Nonzero-sum games using actor-critic neural networks: A dynamic event-triggered adaptive dynamic programming
This paper mainly investigates the nonzero-sum games of nonlinear systems with unmatched uncertainty by using actor-critic neural networks. To handle the unmatched components, an auxiliary system with a modified value function is constructed, which transforms the robust stabilization issue into the...
Uloženo v:
| Vydáno v: | Information sciences Ročník 662; s. 120236 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.03.2024
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper mainly investigates the nonzero-sum games of nonlinear systems with unmatched uncertainty by using actor-critic neural networks. To handle the unmatched components, an auxiliary system with a modified value function is constructed, which transforms the robust stabilization issue into the optimal control issue. Then, a novel dynamic event-triggering condition is designed to further save bandwidth via introducing a dynamic variable. In addition, the actor-critic algorithm is employed in adaptive dynamic programming to achieve Nash equilibrium, which is tuned together with the control policy. By constructing appropriate Lyapunov functions, a criterion is established to ensure that the considered system is uniformly ultimately bounded. Finally, the effectiveness of the developed strategy is demonstrated by an example. |
|---|---|
| ISSN: | 0020-0255 1872-6291 |
| DOI: | 10.1016/j.ins.2024.120236 |