Defective wafer detection using a denoising autoencoder for semiconductor manufacturing processes
Defective wafer detection is essential to avoid loss of yield due to process abnormalities in semiconductor manufacturing. For most complex processes in semiconductor manufacturing, various sensors are installed on equipment to capture process information and equipment conditions, including pressure...
Uložené v:
| Vydané v: | Advanced engineering informatics Ročník 46; s. 101166 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.10.2020
|
| Predmet: | |
| ISSN: | 1474-0346, 1873-5320 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Defective wafer detection is essential to avoid loss of yield due to process abnormalities in semiconductor manufacturing. For most complex processes in semiconductor manufacturing, various sensors are installed on equipment to capture process information and equipment conditions, including pressure, gas flow, temperature, and power. Because defective wafers are rare in current practice, supervised learning methods usually perform poorly as there are not enough defective wafers for fault detection (FD). The existing methods of anomaly detection often rely on linear excursion detection, such as principal component analysis (PCA), k-nearest neighbor (kNN) classifier, or manual inspection of equipment sensor data. However, conventional methods of observing equipment sensor readings directly often cannot identify the critical features or statistics for detection of defective wafers. To bridge the gap between research-based knowledge and semiconductor practice, this paper proposes an anomaly detection method that uses a denoise autoencoder (DAE) to learn a main representation of normal wafers from equipment sensor readings and serve as the one-class classification model. Typically, the maximum reconstruction error (MaxRE) is used as a threshold to differentiate between normal and defective wafers. However, the threshold by MaxRE usually yields a high false positive rate of normal wafers due to the outliers in an imbalanced data set. To resolve this difficulty, the Hampel identifier, a robust method of outlier detection, is adopted to determine a new threshold for detecting defective wafers, called MaxRE without outlier (MaxREwoo). The proposed method is illustrated using an empirical study based on the real data of a wafer fabrication. Based on the experimental results, the proposed DAE shows great promise as a viable solution for on-line FD in semiconductor manufacturing. |
|---|---|
| AbstractList | Defective wafer detection is essential to avoid loss of yield due to process abnormalities in semiconductor manufacturing. For most complex processes in semiconductor manufacturing, various sensors are installed on equipment to capture process information and equipment conditions, including pressure, gas flow, temperature, and power. Because defective wafers are rare in current practice, supervised learning methods usually perform poorly as there are not enough defective wafers for fault detection (FD). The existing methods of anomaly detection often rely on linear excursion detection, such as principal component analysis (PCA), k-nearest neighbor (kNN) classifier, or manual inspection of equipment sensor data. However, conventional methods of observing equipment sensor readings directly often cannot identify the critical features or statistics for detection of defective wafers. To bridge the gap between research-based knowledge and semiconductor practice, this paper proposes an anomaly detection method that uses a denoise autoencoder (DAE) to learn a main representation of normal wafers from equipment sensor readings and serve as the one-class classification model. Typically, the maximum reconstruction error (MaxRE) is used as a threshold to differentiate between normal and defective wafers. However, the threshold by MaxRE usually yields a high false positive rate of normal wafers due to the outliers in an imbalanced data set. To resolve this difficulty, the Hampel identifier, a robust method of outlier detection, is adopted to determine a new threshold for detecting defective wafers, called MaxRE without outlier (MaxREwoo). The proposed method is illustrated using an empirical study based on the real data of a wafer fabrication. Based on the experimental results, the proposed DAE shows great promise as a viable solution for on-line FD in semiconductor manufacturing. |
| ArticleNumber | 101166 |
| Author | Fan, Shu-Kai S. Hsu, Chia-Yu Juan, Li-Ting Jen, Chih-Hung Chen, Kuan-Lung |
| Author_xml | – sequence: 1 givenname: Shu-Kai S. surname: Fan fullname: Fan, Shu-Kai S. organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan, Republic of China – sequence: 2 givenname: Chia-Yu surname: Hsu fullname: Hsu, Chia-Yu email: chiayuhsu@mail.ntut.edu.tw organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan, Republic of China – sequence: 3 givenname: Chih-Hung surname: Jen fullname: Jen, Chih-Hung organization: Department of Industrial Engineering and Management, Lunghwa University of Science and Technology, Guishan, Taoyuan City 33306, Taiwan, Republic of China – sequence: 4 givenname: Kuan-Lung surname: Chen fullname: Chen, Kuan-Lung organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan, Republic of China – sequence: 5 givenname: Li-Ting surname: Juan fullname: Juan, Li-Ting organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan, Republic of China |
| BookMark | eNp9kMtOwzAQRS1UJErhA9jlB1L8SJ1ErFB5SpXYwNqaOGPkqrUr2yni73EIKxZdzdzRnJHmXJKZ8w4JuWF0ySiTt9sloF1yyn8zk_KMzFlTi3IlOJ3lvqqrkopKXpDLGLc0M01bzwk8oEGd7BGLLzAYih7TmL0rhmjdZwF54ryd-iF5dNr3ec_4UETcW-1dP-iU0x7cYECnIYy7h-A1xojxipwb2EW8_qsL8vH0-L5-KTdvz6_r-02peVunsmmhbwR0UndsxTljQhtWSWEMQteKSmi9AmDAWcU4k5UEJqA2NGPYcezEgrDprg4-xoBGHYLdQ_hWjKrRkdqq7EiNjtTkKDP1P0bbBOP3KYDdnSTvJhLzS0eLQUVtsxvsbcj-VO_tCfoHXAyFqw |
| CitedBy_id | crossref_primary_10_3390_app11094113 crossref_primary_10_1109_ACCESS_2024_3375367 crossref_primary_10_1109_TASE_2022_3141426 crossref_primary_10_1016_j_cie_2021_107767 crossref_primary_10_1109_TSM_2025_3585570 crossref_primary_10_1109_TED_2023_3307051 crossref_primary_10_3390_a14060163 crossref_primary_10_1109_TNNLS_2024_3472456 crossref_primary_10_1109_JSEN_2023_3237621 crossref_primary_10_1080_0305215X_2021_1988587 crossref_primary_10_1109_TASE_2021_3106011 crossref_primary_10_3390_s24051622 crossref_primary_10_1007_s11227_022_04730_x crossref_primary_10_1109_ACCESS_2023_3281407 crossref_primary_10_1080_00207543_2025_2532147 crossref_primary_10_3390_en15030774 crossref_primary_10_1007_s13755_023_00254_7 crossref_primary_10_1109_TSM_2023_3238555 crossref_primary_10_1007_s11042_021_11552_1 crossref_primary_10_3390_pr9091510 crossref_primary_10_1115_1_4065276 crossref_primary_10_1007_s11831_025_10324_6 crossref_primary_10_1080_21681015_2023_2279101 crossref_primary_10_1016_j_aei_2022_101534 crossref_primary_10_1080_0951192X_2024_2397821 crossref_primary_10_1109_TSM_2022_3146988 crossref_primary_10_7232_JKIIE_2024_50_3_189 crossref_primary_10_3390_s21165658 crossref_primary_10_1007_s10845_023_02303_0 crossref_primary_10_1016_j_measurement_2023_113195 crossref_primary_10_1109_TSM_2021_3137982 |
| Cites_doi | 10.1145/1390156.1390294 10.1016/j.compchemeng.2004.01.009 10.1109/TSM.2016.2628865 10.1162/089976600300015691 10.1016/j.mfglet.2013.09.005 10.1109/TASE.2011.2169405 10.1109/TIE.2011.2167110 10.1016/j.aei.2018.03.003 10.1016/j.patcog.2004.01.013 10.1109/TII.2013.2251891 10.1016/j.jprocont.2011.06.005 10.1016/j.aei.2018.06.004 10.1007/s10845-013-0808-0 10.1126/science.1127647 10.1109/87.974338 10.1016/j.asoc.2016.05.015 10.1016/j.automatica.2009.10.030 10.1109/TII.2009.2025124 10.1109/TSM.2018.2857818 10.1016/j.patcog.2016.03.028 10.1080/01621459.1993.10476339 10.1109/TIT.1967.1053964 10.1109/TSM.2009.2028215 10.1016/j.rcim.2011.06.007 10.1109/TIE.2012.2202358 10.1109/TSM.2017.2676245 10.1109/TIE.2011.2160138 10.1007/s10696-012-9161-4 10.1007/s10845-013-0785-3 10.1002/aic.10035 10.1016/j.neunet.2014.09.003 10.1016/j.jprocont.2009.07.011 10.1109/TSM.2019.2916374 10.1016/j.jprocont.2004.02.001 10.1109/TSM.2010.2065531 10.1109/TII.2009.2033181 10.1080/08982112.2016.1193614 10.1016/j.aei.2019.100944 10.1109/TSM.2014.2374339 10.1080/01621459.1974.10482962 10.1109/TSM.2007.907607 10.1016/j.asoc.2017.10.029 10.1109/TASE.2016.2545744 10.1080/0951192X.2013.812803 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.aei.2020.101166 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1873-5320 |
| ExternalDocumentID | 10_1016_j_aei_2020_101166 S1474034620301373 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SST SSV SSZ T5K UHS XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-89ad83ab6cb1522113cf1463ffeab9343cc5aa1a214121646a13a7f09adeb2eb3 |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607575400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-0346 |
| IngestDate | Sat Nov 29 07:03:41 EST 2025 Tue Nov 18 22:17:49 EST 2025 Fri Feb 23 02:48:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Semiconductor Hampel identifier Autoencoder Anomaly detection |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-89ad83ab6cb1522113cf1463ffeab9343cc5aa1a214121646a13a7f09adeb2eb3 |
| ParticipantIDs | crossref_primary_10_1016_j_aei_2020_101166 crossref_citationtrail_10_1016_j_aei_2020_101166 elsevier_sciencedirect_doi_10_1016_j_aei_2020_101166 |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 2020-10-00 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced engineering informatics |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mahadevan, Shah (b0105) 2009; 19 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0175) 2014; 15 Hsu, Liu (b0155) 2020 Yang, Lee (b0115) 2012; 28 Erfani, Rajasegarar, Karunasekera, Leckie (b0270) 2016; 58 Dou, Zhou (b0065) 2016; 46 Andrew (b0210) 2011 Rostami, Blue, Yugma (b0040) 2018; 68 Chen, Blue (b0030) 2009; 22 Fan, Hsu, Tsai, He, Cheng (b0045) 2020 Cheng, Huang, Kao (b0055) 2012; 9 Vong, Wong, Ip (b0060) 2013; 60 Oh, Jung (b0165) 2004; 37 Choqueuse, Benbouzid, Amirat, Turri (b0075) 2012; 59 Li, Qin, Zhou (b0080) 2010; 46 Verdier, Ferreira (b0135) 2011; 24 Zhang, Gao, Li, Feng (b0145) 2019; 32 Lee, Lapira, Bagheri, Kao (b0025) 2013; 1 Yu, Lin, Chien (b0035) 2014; 25 Wilcox (b0260) 2003 Hampel (b0220) 1974; 69 Japkowicz, Hanson, Gluck (b0245) 2000; 12 Hinton, Vinyals, Dean (b0200) 2015; 14 Li, Han, Kang (b0110) 2013; 26 Singaravel, Suykens, Geyer (b0230) 2018; 38 Hinton, Salakhutdinov (b0170) 2006; 313 Zhou, Wen, Yang (b0140) 2015; 28 He, Wang (b0130) 2007; 20 Zhang, Zhou, Qin, Chai (b0085) 2010; 6 Lee, Lapira (b0020) 2013; 20 Manevitz, Yousef (b0280) 2001; 2 Lee, Kim, Kim (b0190) 2016; 30 Vincent, Larochelle, Lajoie, Bengio, Manzagol (b0205) 2010; 11 Muradore, Fiorini (b0095) 2012; 59 Chien, Hsu, Chen (b0015) 2013; 25 Manevitz, Yousef (b0275) 2007; 70 Pearson (b0250) 2002; 10 Cover, Hart (b0125) 1967; 13 Rashid, Louis (b0235) 2019; 42 Hsu (b0010) 2014; 25 Wang, Liu, Srinivasan (b0090) 2010; 6 Wang, Liu (b0225) 2018; 36 Fan, Jen, Lee (b0290) 2017; 29 Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P. A., Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning (ICML’08). Helsinki, Finland. July 05 – 09 (2008) 1096-1103. Fan, Yao, Chang, Jen (b0285) 2011; 21 He, Wang, Liu, Zhou (b0100) 2013; 9 Miletic, Quinn, Dudzic, Vaculik, Champagne (b0050) 2004; 14 Erhan, Bengio, Courville, Manzagol, Vincent, Bengio (b0180) 2010; 11 Liu, Shah, Jiang (b0255) 2004; 28 Moore (b0005) 1965; 38 Gertler, Cao (b0070) 2004; 50 Lee, Cheon, Kim (b0120) 2017; 30 Liou, Cheng, Liou, Liou (b0195) 2014; 139 D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114. (2013). Jang, Min, Kim (b0185) 2019; 32 Davies, Gather (b0265) 1993; 88 Schmidhuber (b0160) 2015; 61 Rato, Blue, Pinaton, Reis (b0150) 2017; 14 Lee (10.1016/j.aei.2020.101166_b0190) 2016; 30 Muradore (10.1016/j.aei.2020.101166_b0095) 2012; 59 Vong (10.1016/j.aei.2020.101166_b0060) 2013; 60 Li (10.1016/j.aei.2020.101166_b0080) 2010; 46 Hinton (10.1016/j.aei.2020.101166_b0170) 2006; 313 Srivastava (10.1016/j.aei.2020.101166_b0175) 2014; 15 Jang (10.1016/j.aei.2020.101166_b0185) 2019; 32 Fan (10.1016/j.aei.2020.101166_b0290) 2017; 29 Lee (10.1016/j.aei.2020.101166_b0025) 2013; 1 Choqueuse (10.1016/j.aei.2020.101166_b0075) 2012; 59 Wilcox (10.1016/j.aei.2020.101166_b0260) 2003 Chien (10.1016/j.aei.2020.101166_b0015) 2013; 25 Liou (10.1016/j.aei.2020.101166_b0195) 2014; 139 Davies (10.1016/j.aei.2020.101166_b0265) 1993; 88 Zhang (10.1016/j.aei.2020.101166_b0085) 2010; 6 Mahadevan (10.1016/j.aei.2020.101166_b0105) 2009; 19 Verdier (10.1016/j.aei.2020.101166_b0135) 2011; 24 Schmidhuber (10.1016/j.aei.2020.101166_b0160) 2015; 61 Rato (10.1016/j.aei.2020.101166_b0150) 2017; 14 Wang (10.1016/j.aei.2020.101166_b0090) 2010; 6 Liu (10.1016/j.aei.2020.101166_b0255) 2004; 28 Manevitz (10.1016/j.aei.2020.101166_b0275) 2007; 70 Miletic (10.1016/j.aei.2020.101166_b0050) 2004; 14 Singaravel (10.1016/j.aei.2020.101166_b0230) 2018; 38 Hampel (10.1016/j.aei.2020.101166_b0220) 1974; 69 Rashid (10.1016/j.aei.2020.101166_b0235) 2019; 42 Lee (10.1016/j.aei.2020.101166_b0020) 2013; 20 Hinton (10.1016/j.aei.2020.101166_b0200) 2015; 14 Rostami (10.1016/j.aei.2020.101166_b0040) 2018; 68 Manevitz (10.1016/j.aei.2020.101166_b0280) 2001; 2 Hsu (10.1016/j.aei.2020.101166_b0155) 2020 Japkowicz (10.1016/j.aei.2020.101166_b0245) 2000; 12 Wang (10.1016/j.aei.2020.101166_b0225) 2018; 36 He (10.1016/j.aei.2020.101166_b0130) 2007; 20 Zhou (10.1016/j.aei.2020.101166_b0140) 2015; 28 Zhang (10.1016/j.aei.2020.101166_b0145) 2019; 32 Erhan (10.1016/j.aei.2020.101166_b0180) 2010; 11 Lee (10.1016/j.aei.2020.101166_b0120) 2017; 30 Moore (10.1016/j.aei.2020.101166_b0005) 1965; 38 10.1016/j.aei.2020.101166_b0215 Pearson (10.1016/j.aei.2020.101166_b0250) 2002; 10 Erfani (10.1016/j.aei.2020.101166_b0270) 2016; 58 He (10.1016/j.aei.2020.101166_b0100) 2013; 9 Yang (10.1016/j.aei.2020.101166_b0115) 2012; 28 Cheng (10.1016/j.aei.2020.101166_b0055) 2012; 9 Yu (10.1016/j.aei.2020.101166_b0035) 2014; 25 Dou (10.1016/j.aei.2020.101166_b0065) 2016; 46 Fan (10.1016/j.aei.2020.101166_b0285) 2011; 21 Gertler (10.1016/j.aei.2020.101166_b0070) 2004; 50 Andrew (10.1016/j.aei.2020.101166_b0210) 2011 Fan (10.1016/j.aei.2020.101166_b0045) 2020 Hsu (10.1016/j.aei.2020.101166_b0010) 2014; 25 Li (10.1016/j.aei.2020.101166_b0110) 2013; 26 10.1016/j.aei.2020.101166_b0240 Cover (10.1016/j.aei.2020.101166_b0125) 1967; 13 Chen (10.1016/j.aei.2020.101166_b0030) 2009; 22 Vincent (10.1016/j.aei.2020.101166_b0205) 2010; 11 Oh (10.1016/j.aei.2020.101166_b0165) 2004; 37 |
| References_xml | – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b0175 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 1670 year: 2013 end-page: 1679 ident: b0100 article-title: Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach publication-title: IEEE Trans. Ind. Informat. – volume: 42 year: 2019 ident: b0235 article-title: Times-series data augmentation and deep learning for construction equipment activity recognition publication-title: Adv. Eng. Inform. – volume: 46 start-page: 459 year: 2016 end-page: 468 ident: b0065 article-title: Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery publication-title: Appl. Soft Comput. – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: b0205 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b0170 article-title: Reducing the dimensionality of data with neural networks publication-title: Sci. – volume: 12 start-page: 531 year: 2000 end-page: 545 ident: b0245 article-title: Nonlinear autoassociation is not equivalent to PCA publication-title: Neural Comput. – volume: 28 start-page: 66 year: 2012 end-page: 74 ident: b0115 article-title: Bayesian Belief Network-based approach for diagnostics and prognostics of semiconductor manufacturing systems publication-title: Robot. Comput.-Integr. Manuf. – reference: Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P. A., Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning (ICML’08). Helsinki, Finland. July 05 – 09 (2008) 1096-1103. – volume: 6 start-page: 11 year: 2010 end-page: 17 ident: b0090 article-title: Data-driven soft sensor approach for quality prediction in a refining process publication-title: IEEE Trans. Ind. Informat. – volume: 69 start-page: 383 year: 1974 end-page: 393 ident: b0220 article-title: The influence curve and its role in robust estimation publication-title: J. Am. Stat. Assoc. – volume: 58 start-page: 121 year: 2016 end-page: 134 ident: b0270 article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning publication-title: Patt. Recog. – volume: 20 start-page: 13 year: 2013 end-page: 24 ident: b0020 article-title: Predictive factories: the next transformation publication-title: Manuf. Leadersh. J. – volume: 28 start-page: 70 year: 2015 end-page: 79 ident: b0140 article-title: Fault detection using random projections and k-nearest neighbor rule for semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. – volume: 30 start-page: 135 year: 2017 end-page: 142 ident: b0120 article-title: A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. – volume: 29 start-page: 226 year: 2017 end-page: 243 ident: b0290 article-title: Modeling and monitoring nonlinear profile of heat treatment process data by using a hyperbolic tangent function approach publication-title: Qual. Eng. – volume: 20 start-page: 345 year: 2007 end-page: 354 ident: b0130 article-title: Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. – volume: 22 start-page: 522 year: 2009 end-page: 535 ident: b0030 article-title: Recipe-independent indicator for tool health diagnosis and predictive maintenance publication-title: IEEE Trans. Semicond. Manuf. – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: b0125 article-title: Nearest neighbour pattern classification publication-title: IEEE Trans. Inf. Theory – volume: 11 start-page: 625 year: 2010 end-page: 660 ident: b0180 article-title: Why does unsupervised pre-training help deep learning publication-title: J. Mach. Learn. Res. – year: 2003 ident: b0260 article-title: Applying contemporary statistical techniques – volume: 24 start-page: 59 year: 2011 end-page: 68 ident: b0135 article-title: Adaptive Mahalanobis distance and k-nearest neighbor rule for fault detection in semiconductor manufacturing publication-title: IEEE Trans. Semicond. Manuf. – volume: 37 start-page: 1311 year: 2004 end-page: 1314 ident: b0165 article-title: GPU implementation of neural networks publication-title: Patt. Recog. – volume: 139 start-page: 84 year: 2014 end-page: 96 ident: b0195 article-title: Autoencoder for words publication-title: Neuro. – volume: 14 start-page: 38 year: 2015 end-page: 39 ident: b0200 article-title: Distilling the knowledge in a neural network publication-title: Comput. Sci. – volume: 32 start-page: 75 year: 2019 end-page: 81 ident: b0145 article-title: Fault detection strategy based on weighted distance of k nearest neighbors for semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. – volume: 14 start-page: 821 year: 2004 end-page: 836 ident: b0050 article-title: An industrial perspective on implementing on-line applications of multivariate statistics publication-title: J. Process Control. – volume: 60 start-page: 3372 year: 2013 end-page: 3385 ident: b0060 article-title: A new framework of simultaneous-fault diagnosis using pairwise probabilistic multi-label classification for time-dependent patterns publication-title: IEEE Trans. Ind. Electron. – volume: 46 start-page: 204 year: 2010 end-page: 210 ident: b0080 article-title: Geometric properties of partial least squares for process monitoring publication-title: Automatica – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b0160 article-title: Deep learning in neural networks: an overview publication-title: Neur. Netwo. – volume: 70 start-page: 1466 year: 2007 end-page: 1481 ident: b0275 article-title: One-class document classification via neural networks publication-title: Neuro. – volume: 21 start-page: 1217 year: 2011 end-page: 1229 ident: b0285 article-title: Statistical monitoring of nonlinear profiles by using piecewise linear approximation publication-title: J. Process Control – volume: 14 start-page: 894 year: 2017 end-page: 904 ident: b0150 article-title: Translation invariant multiscale energy-based PCA for monitoring batch processes in semiconductor manufacturing publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 36 start-page: 112 year: 2018 end-page: 119 ident: b0225 article-title: Soft sensor based on stacked auto-encoder deep neural network for air preheater rotor deformation prediction publication-title: Adv. Eng. Inform. – volume: 19 start-page: 1627 year: 2009 end-page: 1639 ident: b0105 article-title: Fault detection and diagnosis in process data using one-class support vector machines publication-title: J. Process Control – volume: 26 start-page: 1161 year: 2013 end-page: 1171 ident: b0110 article-title: Fault diagnosis expert system of semiconductor manufacturing equipment using a Bayesian network publication-title: Int. J. Computer Integr. Manuf. – volume: 50 start-page: 388 year: 2004 end-page: 402 ident: b0070 article-title: PCA-based fault diagnosis in the presence of control and dynamics publication-title: AICHE J. – volume: 25 start-page: 933 year: 2014 end-page: 943 ident: b0035 article-title: Hierarchical indices to detect equipment condition changes with high dimensional data for semiconductor manufacturing publication-title: J. Intell. Manuf. – volume: 10 start-page: 55 year: 2002 end-page: 63 ident: b0250 article-title: Outliers in process modeling and identification publication-title: IEEE Trans. Contr. Syst. Tech. – volume: 38 start-page: 114 year: 1965 end-page: 117 ident: b0005 article-title: Cramming more components onto integrated circuits publication-title: Electronics – volume: 59 start-page: 3167 year: 2012 end-page: 3175 ident: b0095 article-title: A PLS-based statistical approach for fault detection and isolation of robotic manipulators publication-title: IEEE Trans. Ind. Electron. – volume: 30 start-page: 23 year: 2016 end-page: 31 ident: b0190 article-title: A deep learning model for robust wafer fault monitoring with sensor measurement noise publication-title: IEEE Trans. Semicond. Manuf. – volume: 28 start-page: 1635 year: 2004 end-page: 1647 ident: b0255 article-title: On-line outlier detection and data cleaning publication-title: Comput. Chem. Eng. – volume: 59 start-page: 2014 year: 2012 end-page: 2023 ident: b0075 article-title: Diagnosis of three-phase electrical machines using multidimensional demodulation techniques publication-title: IEEE Trans. Ind. Electron. – volume: 9 start-page: 181 year: 2012 end-page: 188 ident: b0055 article-title: Developing an automatic virtual metrology system publication-title: IEEE Trans. Autom. Sci. Eng. – year: 2011 ident: b0210 article-title: Sparse autoencoder, CS294A Lecture publication-title: Notes – reference: D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114. (2013). – volume: 32 start-page: 293 year: 2019 end-page: 301 ident: b0185 article-title: Denoised residual trace analysis for monitoring semiconductor process faults publication-title: IEEE Trans. Semicond. Manuf. – start-page: 1 year: 2020 end-page: 14 ident: b0155 article-title: Multiple time-series convolutional neural network for Fault detection and diagnosis and Empirical Study in Chemical Vapor Deposition Process” publication-title: J. Intell. Manuf. – volume: 6 start-page: 3 year: 2010 end-page: 10 ident: b0085 article-title: Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares publication-title: IEEE Trans. Ind. Informat. – volume: 1 start-page: 38 year: 2013 end-page: 41 ident: b0025 article-title: Recent advances and trends in predictive manufacturing systems in big data environment publication-title: Manuf. Lett. – volume: 2 start-page: 139 year: 2001 end-page: 154 ident: b0280 article-title: One-class SVMs for document classification publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 81 year: 2018 end-page: 90 ident: b0230 article-title: Deep-learning neural-network architectures and methods: Using component-based models in building-design energy prediction publication-title: Adv. Eng. Inform. – start-page: 1 year: 2020 end-page: 12 ident: b0045 article-title: Data-driven approach for fault detection and diagnostic in semiconductor manufacturing publication-title: IEEE Trans. Automat. Sci. Eng. – volume: 25 start-page: 945 year: 2014 end-page: 960 ident: b0010 article-title: Integrated data envelopment analysis and neural network model for forecasting performance of wafer fabrication operations publication-title: J. Intell. Manuf. – volume: 68 start-page: 972 year: 2018 end-page: 989 ident: b0040 article-title: Automatic equipment fault fingerprint extraction for the fault diagnostic on the batch process data publication-title: Appl. Soft Comput. – volume: 25 start-page: 367 year: 2013 end-page: 388 ident: b0015 article-title: Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence publication-title: Flex. Serv. Manuf. J. – volume: 88 start-page: 782 year: 1993 end-page: 792 ident: b0265 article-title: The identification of multiple outliers publication-title: J. Am. Stat. Assoc. – ident: 10.1016/j.aei.2020.101166_b0240 doi: 10.1145/1390156.1390294 – volume: 2 start-page: 139 year: 2001 ident: 10.1016/j.aei.2020.101166_b0280 article-title: One-class SVMs for document classification publication-title: J. Mach. Learn. Res. – volume: 28 start-page: 1635 issue: 9 year: 2004 ident: 10.1016/j.aei.2020.101166_b0255 article-title: On-line outlier detection and data cleaning publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2004.01.009 – volume: 30 start-page: 23 issue: 1 year: 2016 ident: 10.1016/j.aei.2020.101166_b0190 article-title: A deep learning model for robust wafer fault monitoring with sensor measurement noise publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2016.2628865 – volume: 12 start-page: 531 issue: 3 year: 2000 ident: 10.1016/j.aei.2020.101166_b0245 article-title: Nonlinear autoassociation is not equivalent to PCA publication-title: Neural Comput. doi: 10.1162/089976600300015691 – volume: 1 start-page: 38 issue: 1 year: 2013 ident: 10.1016/j.aei.2020.101166_b0025 article-title: Recent advances and trends in predictive manufacturing systems in big data environment publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2013.09.005 – volume: 9 start-page: 181 issue: 1 year: 2012 ident: 10.1016/j.aei.2020.101166_b0055 article-title: Developing an automatic virtual metrology system publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2011.2169405 – volume: 59 start-page: 3167 issue: 8 year: 2012 ident: 10.1016/j.aei.2020.101166_b0095 article-title: A PLS-based statistical approach for fault detection and isolation of robotic manipulators publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2167110 – volume: 36 start-page: 112 year: 2018 ident: 10.1016/j.aei.2020.101166_b0225 article-title: Soft sensor based on stacked auto-encoder deep neural network for air preheater rotor deformation prediction publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2018.03.003 – volume: 37 start-page: 1311 issue: 6 year: 2004 ident: 10.1016/j.aei.2020.101166_b0165 article-title: GPU implementation of neural networks publication-title: Patt. Recog. doi: 10.1016/j.patcog.2004.01.013 – start-page: 1 year: 2020 ident: 10.1016/j.aei.2020.101166_b0045 article-title: Data-driven approach for fault detection and diagnostic in semiconductor manufacturing publication-title: IEEE Trans. Automat. Sci. Eng. – volume: 70 start-page: 1466 issue: 7 year: 2007 ident: 10.1016/j.aei.2020.101166_b0275 article-title: One-class document classification via neural networks publication-title: Neuro. – volume: 9 start-page: 1670 issue: 3 year: 2013 ident: 10.1016/j.aei.2020.101166_b0100 article-title: Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach publication-title: IEEE Trans. Ind. Informat. doi: 10.1109/TII.2013.2251891 – volume: 21 start-page: 1217 issue: 8 year: 2011 ident: 10.1016/j.aei.2020.101166_b0285 article-title: Statistical monitoring of nonlinear profiles by using piecewise linear approximation publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.06.005 – volume: 38 start-page: 81 year: 2018 ident: 10.1016/j.aei.2020.101166_b0230 article-title: Deep-learning neural-network architectures and methods: Using component-based models in building-design energy prediction publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2018.06.004 – volume: 25 start-page: 945 issue: 5 year: 2014 ident: 10.1016/j.aei.2020.101166_b0010 article-title: Integrated data envelopment analysis and neural network model for forecasting performance of wafer fabrication operations publication-title: J. Intell. Manuf. doi: 10.1007/s10845-013-0808-0 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.aei.2020.101166_b0170 article-title: Reducing the dimensionality of data with neural networks publication-title: Sci. doi: 10.1126/science.1127647 – volume: 10 start-page: 55 issue: 1 year: 2002 ident: 10.1016/j.aei.2020.101166_b0250 article-title: Outliers in process modeling and identification publication-title: IEEE Trans. Contr. Syst. Tech. doi: 10.1109/87.974338 – volume: 46 start-page: 459 year: 2016 ident: 10.1016/j.aei.2020.101166_b0065 article-title: Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.05.015 – volume: 46 start-page: 204 issue: 1 year: 2010 ident: 10.1016/j.aei.2020.101166_b0080 article-title: Geometric properties of partial least squares for process monitoring publication-title: Automatica doi: 10.1016/j.automatica.2009.10.030 – volume: 6 start-page: 11 issue: 1 year: 2010 ident: 10.1016/j.aei.2020.101166_b0090 article-title: Data-driven soft sensor approach for quality prediction in a refining process publication-title: IEEE Trans. Ind. Informat. doi: 10.1109/TII.2009.2025124 – start-page: 1 year: 2020 ident: 10.1016/j.aei.2020.101166_b0155 article-title: Multiple time-series convolutional neural network for Fault detection and diagnosis and Empirical Study in Chemical Vapor Deposition Process” publication-title: J. Intell. Manuf. – volume: 32 start-page: 75 issue: 1 year: 2019 ident: 10.1016/j.aei.2020.101166_b0145 article-title: Fault detection strategy based on weighted distance of k nearest neighbors for semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2018.2857818 – volume: 58 start-page: 121 year: 2016 ident: 10.1016/j.aei.2020.101166_b0270 article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning publication-title: Patt. Recog. doi: 10.1016/j.patcog.2016.03.028 – volume: 88 start-page: 782 year: 1993 ident: 10.1016/j.aei.2020.101166_b0265 article-title: The identification of multiple outliers publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476339 – volume: 11 start-page: 625 year: 2010 ident: 10.1016/j.aei.2020.101166_b0180 article-title: Why does unsupervised pre-training help deep learning publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 21 year: 1967 ident: 10.1016/j.aei.2020.101166_b0125 article-title: Nearest neighbour pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.aei.2020.101166_b0205 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 114 issue: 8 year: 1965 ident: 10.1016/j.aei.2020.101166_b0005 article-title: Cramming more components onto integrated circuits publication-title: Electronics – volume: 22 start-page: 522 issue: 4 year: 2009 ident: 10.1016/j.aei.2020.101166_b0030 article-title: Recipe-independent indicator for tool health diagnosis and predictive maintenance publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2009.2028215 – volume: 28 start-page: 66 issue: 1 year: 2012 ident: 10.1016/j.aei.2020.101166_b0115 article-title: Bayesian Belief Network-based approach for diagnostics and prognostics of semiconductor manufacturing systems publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2011.06.007 – volume: 60 start-page: 3372 issue: 8 year: 2013 ident: 10.1016/j.aei.2020.101166_b0060 article-title: A new framework of simultaneous-fault diagnosis using pairwise probabilistic multi-label classification for time-dependent patterns publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2202358 – volume: 30 start-page: 135 issue: 2 year: 2017 ident: 10.1016/j.aei.2020.101166_b0120 article-title: A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2017.2676245 – volume: 59 start-page: 2014 issue: 4 year: 2012 ident: 10.1016/j.aei.2020.101166_b0075 article-title: Diagnosis of three-phase electrical machines using multidimensional demodulation techniques publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2160138 – volume: 25 start-page: 367 issue: 3 year: 2013 ident: 10.1016/j.aei.2020.101166_b0015 article-title: Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence publication-title: Flex. Serv. Manuf. J. doi: 10.1007/s10696-012-9161-4 – volume: 25 start-page: 933 issue: 5 year: 2014 ident: 10.1016/j.aei.2020.101166_b0035 article-title: Hierarchical indices to detect equipment condition changes with high dimensional data for semiconductor manufacturing publication-title: J. Intell. Manuf. doi: 10.1007/s10845-013-0785-3 – volume: 50 start-page: 388 issue: 2 year: 2004 ident: 10.1016/j.aei.2020.101166_b0070 article-title: PCA-based fault diagnosis in the presence of control and dynamics publication-title: AICHE J. doi: 10.1002/aic.10035 – year: 2003 ident: 10.1016/j.aei.2020.101166_b0260 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.aei.2020.101166_b0175 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.aei.2020.101166_b0160 article-title: Deep learning in neural networks: an overview publication-title: Neur. Netwo. doi: 10.1016/j.neunet.2014.09.003 – volume: 139 start-page: 84 year: 2014 ident: 10.1016/j.aei.2020.101166_b0195 article-title: Autoencoder for words publication-title: Neuro. – volume: 19 start-page: 1627 issue: 10 year: 2009 ident: 10.1016/j.aei.2020.101166_b0105 article-title: Fault detection and diagnosis in process data using one-class support vector machines publication-title: J. Process Control doi: 10.1016/j.jprocont.2009.07.011 – ident: 10.1016/j.aei.2020.101166_b0215 – volume: 32 start-page: 293 issue: 3 year: 2019 ident: 10.1016/j.aei.2020.101166_b0185 article-title: Denoised residual trace analysis for monitoring semiconductor process faults publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2019.2916374 – volume: 14 start-page: 821 year: 2004 ident: 10.1016/j.aei.2020.101166_b0050 article-title: An industrial perspective on implementing on-line applications of multivariate statistics publication-title: J. Process Control. doi: 10.1016/j.jprocont.2004.02.001 – volume: 24 start-page: 59 issue: 1 year: 2011 ident: 10.1016/j.aei.2020.101166_b0135 article-title: Adaptive Mahalanobis distance and k-nearest neighbor rule for fault detection in semiconductor manufacturing publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2010.2065531 – volume: 6 start-page: 3 issue: 1 year: 2010 ident: 10.1016/j.aei.2020.101166_b0085 article-title: Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares publication-title: IEEE Trans. Ind. Informat. doi: 10.1109/TII.2009.2033181 – volume: 29 start-page: 226 issue: 2 year: 2017 ident: 10.1016/j.aei.2020.101166_b0290 article-title: Modeling and monitoring nonlinear profile of heat treatment process data by using a hyperbolic tangent function approach publication-title: Qual. Eng. doi: 10.1080/08982112.2016.1193614 – volume: 42 year: 2019 ident: 10.1016/j.aei.2020.101166_b0235 article-title: Times-series data augmentation and deep learning for construction equipment activity recognition publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2019.100944 – volume: 20 start-page: 13 issue: 1 year: 2013 ident: 10.1016/j.aei.2020.101166_b0020 article-title: Predictive factories: the next transformation publication-title: Manuf. Leadersh. J. – volume: 28 start-page: 70 issue: 1 year: 2015 ident: 10.1016/j.aei.2020.101166_b0140 article-title: Fault detection using random projections and k-nearest neighbor rule for semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2014.2374339 – volume: 14 start-page: 38 issue: 7 year: 2015 ident: 10.1016/j.aei.2020.101166_b0200 article-title: Distilling the knowledge in a neural network publication-title: Comput. Sci. – volume: 69 start-page: 383 issue: 346 year: 1974 ident: 10.1016/j.aei.2020.101166_b0220 article-title: The influence curve and its role in robust estimation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1974.10482962 – volume: 20 start-page: 345 issue: 4 year: 2007 ident: 10.1016/j.aei.2020.101166_b0130 article-title: Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2007.907607 – volume: 68 start-page: 972 year: 2018 ident: 10.1016/j.aei.2020.101166_b0040 article-title: Automatic equipment fault fingerprint extraction for the fault diagnostic on the batch process data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.10.029 – year: 2011 ident: 10.1016/j.aei.2020.101166_b0210 article-title: Sparse autoencoder, CS294A Lecture publication-title: Notes – volume: 14 start-page: 894 issue: 2 year: 2017 ident: 10.1016/j.aei.2020.101166_b0150 article-title: Translation invariant multiscale energy-based PCA for monitoring batch processes in semiconductor manufacturing publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2545744 – volume: 26 start-page: 1161 year: 2013 ident: 10.1016/j.aei.2020.101166_b0110 article-title: Fault diagnosis expert system of semiconductor manufacturing equipment using a Bayesian network publication-title: Int. J. Computer Integr. Manuf. doi: 10.1080/0951192X.2013.812803 |
| SSID | ssj0016897 |
| Score | 2.4774036 |
| Snippet | Defective wafer detection is essential to avoid loss of yield due to process abnormalities in semiconductor manufacturing. For most complex processes in... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101166 |
| SubjectTerms | Anomaly detection Autoencoder Deep learning Hampel identifier Semiconductor |
| Title | Defective wafer detection using a denoising autoencoder for semiconductor manufacturing processes |
| URI | https://dx.doi.org/10.1016/j.aei.2020.101166 |
| Volume | 46 |
| WOSCitedRecordID | wos000607575400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5320 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016897 issn: 1474-0346 databaseCode: AIEXJ dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFLWmQxfd9F2VPpAXXXXkURJ7EmeJeIiWClUqlaar6NpxRBBkRkxC-QK-Gzt-zAwCVBbdRIkTO1Hu0bV9fXwuQl9SJXJWCk54AhlhqaxILjJDy6GTqtQg4iXvk01kR0d8Os1_DgbXfi_M5VnWNPzqKp__V1PrMm1ss3X2EeYOjeoCfa6Nro_a7Pr4T4bfVZV1YqO_UPX5v1tl84F3fVwAdEkzq-15186MkqURlDB8w4Whys8aowGrr86h6czGB7uTcW63FDjOoReu9RQCtdQ1HDkx1naFSL_v4qwnHTmEevRrHOC06Oyqfw3kTxf4PMpxAeoTctC5zrUnIdgbhx005Ie_4YIWeobq6W_ez7KMkYi66KNzxGzVk8ZmhSi908nbeMPpGFQ9No2Pl8-uC2rf6ugC_dAz204L3URhmihsE0_QRpJNcj5EG9vf9qbfw3pUym2aHv_Zfn28Zwre-o67Rzgro5bjl-i5m27gbQuTV2igmtfohZt6YOfYF28QBNTgHjU4oAb3qMGAA2rwCmqwtjReQw1eQw0OqHmLfu_vHe8cEJd9g8gkz1rCcyg5BZFKocd4SRxTWelulVaVApFTRqWcAMSQxCxOjEodxBSyKtLVlEiUoO_QsJk16j3CaQRGNjCNVQmMQSQYlFJPzSmdRILKfBNF_o8V0knTmwwpZ8W9ltpEX0OVudVleehh5s1QuIGlHTAWGlL3V_vwmHd8RM-WQP-Ehu1Fpz6jp_KyrRcXWw5PNyREmtg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defective+wafer+detection+using+a+denoising+autoencoder+for+semiconductor+manufacturing+processes&rft.jtitle=Advanced+engineering+informatics&rft.au=Fan%2C+Shu-Kai+S.&rft.au=Hsu%2C+Chia-Yu&rft.au=Jen%2C+Chih-Hung&rft.au=Chen%2C+Kuan-Lung&rft.date=2020-10-01&rft.issn=1474-0346&rft.volume=46&rft.spage=101166&rft_id=info:doi/10.1016%2Fj.aei.2020.101166&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aei_2020_101166 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon |