Defective wafer detection using a denoising autoencoder for semiconductor manufacturing processes

Defective wafer detection is essential to avoid loss of yield due to process abnormalities in semiconductor manufacturing. For most complex processes in semiconductor manufacturing, various sensors are installed on equipment to capture process information and equipment conditions, including pressure...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced engineering informatics Ročník 46; s. 101166
Hlavní autori: Fan, Shu-Kai S., Hsu, Chia-Yu, Jen, Chih-Hung, Chen, Kuan-Lung, Juan, Li-Ting
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2020
Predmet:
ISSN:1474-0346, 1873-5320
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Defective wafer detection is essential to avoid loss of yield due to process abnormalities in semiconductor manufacturing. For most complex processes in semiconductor manufacturing, various sensors are installed on equipment to capture process information and equipment conditions, including pressure, gas flow, temperature, and power. Because defective wafers are rare in current practice, supervised learning methods usually perform poorly as there are not enough defective wafers for fault detection (FD). The existing methods of anomaly detection often rely on linear excursion detection, such as principal component analysis (PCA), k-nearest neighbor (kNN) classifier, or manual inspection of equipment sensor data. However, conventional methods of observing equipment sensor readings directly often cannot identify the critical features or statistics for detection of defective wafers. To bridge the gap between research-based knowledge and semiconductor practice, this paper proposes an anomaly detection method that uses a denoise autoencoder (DAE) to learn a main representation of normal wafers from equipment sensor readings and serve as the one-class classification model. Typically, the maximum reconstruction error (MaxRE) is used as a threshold to differentiate between normal and defective wafers. However, the threshold by MaxRE usually yields a high false positive rate of normal wafers due to the outliers in an imbalanced data set. To resolve this difficulty, the Hampel identifier, a robust method of outlier detection, is adopted to determine a new threshold for detecting defective wafers, called MaxRE without outlier (MaxREwoo). The proposed method is illustrated using an empirical study based on the real data of a wafer fabrication. Based on the experimental results, the proposed DAE shows great promise as a viable solution for on-line FD in semiconductor manufacturing.
AbstractList Defective wafer detection is essential to avoid loss of yield due to process abnormalities in semiconductor manufacturing. For most complex processes in semiconductor manufacturing, various sensors are installed on equipment to capture process information and equipment conditions, including pressure, gas flow, temperature, and power. Because defective wafers are rare in current practice, supervised learning methods usually perform poorly as there are not enough defective wafers for fault detection (FD). The existing methods of anomaly detection often rely on linear excursion detection, such as principal component analysis (PCA), k-nearest neighbor (kNN) classifier, or manual inspection of equipment sensor data. However, conventional methods of observing equipment sensor readings directly often cannot identify the critical features or statistics for detection of defective wafers. To bridge the gap between research-based knowledge and semiconductor practice, this paper proposes an anomaly detection method that uses a denoise autoencoder (DAE) to learn a main representation of normal wafers from equipment sensor readings and serve as the one-class classification model. Typically, the maximum reconstruction error (MaxRE) is used as a threshold to differentiate between normal and defective wafers. However, the threshold by MaxRE usually yields a high false positive rate of normal wafers due to the outliers in an imbalanced data set. To resolve this difficulty, the Hampel identifier, a robust method of outlier detection, is adopted to determine a new threshold for detecting defective wafers, called MaxRE without outlier (MaxREwoo). The proposed method is illustrated using an empirical study based on the real data of a wafer fabrication. Based on the experimental results, the proposed DAE shows great promise as a viable solution for on-line FD in semiconductor manufacturing.
ArticleNumber 101166
Author Fan, Shu-Kai S.
Hsu, Chia-Yu
Juan, Li-Ting
Jen, Chih-Hung
Chen, Kuan-Lung
Author_xml – sequence: 1
  givenname: Shu-Kai S.
  surname: Fan
  fullname: Fan, Shu-Kai S.
  organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan, Republic of China
– sequence: 2
  givenname: Chia-Yu
  surname: Hsu
  fullname: Hsu, Chia-Yu
  email: chiayuhsu@mail.ntut.edu.tw
  organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan, Republic of China
– sequence: 3
  givenname: Chih-Hung
  surname: Jen
  fullname: Jen, Chih-Hung
  organization: Department of Industrial Engineering and Management, Lunghwa University of Science and Technology, Guishan, Taoyuan City 33306, Taiwan, Republic of China
– sequence: 4
  givenname: Kuan-Lung
  surname: Chen
  fullname: Chen, Kuan-Lung
  organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan, Republic of China
– sequence: 5
  givenname: Li-Ting
  surname: Juan
  fullname: Juan, Li-Ting
  organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan, Republic of China
BookMark eNp9kMtOwzAQRS1UJErhA9jlB1L8SJ1ErFB5SpXYwNqaOGPkqrUr2yni73EIKxZdzdzRnJHmXJKZ8w4JuWF0ySiTt9sloF1yyn8zk_KMzFlTi3IlOJ3lvqqrkopKXpDLGLc0M01bzwk8oEGd7BGLLzAYih7TmL0rhmjdZwF54ryd-iF5dNr3ec_4UETcW-1dP-iU0x7cYECnIYy7h-A1xojxipwb2EW8_qsL8vH0-L5-KTdvz6_r-02peVunsmmhbwR0UndsxTljQhtWSWEMQteKSmi9AmDAWcU4k5UEJqA2NGPYcezEgrDprg4-xoBGHYLdQ_hWjKrRkdqq7EiNjtTkKDP1P0bbBOP3KYDdnSTvJhLzS0eLQUVtsxvsbcj-VO_tCfoHXAyFqw
CitedBy_id crossref_primary_10_3390_app11094113
crossref_primary_10_1109_ACCESS_2024_3375367
crossref_primary_10_1109_TASE_2022_3141426
crossref_primary_10_1016_j_cie_2021_107767
crossref_primary_10_1109_TSM_2025_3585570
crossref_primary_10_1109_TED_2023_3307051
crossref_primary_10_3390_a14060163
crossref_primary_10_1109_TNNLS_2024_3472456
crossref_primary_10_1109_JSEN_2023_3237621
crossref_primary_10_1080_0305215X_2021_1988587
crossref_primary_10_1109_TASE_2021_3106011
crossref_primary_10_3390_s24051622
crossref_primary_10_1007_s11227_022_04730_x
crossref_primary_10_1109_ACCESS_2023_3281407
crossref_primary_10_1080_00207543_2025_2532147
crossref_primary_10_3390_en15030774
crossref_primary_10_1007_s13755_023_00254_7
crossref_primary_10_1109_TSM_2023_3238555
crossref_primary_10_1007_s11042_021_11552_1
crossref_primary_10_3390_pr9091510
crossref_primary_10_1115_1_4065276
crossref_primary_10_1007_s11831_025_10324_6
crossref_primary_10_1080_21681015_2023_2279101
crossref_primary_10_1016_j_aei_2022_101534
crossref_primary_10_1080_0951192X_2024_2397821
crossref_primary_10_1109_TSM_2022_3146988
crossref_primary_10_7232_JKIIE_2024_50_3_189
crossref_primary_10_3390_s21165658
crossref_primary_10_1007_s10845_023_02303_0
crossref_primary_10_1016_j_measurement_2023_113195
crossref_primary_10_1109_TSM_2021_3137982
Cites_doi 10.1145/1390156.1390294
10.1016/j.compchemeng.2004.01.009
10.1109/TSM.2016.2628865
10.1162/089976600300015691
10.1016/j.mfglet.2013.09.005
10.1109/TASE.2011.2169405
10.1109/TIE.2011.2167110
10.1016/j.aei.2018.03.003
10.1016/j.patcog.2004.01.013
10.1109/TII.2013.2251891
10.1016/j.jprocont.2011.06.005
10.1016/j.aei.2018.06.004
10.1007/s10845-013-0808-0
10.1126/science.1127647
10.1109/87.974338
10.1016/j.asoc.2016.05.015
10.1016/j.automatica.2009.10.030
10.1109/TII.2009.2025124
10.1109/TSM.2018.2857818
10.1016/j.patcog.2016.03.028
10.1080/01621459.1993.10476339
10.1109/TIT.1967.1053964
10.1109/TSM.2009.2028215
10.1016/j.rcim.2011.06.007
10.1109/TIE.2012.2202358
10.1109/TSM.2017.2676245
10.1109/TIE.2011.2160138
10.1007/s10696-012-9161-4
10.1007/s10845-013-0785-3
10.1002/aic.10035
10.1016/j.neunet.2014.09.003
10.1016/j.jprocont.2009.07.011
10.1109/TSM.2019.2916374
10.1016/j.jprocont.2004.02.001
10.1109/TSM.2010.2065531
10.1109/TII.2009.2033181
10.1080/08982112.2016.1193614
10.1016/j.aei.2019.100944
10.1109/TSM.2014.2374339
10.1080/01621459.1974.10482962
10.1109/TSM.2007.907607
10.1016/j.asoc.2017.10.029
10.1109/TASE.2016.2545744
10.1080/0951192X.2013.812803
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aei.2020.101166
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-5320
ExternalDocumentID 10_1016_j_aei_2020_101166
S1474034620301373
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
UHS
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-89ad83ab6cb1522113cf1463ffeab9343cc5aa1a214121646a13a7f09adeb2eb3
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607575400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-0346
IngestDate Sat Nov 29 07:03:41 EST 2025
Tue Nov 18 22:17:49 EST 2025
Fri Feb 23 02:48:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Semiconductor
Hampel identifier
Autoencoder
Anomaly detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-89ad83ab6cb1522113cf1463ffeab9343cc5aa1a214121646a13a7f09adeb2eb3
ParticipantIDs crossref_primary_10_1016_j_aei_2020_101166
crossref_citationtrail_10_1016_j_aei_2020_101166
elsevier_sciencedirect_doi_10_1016_j_aei_2020_101166
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Advanced engineering informatics
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mahadevan, Shah (b0105) 2009; 19
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0175) 2014; 15
Hsu, Liu (b0155) 2020
Yang, Lee (b0115) 2012; 28
Erfani, Rajasegarar, Karunasekera, Leckie (b0270) 2016; 58
Dou, Zhou (b0065) 2016; 46
Andrew (b0210) 2011
Rostami, Blue, Yugma (b0040) 2018; 68
Chen, Blue (b0030) 2009; 22
Fan, Hsu, Tsai, He, Cheng (b0045) 2020
Cheng, Huang, Kao (b0055) 2012; 9
Vong, Wong, Ip (b0060) 2013; 60
Oh, Jung (b0165) 2004; 37
Choqueuse, Benbouzid, Amirat, Turri (b0075) 2012; 59
Li, Qin, Zhou (b0080) 2010; 46
Verdier, Ferreira (b0135) 2011; 24
Zhang, Gao, Li, Feng (b0145) 2019; 32
Lee, Lapira, Bagheri, Kao (b0025) 2013; 1
Yu, Lin, Chien (b0035) 2014; 25
Wilcox (b0260) 2003
Hampel (b0220) 1974; 69
Japkowicz, Hanson, Gluck (b0245) 2000; 12
Hinton, Vinyals, Dean (b0200) 2015; 14
Li, Han, Kang (b0110) 2013; 26
Singaravel, Suykens, Geyer (b0230) 2018; 38
Hinton, Salakhutdinov (b0170) 2006; 313
Zhou, Wen, Yang (b0140) 2015; 28
He, Wang (b0130) 2007; 20
Zhang, Zhou, Qin, Chai (b0085) 2010; 6
Lee, Lapira (b0020) 2013; 20
Manevitz, Yousef (b0280) 2001; 2
Lee, Kim, Kim (b0190) 2016; 30
Vincent, Larochelle, Lajoie, Bengio, Manzagol (b0205) 2010; 11
Muradore, Fiorini (b0095) 2012; 59
Chien, Hsu, Chen (b0015) 2013; 25
Manevitz, Yousef (b0275) 2007; 70
Pearson (b0250) 2002; 10
Cover, Hart (b0125) 1967; 13
Rashid, Louis (b0235) 2019; 42
Hsu (b0010) 2014; 25
Wang, Liu, Srinivasan (b0090) 2010; 6
Wang, Liu (b0225) 2018; 36
Fan, Jen, Lee (b0290) 2017; 29
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P. A., Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning (ICML’08). Helsinki, Finland. July 05 – 09 (2008) 1096-1103.
Fan, Yao, Chang, Jen (b0285) 2011; 21
He, Wang, Liu, Zhou (b0100) 2013; 9
Miletic, Quinn, Dudzic, Vaculik, Champagne (b0050) 2004; 14
Erhan, Bengio, Courville, Manzagol, Vincent, Bengio (b0180) 2010; 11
Liu, Shah, Jiang (b0255) 2004; 28
Moore (b0005) 1965; 38
Gertler, Cao (b0070) 2004; 50
Lee, Cheon, Kim (b0120) 2017; 30
Liou, Cheng, Liou, Liou (b0195) 2014; 139
D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114. (2013).
Jang, Min, Kim (b0185) 2019; 32
Davies, Gather (b0265) 1993; 88
Schmidhuber (b0160) 2015; 61
Rato, Blue, Pinaton, Reis (b0150) 2017; 14
Lee (10.1016/j.aei.2020.101166_b0190) 2016; 30
Muradore (10.1016/j.aei.2020.101166_b0095) 2012; 59
Vong (10.1016/j.aei.2020.101166_b0060) 2013; 60
Li (10.1016/j.aei.2020.101166_b0080) 2010; 46
Hinton (10.1016/j.aei.2020.101166_b0170) 2006; 313
Srivastava (10.1016/j.aei.2020.101166_b0175) 2014; 15
Jang (10.1016/j.aei.2020.101166_b0185) 2019; 32
Fan (10.1016/j.aei.2020.101166_b0290) 2017; 29
Lee (10.1016/j.aei.2020.101166_b0025) 2013; 1
Choqueuse (10.1016/j.aei.2020.101166_b0075) 2012; 59
Wilcox (10.1016/j.aei.2020.101166_b0260) 2003
Chien (10.1016/j.aei.2020.101166_b0015) 2013; 25
Liou (10.1016/j.aei.2020.101166_b0195) 2014; 139
Davies (10.1016/j.aei.2020.101166_b0265) 1993; 88
Zhang (10.1016/j.aei.2020.101166_b0085) 2010; 6
Mahadevan (10.1016/j.aei.2020.101166_b0105) 2009; 19
Verdier (10.1016/j.aei.2020.101166_b0135) 2011; 24
Schmidhuber (10.1016/j.aei.2020.101166_b0160) 2015; 61
Rato (10.1016/j.aei.2020.101166_b0150) 2017; 14
Wang (10.1016/j.aei.2020.101166_b0090) 2010; 6
Liu (10.1016/j.aei.2020.101166_b0255) 2004; 28
Manevitz (10.1016/j.aei.2020.101166_b0275) 2007; 70
Miletic (10.1016/j.aei.2020.101166_b0050) 2004; 14
Singaravel (10.1016/j.aei.2020.101166_b0230) 2018; 38
Hampel (10.1016/j.aei.2020.101166_b0220) 1974; 69
Rashid (10.1016/j.aei.2020.101166_b0235) 2019; 42
Lee (10.1016/j.aei.2020.101166_b0020) 2013; 20
Hinton (10.1016/j.aei.2020.101166_b0200) 2015; 14
Rostami (10.1016/j.aei.2020.101166_b0040) 2018; 68
Manevitz (10.1016/j.aei.2020.101166_b0280) 2001; 2
Hsu (10.1016/j.aei.2020.101166_b0155) 2020
Japkowicz (10.1016/j.aei.2020.101166_b0245) 2000; 12
Wang (10.1016/j.aei.2020.101166_b0225) 2018; 36
He (10.1016/j.aei.2020.101166_b0130) 2007; 20
Zhou (10.1016/j.aei.2020.101166_b0140) 2015; 28
Zhang (10.1016/j.aei.2020.101166_b0145) 2019; 32
Erhan (10.1016/j.aei.2020.101166_b0180) 2010; 11
Lee (10.1016/j.aei.2020.101166_b0120) 2017; 30
Moore (10.1016/j.aei.2020.101166_b0005) 1965; 38
10.1016/j.aei.2020.101166_b0215
Pearson (10.1016/j.aei.2020.101166_b0250) 2002; 10
Erfani (10.1016/j.aei.2020.101166_b0270) 2016; 58
He (10.1016/j.aei.2020.101166_b0100) 2013; 9
Yang (10.1016/j.aei.2020.101166_b0115) 2012; 28
Cheng (10.1016/j.aei.2020.101166_b0055) 2012; 9
Yu (10.1016/j.aei.2020.101166_b0035) 2014; 25
Dou (10.1016/j.aei.2020.101166_b0065) 2016; 46
Fan (10.1016/j.aei.2020.101166_b0285) 2011; 21
Gertler (10.1016/j.aei.2020.101166_b0070) 2004; 50
Andrew (10.1016/j.aei.2020.101166_b0210) 2011
Fan (10.1016/j.aei.2020.101166_b0045) 2020
Hsu (10.1016/j.aei.2020.101166_b0010) 2014; 25
Li (10.1016/j.aei.2020.101166_b0110) 2013; 26
10.1016/j.aei.2020.101166_b0240
Cover (10.1016/j.aei.2020.101166_b0125) 1967; 13
Chen (10.1016/j.aei.2020.101166_b0030) 2009; 22
Vincent (10.1016/j.aei.2020.101166_b0205) 2010; 11
Oh (10.1016/j.aei.2020.101166_b0165) 2004; 37
References_xml – volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0175
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 1670
  year: 2013
  end-page: 1679
  ident: b0100
  article-title: Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach
  publication-title: IEEE Trans. Ind. Informat.
– volume: 42
  year: 2019
  ident: b0235
  article-title: Times-series data augmentation and deep learning for construction equipment activity recognition
  publication-title: Adv. Eng. Inform.
– volume: 46
  start-page: 459
  year: 2016
  end-page: 468
  ident: b0065
  article-title: Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b0205
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0170
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Sci.
– volume: 12
  start-page: 531
  year: 2000
  end-page: 545
  ident: b0245
  article-title: Nonlinear autoassociation is not equivalent to PCA
  publication-title: Neural Comput.
– volume: 28
  start-page: 66
  year: 2012
  end-page: 74
  ident: b0115
  article-title: Bayesian Belief Network-based approach for diagnostics and prognostics of semiconductor manufacturing systems
  publication-title: Robot. Comput.-Integr. Manuf.
– reference: Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P. A., Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning (ICML’08). Helsinki, Finland. July 05 – 09 (2008) 1096-1103.
– volume: 6
  start-page: 11
  year: 2010
  end-page: 17
  ident: b0090
  article-title: Data-driven soft sensor approach for quality prediction in a refining process
  publication-title: IEEE Trans. Ind. Informat.
– volume: 69
  start-page: 383
  year: 1974
  end-page: 393
  ident: b0220
  article-title: The influence curve and its role in robust estimation
  publication-title: J. Am. Stat. Assoc.
– volume: 58
  start-page: 121
  year: 2016
  end-page: 134
  ident: b0270
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Patt. Recog.
– volume: 20
  start-page: 13
  year: 2013
  end-page: 24
  ident: b0020
  article-title: Predictive factories: the next transformation
  publication-title: Manuf. Leadersh. J.
– volume: 28
  start-page: 70
  year: 2015
  end-page: 79
  ident: b0140
  article-title: Fault detection using random projections and k-nearest neighbor rule for semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 30
  start-page: 135
  year: 2017
  end-page: 142
  ident: b0120
  article-title: A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 29
  start-page: 226
  year: 2017
  end-page: 243
  ident: b0290
  article-title: Modeling and monitoring nonlinear profile of heat treatment process data by using a hyperbolic tangent function approach
  publication-title: Qual. Eng.
– volume: 20
  start-page: 345
  year: 2007
  end-page: 354
  ident: b0130
  article-title: Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 22
  start-page: 522
  year: 2009
  end-page: 535
  ident: b0030
  article-title: Recipe-independent indicator for tool health diagnosis and predictive maintenance
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: b0125
  article-title: Nearest neighbour pattern classification
  publication-title: IEEE Trans. Inf. Theory
– volume: 11
  start-page: 625
  year: 2010
  end-page: 660
  ident: b0180
  article-title: Why does unsupervised pre-training help deep learning
  publication-title: J. Mach. Learn. Res.
– year: 2003
  ident: b0260
  article-title: Applying contemporary statistical techniques
– volume: 24
  start-page: 59
  year: 2011
  end-page: 68
  ident: b0135
  article-title: Adaptive Mahalanobis distance and k-nearest neighbor rule for fault detection in semiconductor manufacturing
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 37
  start-page: 1311
  year: 2004
  end-page: 1314
  ident: b0165
  article-title: GPU implementation of neural networks
  publication-title: Patt. Recog.
– volume: 139
  start-page: 84
  year: 2014
  end-page: 96
  ident: b0195
  article-title: Autoencoder for words
  publication-title: Neuro.
– volume: 14
  start-page: 38
  year: 2015
  end-page: 39
  ident: b0200
  article-title: Distilling the knowledge in a neural network
  publication-title: Comput. Sci.
– volume: 32
  start-page: 75
  year: 2019
  end-page: 81
  ident: b0145
  article-title: Fault detection strategy based on weighted distance of k nearest neighbors for semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 14
  start-page: 821
  year: 2004
  end-page: 836
  ident: b0050
  article-title: An industrial perspective on implementing on-line applications of multivariate statistics
  publication-title: J. Process Control.
– volume: 60
  start-page: 3372
  year: 2013
  end-page: 3385
  ident: b0060
  article-title: A new framework of simultaneous-fault diagnosis using pairwise probabilistic multi-label classification for time-dependent patterns
  publication-title: IEEE Trans. Ind. Electron.
– volume: 46
  start-page: 204
  year: 2010
  end-page: 210
  ident: b0080
  article-title: Geometric properties of partial least squares for process monitoring
  publication-title: Automatica
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b0160
  article-title: Deep learning in neural networks: an overview
  publication-title: Neur. Netwo.
– volume: 70
  start-page: 1466
  year: 2007
  end-page: 1481
  ident: b0275
  article-title: One-class document classification via neural networks
  publication-title: Neuro.
– volume: 21
  start-page: 1217
  year: 2011
  end-page: 1229
  ident: b0285
  article-title: Statistical monitoring of nonlinear profiles by using piecewise linear approximation
  publication-title: J. Process Control
– volume: 14
  start-page: 894
  year: 2017
  end-page: 904
  ident: b0150
  article-title: Translation invariant multiscale energy-based PCA for monitoring batch processes in semiconductor manufacturing
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 36
  start-page: 112
  year: 2018
  end-page: 119
  ident: b0225
  article-title: Soft sensor based on stacked auto-encoder deep neural network for air preheater rotor deformation prediction
  publication-title: Adv. Eng. Inform.
– volume: 19
  start-page: 1627
  year: 2009
  end-page: 1639
  ident: b0105
  article-title: Fault detection and diagnosis in process data using one-class support vector machines
  publication-title: J. Process Control
– volume: 26
  start-page: 1161
  year: 2013
  end-page: 1171
  ident: b0110
  article-title: Fault diagnosis expert system of semiconductor manufacturing equipment using a Bayesian network
  publication-title: Int. J. Computer Integr. Manuf.
– volume: 50
  start-page: 388
  year: 2004
  end-page: 402
  ident: b0070
  article-title: PCA-based fault diagnosis in the presence of control and dynamics
  publication-title: AICHE J.
– volume: 25
  start-page: 933
  year: 2014
  end-page: 943
  ident: b0035
  article-title: Hierarchical indices to detect equipment condition changes with high dimensional data for semiconductor manufacturing
  publication-title: J. Intell. Manuf.
– volume: 10
  start-page: 55
  year: 2002
  end-page: 63
  ident: b0250
  article-title: Outliers in process modeling and identification
  publication-title: IEEE Trans. Contr. Syst. Tech.
– volume: 38
  start-page: 114
  year: 1965
  end-page: 117
  ident: b0005
  article-title: Cramming more components onto integrated circuits
  publication-title: Electronics
– volume: 59
  start-page: 3167
  year: 2012
  end-page: 3175
  ident: b0095
  article-title: A PLS-based statistical approach for fault detection and isolation of robotic manipulators
  publication-title: IEEE Trans. Ind. Electron.
– volume: 30
  start-page: 23
  year: 2016
  end-page: 31
  ident: b0190
  article-title: A deep learning model for robust wafer fault monitoring with sensor measurement noise
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 28
  start-page: 1635
  year: 2004
  end-page: 1647
  ident: b0255
  article-title: On-line outlier detection and data cleaning
  publication-title: Comput. Chem. Eng.
– volume: 59
  start-page: 2014
  year: 2012
  end-page: 2023
  ident: b0075
  article-title: Diagnosis of three-phase electrical machines using multidimensional demodulation techniques
  publication-title: IEEE Trans. Ind. Electron.
– volume: 9
  start-page: 181
  year: 2012
  end-page: 188
  ident: b0055
  article-title: Developing an automatic virtual metrology system
  publication-title: IEEE Trans. Autom. Sci. Eng.
– year: 2011
  ident: b0210
  article-title: Sparse autoencoder, CS294A Lecture
  publication-title: Notes
– reference: D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114. (2013).
– volume: 32
  start-page: 293
  year: 2019
  end-page: 301
  ident: b0185
  article-title: Denoised residual trace analysis for monitoring semiconductor process faults
  publication-title: IEEE Trans. Semicond. Manuf.
– start-page: 1
  year: 2020
  end-page: 14
  ident: b0155
  article-title: Multiple time-series convolutional neural network for Fault detection and diagnosis and Empirical Study in Chemical Vapor Deposition Process”
  publication-title: J. Intell. Manuf.
– volume: 6
  start-page: 3
  year: 2010
  end-page: 10
  ident: b0085
  article-title: Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares
  publication-title: IEEE Trans. Ind. Informat.
– volume: 1
  start-page: 38
  year: 2013
  end-page: 41
  ident: b0025
  article-title: Recent advances and trends in predictive manufacturing systems in big data environment
  publication-title: Manuf. Lett.
– volume: 2
  start-page: 139
  year: 2001
  end-page: 154
  ident: b0280
  article-title: One-class SVMs for document classification
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 81
  year: 2018
  end-page: 90
  ident: b0230
  article-title: Deep-learning neural-network architectures and methods: Using component-based models in building-design energy prediction
  publication-title: Adv. Eng. Inform.
– start-page: 1
  year: 2020
  end-page: 12
  ident: b0045
  article-title: Data-driven approach for fault detection and diagnostic in semiconductor manufacturing
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 25
  start-page: 945
  year: 2014
  end-page: 960
  ident: b0010
  article-title: Integrated data envelopment analysis and neural network model for forecasting performance of wafer fabrication operations
  publication-title: J. Intell. Manuf.
– volume: 68
  start-page: 972
  year: 2018
  end-page: 989
  ident: b0040
  article-title: Automatic equipment fault fingerprint extraction for the fault diagnostic on the batch process data
  publication-title: Appl. Soft Comput.
– volume: 25
  start-page: 367
  year: 2013
  end-page: 388
  ident: b0015
  article-title: Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence
  publication-title: Flex. Serv. Manuf. J.
– volume: 88
  start-page: 782
  year: 1993
  end-page: 792
  ident: b0265
  article-title: The identification of multiple outliers
  publication-title: J. Am. Stat. Assoc.
– ident: 10.1016/j.aei.2020.101166_b0240
  doi: 10.1145/1390156.1390294
– volume: 2
  start-page: 139
  year: 2001
  ident: 10.1016/j.aei.2020.101166_b0280
  article-title: One-class SVMs for document classification
  publication-title: J. Mach. Learn. Res.
– volume: 28
  start-page: 1635
  issue: 9
  year: 2004
  ident: 10.1016/j.aei.2020.101166_b0255
  article-title: On-line outlier detection and data cleaning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2004.01.009
– volume: 30
  start-page: 23
  issue: 1
  year: 2016
  ident: 10.1016/j.aei.2020.101166_b0190
  article-title: A deep learning model for robust wafer fault monitoring with sensor measurement noise
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2016.2628865
– volume: 12
  start-page: 531
  issue: 3
  year: 2000
  ident: 10.1016/j.aei.2020.101166_b0245
  article-title: Nonlinear autoassociation is not equivalent to PCA
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015691
– volume: 1
  start-page: 38
  issue: 1
  year: 2013
  ident: 10.1016/j.aei.2020.101166_b0025
  article-title: Recent advances and trends in predictive manufacturing systems in big data environment
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2013.09.005
– volume: 9
  start-page: 181
  issue: 1
  year: 2012
  ident: 10.1016/j.aei.2020.101166_b0055
  article-title: Developing an automatic virtual metrology system
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2011.2169405
– volume: 59
  start-page: 3167
  issue: 8
  year: 2012
  ident: 10.1016/j.aei.2020.101166_b0095
  article-title: A PLS-based statistical approach for fault detection and isolation of robotic manipulators
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2167110
– volume: 36
  start-page: 112
  year: 2018
  ident: 10.1016/j.aei.2020.101166_b0225
  article-title: Soft sensor based on stacked auto-encoder deep neural network for air preheater rotor deformation prediction
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.03.003
– volume: 37
  start-page: 1311
  issue: 6
  year: 2004
  ident: 10.1016/j.aei.2020.101166_b0165
  article-title: GPU implementation of neural networks
  publication-title: Patt. Recog.
  doi: 10.1016/j.patcog.2004.01.013
– start-page: 1
  year: 2020
  ident: 10.1016/j.aei.2020.101166_b0045
  article-title: Data-driven approach for fault detection and diagnostic in semiconductor manufacturing
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 70
  start-page: 1466
  issue: 7
  year: 2007
  ident: 10.1016/j.aei.2020.101166_b0275
  article-title: One-class document classification via neural networks
  publication-title: Neuro.
– volume: 9
  start-page: 1670
  issue: 3
  year: 2013
  ident: 10.1016/j.aei.2020.101166_b0100
  article-title: Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2013.2251891
– volume: 21
  start-page: 1217
  issue: 8
  year: 2011
  ident: 10.1016/j.aei.2020.101166_b0285
  article-title: Statistical monitoring of nonlinear profiles by using piecewise linear approximation
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.06.005
– volume: 38
  start-page: 81
  year: 2018
  ident: 10.1016/j.aei.2020.101166_b0230
  article-title: Deep-learning neural-network architectures and methods: Using component-based models in building-design energy prediction
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.06.004
– volume: 25
  start-page: 945
  issue: 5
  year: 2014
  ident: 10.1016/j.aei.2020.101166_b0010
  article-title: Integrated data envelopment analysis and neural network model for forecasting performance of wafer fabrication operations
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-013-0808-0
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.aei.2020.101166_b0170
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Sci.
  doi: 10.1126/science.1127647
– volume: 10
  start-page: 55
  issue: 1
  year: 2002
  ident: 10.1016/j.aei.2020.101166_b0250
  article-title: Outliers in process modeling and identification
  publication-title: IEEE Trans. Contr. Syst. Tech.
  doi: 10.1109/87.974338
– volume: 46
  start-page: 459
  year: 2016
  ident: 10.1016/j.aei.2020.101166_b0065
  article-title: Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.05.015
– volume: 46
  start-page: 204
  issue: 1
  year: 2010
  ident: 10.1016/j.aei.2020.101166_b0080
  article-title: Geometric properties of partial least squares for process monitoring
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.10.030
– volume: 6
  start-page: 11
  issue: 1
  year: 2010
  ident: 10.1016/j.aei.2020.101166_b0090
  article-title: Data-driven soft sensor approach for quality prediction in a refining process
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2009.2025124
– start-page: 1
  year: 2020
  ident: 10.1016/j.aei.2020.101166_b0155
  article-title: Multiple time-series convolutional neural network for Fault detection and diagnosis and Empirical Study in Chemical Vapor Deposition Process”
  publication-title: J. Intell. Manuf.
– volume: 32
  start-page: 75
  issue: 1
  year: 2019
  ident: 10.1016/j.aei.2020.101166_b0145
  article-title: Fault detection strategy based on weighted distance of k nearest neighbors for semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2018.2857818
– volume: 58
  start-page: 121
  year: 2016
  ident: 10.1016/j.aei.2020.101166_b0270
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Patt. Recog.
  doi: 10.1016/j.patcog.2016.03.028
– volume: 88
  start-page: 782
  year: 1993
  ident: 10.1016/j.aei.2020.101166_b0265
  article-title: The identification of multiple outliers
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476339
– volume: 11
  start-page: 625
  year: 2010
  ident: 10.1016/j.aei.2020.101166_b0180
  article-title: Why does unsupervised pre-training help deep learning
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 21
  year: 1967
  ident: 10.1016/j.aei.2020.101166_b0125
  article-title: Nearest neighbour pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.aei.2020.101166_b0205
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 114
  issue: 8
  year: 1965
  ident: 10.1016/j.aei.2020.101166_b0005
  article-title: Cramming more components onto integrated circuits
  publication-title: Electronics
– volume: 22
  start-page: 522
  issue: 4
  year: 2009
  ident: 10.1016/j.aei.2020.101166_b0030
  article-title: Recipe-independent indicator for tool health diagnosis and predictive maintenance
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2009.2028215
– volume: 28
  start-page: 66
  issue: 1
  year: 2012
  ident: 10.1016/j.aei.2020.101166_b0115
  article-title: Bayesian Belief Network-based approach for diagnostics and prognostics of semiconductor manufacturing systems
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2011.06.007
– volume: 60
  start-page: 3372
  issue: 8
  year: 2013
  ident: 10.1016/j.aei.2020.101166_b0060
  article-title: A new framework of simultaneous-fault diagnosis using pairwise probabilistic multi-label classification for time-dependent patterns
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2202358
– volume: 30
  start-page: 135
  issue: 2
  year: 2017
  ident: 10.1016/j.aei.2020.101166_b0120
  article-title: A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2017.2676245
– volume: 59
  start-page: 2014
  issue: 4
  year: 2012
  ident: 10.1016/j.aei.2020.101166_b0075
  article-title: Diagnosis of three-phase electrical machines using multidimensional demodulation techniques
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2160138
– volume: 25
  start-page: 367
  issue: 3
  year: 2013
  ident: 10.1016/j.aei.2020.101166_b0015
  article-title: Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence
  publication-title: Flex. Serv. Manuf. J.
  doi: 10.1007/s10696-012-9161-4
– volume: 25
  start-page: 933
  issue: 5
  year: 2014
  ident: 10.1016/j.aei.2020.101166_b0035
  article-title: Hierarchical indices to detect equipment condition changes with high dimensional data for semiconductor manufacturing
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-013-0785-3
– volume: 50
  start-page: 388
  issue: 2
  year: 2004
  ident: 10.1016/j.aei.2020.101166_b0070
  article-title: PCA-based fault diagnosis in the presence of control and dynamics
  publication-title: AICHE J.
  doi: 10.1002/aic.10035
– year: 2003
  ident: 10.1016/j.aei.2020.101166_b0260
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.aei.2020.101166_b0175
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.aei.2020.101166_b0160
  article-title: Deep learning in neural networks: an overview
  publication-title: Neur. Netwo.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 139
  start-page: 84
  year: 2014
  ident: 10.1016/j.aei.2020.101166_b0195
  article-title: Autoencoder for words
  publication-title: Neuro.
– volume: 19
  start-page: 1627
  issue: 10
  year: 2009
  ident: 10.1016/j.aei.2020.101166_b0105
  article-title: Fault detection and diagnosis in process data using one-class support vector machines
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.07.011
– ident: 10.1016/j.aei.2020.101166_b0215
– volume: 32
  start-page: 293
  issue: 3
  year: 2019
  ident: 10.1016/j.aei.2020.101166_b0185
  article-title: Denoised residual trace analysis for monitoring semiconductor process faults
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2019.2916374
– volume: 14
  start-page: 821
  year: 2004
  ident: 10.1016/j.aei.2020.101166_b0050
  article-title: An industrial perspective on implementing on-line applications of multivariate statistics
  publication-title: J. Process Control.
  doi: 10.1016/j.jprocont.2004.02.001
– volume: 24
  start-page: 59
  issue: 1
  year: 2011
  ident: 10.1016/j.aei.2020.101166_b0135
  article-title: Adaptive Mahalanobis distance and k-nearest neighbor rule for fault detection in semiconductor manufacturing
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2010.2065531
– volume: 6
  start-page: 3
  issue: 1
  year: 2010
  ident: 10.1016/j.aei.2020.101166_b0085
  article-title: Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2009.2033181
– volume: 29
  start-page: 226
  issue: 2
  year: 2017
  ident: 10.1016/j.aei.2020.101166_b0290
  article-title: Modeling and monitoring nonlinear profile of heat treatment process data by using a hyperbolic tangent function approach
  publication-title: Qual. Eng.
  doi: 10.1080/08982112.2016.1193614
– volume: 42
  year: 2019
  ident: 10.1016/j.aei.2020.101166_b0235
  article-title: Times-series data augmentation and deep learning for construction equipment activity recognition
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2019.100944
– volume: 20
  start-page: 13
  issue: 1
  year: 2013
  ident: 10.1016/j.aei.2020.101166_b0020
  article-title: Predictive factories: the next transformation
  publication-title: Manuf. Leadersh. J.
– volume: 28
  start-page: 70
  issue: 1
  year: 2015
  ident: 10.1016/j.aei.2020.101166_b0140
  article-title: Fault detection using random projections and k-nearest neighbor rule for semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2014.2374339
– volume: 14
  start-page: 38
  issue: 7
  year: 2015
  ident: 10.1016/j.aei.2020.101166_b0200
  article-title: Distilling the knowledge in a neural network
  publication-title: Comput. Sci.
– volume: 69
  start-page: 383
  issue: 346
  year: 1974
  ident: 10.1016/j.aei.2020.101166_b0220
  article-title: The influence curve and its role in robust estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1974.10482962
– volume: 20
  start-page: 345
  issue: 4
  year: 2007
  ident: 10.1016/j.aei.2020.101166_b0130
  article-title: Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2007.907607
– volume: 68
  start-page: 972
  year: 2018
  ident: 10.1016/j.aei.2020.101166_b0040
  article-title: Automatic equipment fault fingerprint extraction for the fault diagnostic on the batch process data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.10.029
– year: 2011
  ident: 10.1016/j.aei.2020.101166_b0210
  article-title: Sparse autoencoder, CS294A Lecture
  publication-title: Notes
– volume: 14
  start-page: 894
  issue: 2
  year: 2017
  ident: 10.1016/j.aei.2020.101166_b0150
  article-title: Translation invariant multiscale energy-based PCA for monitoring batch processes in semiconductor manufacturing
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2545744
– volume: 26
  start-page: 1161
  year: 2013
  ident: 10.1016/j.aei.2020.101166_b0110
  article-title: Fault diagnosis expert system of semiconductor manufacturing equipment using a Bayesian network
  publication-title: Int. J. Computer Integr. Manuf.
  doi: 10.1080/0951192X.2013.812803
SSID ssj0016897
Score 2.4774036
Snippet Defective wafer detection is essential to avoid loss of yield due to process abnormalities in semiconductor manufacturing. For most complex processes in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101166
SubjectTerms Anomaly detection
Autoencoder
Deep learning
Hampel identifier
Semiconductor
Title Defective wafer detection using a denoising autoencoder for semiconductor manufacturing processes
URI https://dx.doi.org/10.1016/j.aei.2020.101166
Volume 46
WOSCitedRecordID wos000607575400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5320
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016897
  issn: 1474-0346
  databaseCode: AIEXJ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFLWmQxfd9F2VPpAXXXXkURJ7EmeJeIiWClUqlaar6NpxRBBkRkxC-QK-Gzt-zAwCVBbdRIkTO1Hu0bV9fXwuQl9SJXJWCk54AhlhqaxILjJDy6GTqtQg4iXvk01kR0d8Os1_DgbXfi_M5VnWNPzqKp__V1PrMm1ss3X2EeYOjeoCfa6Nro_a7Pr4T4bfVZV1YqO_UPX5v1tl84F3fVwAdEkzq-15186MkqURlDB8w4Whys8aowGrr86h6czGB7uTcW63FDjOoReu9RQCtdQ1HDkx1naFSL_v4qwnHTmEevRrHOC06Oyqfw3kTxf4PMpxAeoTctC5zrUnIdgbhx005Ie_4YIWeobq6W_ez7KMkYi66KNzxGzVk8ZmhSi908nbeMPpGFQ9No2Pl8-uC2rf6ugC_dAz204L3URhmihsE0_QRpJNcj5EG9vf9qbfw3pUym2aHv_Zfn28Zwre-o67Rzgro5bjl-i5m27gbQuTV2igmtfohZt6YOfYF28QBNTgHjU4oAb3qMGAA2rwCmqwtjReQw1eQw0OqHmLfu_vHe8cEJd9g8gkz1rCcyg5BZFKocd4SRxTWelulVaVApFTRqWcAMSQxCxOjEodxBSyKtLVlEiUoO_QsJk16j3CaQRGNjCNVQmMQSQYlFJPzSmdRILKfBNF_o8V0knTmwwpZ8W9ltpEX0OVudVleehh5s1QuIGlHTAWGlL3V_vwmHd8RM-WQP-Ehu1Fpz6jp_KyrRcXWw5PNyREmtg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defective+wafer+detection+using+a+denoising+autoencoder+for+semiconductor+manufacturing+processes&rft.jtitle=Advanced+engineering+informatics&rft.au=Fan%2C+Shu-Kai+S.&rft.au=Hsu%2C+Chia-Yu&rft.au=Jen%2C+Chih-Hung&rft.au=Chen%2C+Kuan-Lung&rft.date=2020-10-01&rft.issn=1474-0346&rft.volume=46&rft.spage=101166&rft_id=info:doi/10.1016%2Fj.aei.2020.101166&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aei_2020_101166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon