aware+Graph+Attention-based+Embedding+Model+for+Temporal+Knowledge+Graph+Completion&rft.jtitle=Information+sciences&rft.au=Hou%2C+Xiangning&rft.au=Ma%2C+Ruizhe&rft.au=Yan%2C+Li&rft.au=Ma%2C+Zongmin&rft.date=2023-09-01&rft.issn=0020-0255&rft.volume=642&rft.spage=119225&rft_id=info:doi/10.1016%2Fj.ins.2023.119225&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2023_119225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon