Tool wear state recognition and prediction method based on laplacian eigenmap with ensemble learning model
•A multi-algorithm based features screening and LE features downscaling method is proposed.•For features with high dimensionality, feature filtering and feature fusion are applied to downscale the features step by step.•Fast selection of model hyperparameters based on GS.•Evaluate the prediction mod...
Saved in:
| Published in: | Advanced engineering informatics Vol. 60; p. 102382 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.04.2024
|
| Subjects: | |
| ISSN: | 1474-0346, 1873-5320 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A multi-algorithm based features screening and LE features downscaling method is proposed.•For features with high dimensionality, feature filtering and feature fusion are applied to downscale the features step by step.•Fast selection of model hyperparameters based on GS.•Evaluate the prediction model through multiple experiments and multiple metrics.
Accurate prediction of tool wear status plays a critical role in the digital manufacturing industry, and its health level directly affects machining quality, production costs, and overall productivity. In response to the problems of the high dimensionality of extracted features from tool wear characterization sensors, redundant information, and large individual model errors and biases, a novel method for tool wear status identification and prediction that fuses downscaling dimensionality and ensemble models is proposed. First, a multi-algorithm feature filtering based on Random Forest (RF) and extreme gradient boosting (XGBoost) is utilized, and the laplacian eigenmaps (LE) algorithm is combined to perform fusion downscaling on the filtered features. Then, the parameters of the XGBoost algorithm are optimized using grid search (GS). Finally, the performance of the proposed method is evaluated by different tool wear experiments for both regression and classification using model prediction accuracy evaluation metrics (R-squared values and f1 values) and prediction time. The experimental results show that for different tools wear experimental data, the R-squared values of the regression model are higher than 0.98, the f1 values of the classification model are above 0.96, and the prediction speed is improved by an order of magnitude compared with other models. The results are analyzed to verify the effectiveness and applicability of the proposed method, which can provide technical support for the automated machining process. |
|---|---|
| AbstractList | •A multi-algorithm based features screening and LE features downscaling method is proposed.•For features with high dimensionality, feature filtering and feature fusion are applied to downscale the features step by step.•Fast selection of model hyperparameters based on GS.•Evaluate the prediction model through multiple experiments and multiple metrics.
Accurate prediction of tool wear status plays a critical role in the digital manufacturing industry, and its health level directly affects machining quality, production costs, and overall productivity. In response to the problems of the high dimensionality of extracted features from tool wear characterization sensors, redundant information, and large individual model errors and biases, a novel method for tool wear status identification and prediction that fuses downscaling dimensionality and ensemble models is proposed. First, a multi-algorithm feature filtering based on Random Forest (RF) and extreme gradient boosting (XGBoost) is utilized, and the laplacian eigenmaps (LE) algorithm is combined to perform fusion downscaling on the filtered features. Then, the parameters of the XGBoost algorithm are optimized using grid search (GS). Finally, the performance of the proposed method is evaluated by different tool wear experiments for both regression and classification using model prediction accuracy evaluation metrics (R-squared values and f1 values) and prediction time. The experimental results show that for different tools wear experimental data, the R-squared values of the regression model are higher than 0.98, the f1 values of the classification model are above 0.96, and the prediction speed is improved by an order of magnitude compared with other models. The results are analyzed to verify the effectiveness and applicability of the proposed method, which can provide technical support for the automated machining process. |
| ArticleNumber | 102382 |
| Author | Xie, Yang Liu, Jinfeng Zhang, Chaoyong Gao, Shangshang |
| Author_xml | – sequence: 1 givenname: Yang surname: Xie fullname: Xie, Yang email: xiey_just@just.edu.cn organization: School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China – sequence: 2 givenname: Shangshang surname: Gao fullname: Gao, Shangshang organization: School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China – sequence: 3 givenname: Chaoyong surname: Zhang fullname: Zhang, Chaoyong organization: School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 4 givenname: Jinfeng surname: Liu fullname: Liu, Jinfeng organization: School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG_5A1uTzX7iSYpfUPBSz2GSzLZZdpOSLBb_van15KGnmXfgGXifBZk575CQe85WnPHqoV8B2lXO8iLlXDT5FZnzphZZKXI2S3tRFxkTRXVDFjH2LDFNW89Jv_V-oEeEQOMEE9KA2u-cnax3FJyhh4DG6t844rT3hiqIaGjKAxwG0BYcRbtDN8KBHu20p-gijmpAOqS3zrodHb3B4ZZcdzBEvPubS_L58rxdv2Wbj9f39dMm03lbT1lTNKIsy7YuugpVXihRG8ahVXkFnS5BcwChFAiju3SuC16qpitTT8U6hkYsCT__1cHHGLCTh2BHCN-SM3mSJXuZZMmTLHmWlZj6H6Nt0pFaTwHscJF8PJOYKn1ZDDJqi04na0nlJI23F-gfvnOIMg |
| CitedBy_id | crossref_primary_10_1016_j_jmsy_2025_02_003 crossref_primary_10_1007_s40747_025_02061_x crossref_primary_10_1016_j_aei_2025_103292 crossref_primary_10_1016_j_aei_2025_103790 crossref_primary_10_1016_j_aei_2025_103176 crossref_primary_10_1016_j_measurement_2024_116105 crossref_primary_10_1016_j_aei_2024_103043 crossref_primary_10_3390_electronics13142742 crossref_primary_10_1016_j_aei_2025_103111 crossref_primary_10_1016_j_aei_2025_103234 crossref_primary_10_1016_j_aei_2024_102943 crossref_primary_10_1016_j_aei_2025_103219 crossref_primary_10_1016_j_aei_2025_103518 crossref_primary_10_1016_j_aei_2025_103803 crossref_primary_10_1016_j_measurement_2025_118155 crossref_primary_10_1007_s10845_025_02633_1 crossref_primary_10_1007_s12541_025_01232_7 crossref_primary_10_1016_j_microc_2024_111542 crossref_primary_10_3390_pr13051300 crossref_primary_10_1016_j_jmsy_2024_12_014 crossref_primary_10_1016_j_ymssp_2025_112473 crossref_primary_10_1088_1361_6501_ada4cf |
| Cites_doi | 10.1016/j.precisioneng.2020.09.025 10.1016/S0890-6955(99)00122-4 10.3390/s23083833 10.1016/j.ymssp.2018.05.045 10.1016/j.aei.2023.102218 10.1016/j.neucom.2009.08.021 10.1080/10910344.2010.500954 10.1016/j.wear.2018.05.012 10.1007/s00170-020-05890-x 10.31181/rme2001021901b 10.1109/TII.2019.2949355 10.1016/j.aei.2018.04.006 10.1016/j.measurement.2021.110072 10.3390/app12157739 10.1155/2019/7386523 10.1016/j.rcim.2016.05.010 10.1016/j.compind.2019.06.001 10.1016/j.aei.2023.102200 10.1016/j.aei.2023.102094 10.1186/s10033-021-00565-4 10.1016/j.jmsy.2021.12.002 10.1016/j.aei.2021.101433 10.1007/s00170-022-10455-1 10.1016/j.measurement.2015.10.029 10.1016/j.jmapro.2022.04.066 10.1007/s00170-022-09032-3 10.1504/IJMMS.2016.076168 10.1016/j.mfglet.2021.10.002 10.3390/info13100504 10.1016/j.aei.2022.101749 10.1016/j.jmsy.2021.10.013 10.3390/s20216113 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.aei.2024.102382 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1873-5320 |
| ExternalDocumentID | 10_1016_j_aei_2024_102382 S1474034624000302 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SST SSV SSZ T5K UHS XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-8483555974f6eb24b37d01a9b26afc5ac1aa3bba3dcf1a97415b8f5532b0f0ed3 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001175587400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-0346 |
| IngestDate | Tue Nov 18 21:48:17 EST 2025 Sat Nov 29 03:19:52 EST 2025 Tue Jun 18 08:50:50 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Laplacian eigenmaps XGBoost algorithm Ensemble method Features fusion Tool wear |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-8483555974f6eb24b37d01a9b26afc5ac1aa3bba3dcf1a97415b8f5532b0f0ed3 |
| ParticipantIDs | crossref_primary_10_1016_j_aei_2024_102382 crossref_citationtrail_10_1016_j_aei_2024_102382 elsevier_sciencedirect_doi_10_1016_j_aei_2024_102382 |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced engineering informatics |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Yan, Li, Gao, Zhao (b0120) 2019; 111 Wang, Xuan, Shi (b0015) 2022; 54 Aloui, Brahim (b0170) 2021 Niaki, Feng, Ulutan, Mears (b0055) 2016; 9 Wang, Xie, Zhao, Zhang, Duan (b0060) 2017; 45 Chakraborty, Bhattacharya (b0105) 2021; 2 Huang, Wu, Huang, Zhang, Han (b0125) 2022; 13 Li, An (b0040) 2016; 79 Yu, Tan, Zhang, Fang, Tang, Hu (b0075) 2021; 50 Xue, Chen, Wu, Yang, Li (b0130) 2023; 58 Li, Liu, Yue, Liu, Zhang, Li, Liang, Wang (b0100) 2021; 185 Yuan, Liu, Yang, Zhang (b0080) 2020; 20 Duan, Liang, Yu, Si, Zhan, Shi (b0045) 2023; 58 Klaic, Murat, Staroveski, Brezak (b0165) 2018; 408 Feng, Guo, Gao, Chen, Yu, Li (b0025) 2022; 120 Li, Fu, Han, Zhang, Jin (b0145) 2022 M. Shal, H. Borade, V. Sanghavi, A. Purohit, V. Wankhede, V. Vakharia, Enhancing Tool Wear Prediction Accuracy Using Walsh–Hadamard Transform, DCGAN and Dragonfly Algorithm-Based Feature Selection, Sensors 23 (8) (2023) 3833, doi:10.3390/s23083833. Nasir, Sassani (b0005) 2021; 2 Li, Wang, Huang, Gao (b0020) 2022; 62 Li, Liu, Incecik, Gupta, Krolczyk, Gardoni (b0140) 2022; 79 Li, Wang, He, Hao, Yang, Wei (b0095) 2020; 110 Shi, Zhao, Wang, Xu (b0180) 2022 Snr (b0030) 2000; 40 Karali, SurjyaK, Kingshook (b0050) 2010; 14 Bhadra, Mallik, Hasan, Zhao (b0070) 2022; 23 Zhu, Zhang (b0035) 2019; 115 Cheng, Jiao, Yan, Jiang, Wang, Qiu, Wang (b0115) 2022; 62 Chen, Zhang, Bu, Wang, Chen (b0160) 2010; 73 Wang, Kuo, Chen (b0155) 2022; 12 Li, Qin, Wu, Yang, Huang (b0110) 2022; 123 Mo, Wang, Zhang, Hu (b0010) 2023; 57 Nasir, Dibaji, Alaswad, Cool (b0085) 2021; 30 Gomes, Brito, Silva, Duarte (b0135) 2021; 67 Shi, Luo, He, Li, Liu, Li (b0150) 2019; 16 Xu, Miao, Zhao, Liu, Sun, Yan (b0185) 2021; 34 Hui, Mei, Jiang, Tao, Pei, Ma (b0090) 2019; 2019 Tian, Wang, Zhang, Lu, Ma (b0175) 2018; 36 Cheng (10.1016/j.aei.2024.102382_b0115) 2022; 62 Xu (10.1016/j.aei.2024.102382_b0185) 2021; 34 Wang (10.1016/j.aei.2024.102382_b0015) 2022; 54 Niaki (10.1016/j.aei.2024.102382_b0055) 2016; 9 Tian (10.1016/j.aei.2024.102382_b0175) 2018; 36 Li (10.1016/j.aei.2024.102382_b0110) 2022; 123 Xue (10.1016/j.aei.2024.102382_b0130) 2023; 58 Zhu (10.1016/j.aei.2024.102382_b0035) 2019; 115 Yuan (10.1016/j.aei.2024.102382_b0080) 2020; 20 Bhadra (10.1016/j.aei.2024.102382_b0070) 2022; 23 Chen (10.1016/j.aei.2024.102382_b0160) 2010; 73 10.1016/j.aei.2024.102382_b0065 Li (10.1016/j.aei.2024.102382_b0140) 2022; 79 Li (10.1016/j.aei.2024.102382_b0020) 2022; 62 Hui (10.1016/j.aei.2024.102382_b0090) 2019; 2019 Li (10.1016/j.aei.2024.102382_b0100) 2021; 185 Mo (10.1016/j.aei.2024.102382_b0010) 2023; 57 Huang (10.1016/j.aei.2024.102382_b0125) 2022; 13 Duan (10.1016/j.aei.2024.102382_b0045) 2023; 58 Nasir (10.1016/j.aei.2024.102382_b0005) 2021; 2 Wang (10.1016/j.aei.2024.102382_b0060) 2017; 45 Li (10.1016/j.aei.2024.102382_b0095) 2020; 110 Gomes (10.1016/j.aei.2024.102382_b0135) 2021; 67 Chakraborty (10.1016/j.aei.2024.102382_b0105) 2021; 2 Feng (10.1016/j.aei.2024.102382_b0025) 2022; 120 Wang (10.1016/j.aei.2024.102382_b0120) 2019; 111 Karali (10.1016/j.aei.2024.102382_b0050) 2010; 14 Klaic (10.1016/j.aei.2024.102382_b0165) 2018; 408 Aloui (10.1016/j.aei.2024.102382_b0170) 2021 Snr (10.1016/j.aei.2024.102382_b0030) 2000; 40 Yu (10.1016/j.aei.2024.102382_b0075) 2021; 50 Wang (10.1016/j.aei.2024.102382_b0155) 2022; 12 Nasir (10.1016/j.aei.2024.102382_b0085) 2021; 30 Shi (10.1016/j.aei.2024.102382_b0150) 2019; 16 Li (10.1016/j.aei.2024.102382_b0145) 2022 Li (10.1016/j.aei.2024.102382_b0040) 2016; 79 Shi (10.1016/j.aei.2024.102382_b0180) 2022 |
| References_xml | – volume: 79 start-page: 233 year: 2022 end-page: 249 ident: b0140 article-title: A novel ensemble deep learning model for cutting tool wear monitoring using audio sensors publication-title: J. Manuf. Process. – volume: 115 start-page: 147 year: 2019 end-page: 161 ident: b0035 article-title: A generic tool wear model and its application to force modeling and wear monitoring in high speed milling publication-title: Mechanical Systems and Signal Processing – volume: 58 year: 2023 ident: b0045 article-title: Toward practical tool wear prediction paradigm with optimized regressive Siamese neural network publication-title: Adv. Eng. Inf. – volume: 110 start-page: 511 year: 2020 end-page: 522 ident: b0095 article-title: Tool wear state recognition based on gradient boosting decision tree and hybrid classification RBM publication-title: Int. J. Adv. Manuf. Technol. – volume: 62 start-page: 286 year: 2022 end-page: 300 ident: b0115 article-title: Intelligent tool wear monitoring and multi-step prediction based on deep learning model publication-title: J. Manuf. Syst. – volume: 111 start-page: 1 year: 2019 end-page: 14 ident: b0120 article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear prediction publication-title: Comput. Ind. – volume: 9 start-page: 97 year: 2016 end-page: 121 ident: b0055 article-title: A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials publication-title: International Journal of Mechatronics and Manufacturing Systems – volume: 2 start-page: 190 year: 2021 end-page: 201 ident: b0105 article-title: Application of XGBoost algorithm as a predictive tool in a CNC turning process publication-title: Rep. Mech. Eng. – volume: 50 year: 2021 ident: b0075 article-title: Research on hybrid feature selection method of power transformer based on fuzzy information entropy publication-title: Adv. Eng. Inf. – volume: 408 start-page: 222 year: 2018 end-page: 227 ident: b0165 article-title: Tool wear monitoring in rock drilling applications using vibration signals publication-title: Wear – volume: 54 year: 2022 ident: b0015 article-title: Alternative multi-label imitation learning framework monitoring tool wear and bearing fault under different working conditions publication-title: Adv. Eng. Inf. – volume: 12 start-page: 7739 year: 2022 ident: b0155 article-title: Machine learning prediction of turning precision using optimized XGBoost model publication-title: Appl. Sci. – reference: M. Shal, H. Borade, V. Sanghavi, A. Purohit, V. Wankhede, V. Vakharia, Enhancing Tool Wear Prediction Accuracy Using Walsh–Hadamard Transform, DCGAN and Dragonfly Algorithm-Based Feature Selection, Sensors 23 (8) (2023) 3833, doi:10.3390/s23083833. – volume: 30 start-page: 32 year: 2021 end-page: 38 ident: b0085 article-title: Tool wear monitoring by ensemble learning and sensor fusion using power, sound, vibration, and AE signals publication-title: Manuf. Lett. – volume: 57 start-page: 102094 year: 2023 ident: b0010 article-title: A cumulative descriptor enhanced ensemble deep neural networks method for remaining useful life prediction of cutting tools publication-title: Adv. Eng. Inf. – volume: 79 start-page: 44 year: 2016 end-page: 52 ident: b0040 article-title: An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis publication-title: Measurement – volume: 73 start-page: 951 year: 2010 end-page: 958 ident: b0160 article-title: Constrained laplacian eigenmap for dimensionality reduction publication-title: Neurocomputing – volume: 36 start-page: 194 year: 2018 end-page: 206 ident: b0175 article-title: A subspace learning-based feature fusion and open-set fault diagnosis approach for machinery components publication-title: Adv. Eng. Inf. – volume: 62 start-page: 17 year: 2022 end-page: 27 ident: b0020 article-title: Physics-informed meta learning for machining tool wear prediction publication-title: J. Manuf. Syst. – volume: 23 start-page: 1 year: 2022 end-page: 19 ident: b0070 article-title: Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer publication-title: BMC Bioinf. – volume: 16 year: 2019 ident: b0150 article-title: Tool wear prediction via multi-dimensional stacked sparse autoencoders with feature fusion publication-title: IEEE Trans. Ind. Inf. – start-page: 1 year: 2021 end-page: 22 ident: b0170 article-title: Time-Frequency localization for the fractional fourier transform in signal processing and uncertainty principles publication-title: Circuits Syst. Signal Process. – volume: 45 start-page: 47 year: 2017 end-page: 58 ident: b0060 article-title: Multisensory fusion based virtual tool wear ensuing for ubiquitous manufacturing publication-title: Rob. Comput. Integr. Manuf. – volume: 20 start-page: 6113 year: 2020 ident: b0080 article-title: Tool wear condition monitoring by combining variational mode decomposition and ensemble learning publication-title: Sensors – volume: 13 year: 2022 ident: b0125 article-title: Tool wear prediction based on a multi-scale convolutional neural network with attention fusion publication-title: Information – volume: 185 year: 2021 ident: b0100 article-title: A data-driven approach for tool wear recognition and quantitative prediction based on radar map feature fusion publication-title: Measurement – volume: 123 start-page: 4025 year: 2022 end-page: 4039 ident: b0110 article-title: Tool wear prediction based on convolutional bidirectional LSTM model with improved particle swarm optimization publication-title: Int. J. Adv. Manuf. Technol. – volume: 40 start-page: 1073 year: 2000 end-page: 1098 ident: b0030 article-title: Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods publication-title: Int. J. Mach. Tool Manu. – volume: 67 start-page: 137 year: 2021 end-page: 151 ident: b0135 article-title: Tool wear monitoring in micromilling using support vector machine with vibration and sound sensors publication-title: Precision Engineering – volume: 58 year: 2023 ident: b0130 article-title: Hierarchical temporal transformer network for tool wear state recognition publication-title: Adv. Eng. Inf. – volume: 34 start-page: 53 year: 2021 ident: b0185 article-title: Multi-scale convolutional gated recurrent unit networks for tool wear prediction in smart manufacturing publication-title: Chinese J. Mech. Eng. – volume: 14 start-page: 280 year: 2010 end-page: 300 ident: b0050 article-title: Fuzzy radial basis function (FRBF) network based tool condition monitoring system using vibration signals publication-title: Mach. Sci. Technol. – volume: 120 start-page: 5633 year: 2022 end-page: 5648 ident: b0025 article-title: A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring publication-title: Int. J. Adv. Manuf. Technol. – start-page: 198 year: 2022 ident: b0180 article-title: An adaptive grid search algorithm for fitting spherical target of terrestrial LiDAR publication-title: Measurement – start-page: 77 year: 2022 ident: b0145 article-title: Intelligent tool wear prediction based on Informer encoder and stacked bidirectional gated recurrent unit publication-title: Rob. Comput. Integr. Manuf. – volume: 2019 start-page: 1 year: 2019 end-page: 16 ident: b0090 article-title: Milling tool wear state recognition by vibration signal using a stacked generalization ensemble model publication-title: Shock Vib. – volume: 2 year: 2021 ident: b0005 article-title: A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges publication-title: Int. J. Adv. Manuf. Technol. – volume: 67 start-page: 137 year: 2021 ident: 10.1016/j.aei.2024.102382_b0135 article-title: Tool wear monitoring in micromilling using support vector machine with vibration and sound sensors publication-title: Precision Engineering doi: 10.1016/j.precisioneng.2020.09.025 – volume: 40 start-page: 1073 issue: 8 year: 2000 ident: 10.1016/j.aei.2024.102382_b0030 article-title: Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods publication-title: Int. J. Mach. Tool Manu. doi: 10.1016/S0890-6955(99)00122-4 – ident: 10.1016/j.aei.2024.102382_b0065 doi: 10.3390/s23083833 – volume: 115 start-page: 147 year: 2019 ident: 10.1016/j.aei.2024.102382_b0035 article-title: A generic tool wear model and its application to force modeling and wear monitoring in high speed milling publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.05.045 – volume: 58 year: 2023 ident: 10.1016/j.aei.2024.102382_b0130 article-title: Hierarchical temporal transformer network for tool wear state recognition publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2023.102218 – volume: 73 start-page: 951 issue: 4 year: 2010 ident: 10.1016/j.aei.2024.102382_b0160 article-title: Constrained laplacian eigenmap for dimensionality reduction publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.08.021 – start-page: 198 year: 2022 ident: 10.1016/j.aei.2024.102382_b0180 article-title: An adaptive grid search algorithm for fitting spherical target of terrestrial LiDAR publication-title: Measurement – volume: 14 start-page: 280 issue: 2 year: 2010 ident: 10.1016/j.aei.2024.102382_b0050 article-title: Fuzzy radial basis function (FRBF) network based tool condition monitoring system using vibration signals publication-title: Mach. Sci. Technol. doi: 10.1080/10910344.2010.500954 – volume: 408 start-page: 222 year: 2018 ident: 10.1016/j.aei.2024.102382_b0165 article-title: Tool wear monitoring in rock drilling applications using vibration signals publication-title: Wear doi: 10.1016/j.wear.2018.05.012 – volume: 110 start-page: 511 year: 2020 ident: 10.1016/j.aei.2024.102382_b0095 article-title: Tool wear state recognition based on gradient boosting decision tree and hybrid classification RBM publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-05890-x – volume: 2 start-page: 190 issue: 1 year: 2021 ident: 10.1016/j.aei.2024.102382_b0105 article-title: Application of XGBoost algorithm as a predictive tool in a CNC turning process publication-title: Rep. Mech. Eng. doi: 10.31181/rme2001021901b – volume: 23 start-page: 1 issue: 3 year: 2022 ident: 10.1016/j.aei.2024.102382_b0070 article-title: Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer publication-title: BMC Bioinf. – volume: 16 issue: 8 year: 2019 ident: 10.1016/j.aei.2024.102382_b0150 article-title: Tool wear prediction via multi-dimensional stacked sparse autoencoders with feature fusion publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2949355 – volume: 36 start-page: 194 year: 2018 ident: 10.1016/j.aei.2024.102382_b0175 article-title: A subspace learning-based feature fusion and open-set fault diagnosis approach for machinery components publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2018.04.006 – volume: 185 year: 2021 ident: 10.1016/j.aei.2024.102382_b0100 article-title: A data-driven approach for tool wear recognition and quantitative prediction based on radar map feature fusion publication-title: Measurement doi: 10.1016/j.measurement.2021.110072 – volume: 12 start-page: 7739 issue: 15 year: 2022 ident: 10.1016/j.aei.2024.102382_b0155 article-title: Machine learning prediction of turning precision using optimized XGBoost model publication-title: Appl. Sci. doi: 10.3390/app12157739 – start-page: 1 year: 2021 ident: 10.1016/j.aei.2024.102382_b0170 article-title: Time-Frequency localization for the fractional fourier transform in signal processing and uncertainty principles publication-title: Circuits Syst. Signal Process. – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.aei.2024.102382_b0090 article-title: Milling tool wear state recognition by vibration signal using a stacked generalization ensemble model publication-title: Shock Vib. doi: 10.1155/2019/7386523 – start-page: 77 year: 2022 ident: 10.1016/j.aei.2024.102382_b0145 article-title: Intelligent tool wear prediction based on Informer encoder and stacked bidirectional gated recurrent unit publication-title: Rob. Comput. Integr. Manuf. – volume: 45 start-page: 47 year: 2017 ident: 10.1016/j.aei.2024.102382_b0060 article-title: Multisensory fusion based virtual tool wear ensuing for ubiquitous manufacturing publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2016.05.010 – volume: 111 start-page: 1 year: 2019 ident: 10.1016/j.aei.2024.102382_b0120 article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear prediction publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.06.001 – volume: 58 year: 2023 ident: 10.1016/j.aei.2024.102382_b0045 article-title: Toward practical tool wear prediction paradigm with optimized regressive Siamese neural network publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2023.102200 – volume: 57 start-page: 102094 year: 2023 ident: 10.1016/j.aei.2024.102382_b0010 article-title: A cumulative descriptor enhanced ensemble deep neural networks method for remaining useful life prediction of cutting tools publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2023.102094 – volume: 34 start-page: 53 issue: 1 year: 2021 ident: 10.1016/j.aei.2024.102382_b0185 article-title: Multi-scale convolutional gated recurrent unit networks for tool wear prediction in smart manufacturing publication-title: Chinese J. Mech. Eng. doi: 10.1186/s10033-021-00565-4 – volume: 62 start-page: 286 year: 2022 ident: 10.1016/j.aei.2024.102382_b0115 article-title: Intelligent tool wear monitoring and multi-step prediction based on deep learning model publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.12.002 – volume: 50 year: 2021 ident: 10.1016/j.aei.2024.102382_b0075 article-title: Research on hybrid feature selection method of power transformer based on fuzzy information entropy publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2021.101433 – volume: 123 start-page: 4025 issue: 11–12 year: 2022 ident: 10.1016/j.aei.2024.102382_b0110 article-title: Tool wear prediction based on convolutional bidirectional LSTM model with improved particle swarm optimization publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-10455-1 – volume: 2 year: 2021 ident: 10.1016/j.aei.2024.102382_b0005 article-title: A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges publication-title: Int. J. Adv. Manuf. Technol. – volume: 79 start-page: 44 year: 2016 ident: 10.1016/j.aei.2024.102382_b0040 article-title: An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis publication-title: Measurement doi: 10.1016/j.measurement.2015.10.029 – volume: 79 start-page: 233 year: 2022 ident: 10.1016/j.aei.2024.102382_b0140 article-title: A novel ensemble deep learning model for cutting tool wear monitoring using audio sensors publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.04.066 – volume: 120 start-page: 5633 issue: 7–8 year: 2022 ident: 10.1016/j.aei.2024.102382_b0025 article-title: A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-09032-3 – volume: 9 start-page: 97 issue: 2 year: 2016 ident: 10.1016/j.aei.2024.102382_b0055 article-title: A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials publication-title: International Journal of Mechatronics and Manufacturing Systems doi: 10.1504/IJMMS.2016.076168 – volume: 30 start-page: 32 year: 2021 ident: 10.1016/j.aei.2024.102382_b0085 article-title: Tool wear monitoring by ensemble learning and sensor fusion using power, sound, vibration, and AE signals publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2021.10.002 – volume: 13 issue: 10 year: 2022 ident: 10.1016/j.aei.2024.102382_b0125 article-title: Tool wear prediction based on a multi-scale convolutional neural network with attention fusion publication-title: Information doi: 10.3390/info13100504 – volume: 54 year: 2022 ident: 10.1016/j.aei.2024.102382_b0015 article-title: Alternative multi-label imitation learning framework monitoring tool wear and bearing fault under different working conditions publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2022.101749 – volume: 62 start-page: 17 year: 2022 ident: 10.1016/j.aei.2024.102382_b0020 article-title: Physics-informed meta learning for machining tool wear prediction publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.10.013 – volume: 20 start-page: 6113 issue: 21 year: 2020 ident: 10.1016/j.aei.2024.102382_b0080 article-title: Tool wear condition monitoring by combining variational mode decomposition and ensemble learning publication-title: Sensors doi: 10.3390/s20216113 |
| SSID | ssj0016897 |
| Score | 2.486439 |
| Snippet | •A multi-algorithm based features screening and LE features downscaling method is proposed.•For features with high dimensionality, feature filtering and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 102382 |
| SubjectTerms | Ensemble method Features fusion Laplacian eigenmaps Tool wear XGBoost algorithm |
| Title | Tool wear state recognition and prediction method based on laplacian eigenmap with ensemble learning model |
| URI | https://dx.doi.org/10.1016/j.aei.2024.102382 |
| Volume | 60 |
| WOSCitedRecordID | wos001175587400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5320 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016897 issn: 1474-0346 databaseCode: AIEXJ dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBZht4de-i7dvtChpwYvjh-yfAzLlraUpbBbSE9mZEtsQtYJSXa7PfePd0YP22wftIVejC1ZUdB8Ho1Gn2YYe2WgzE1Sq8iITESo_bIIkhgioUxcC7RQJ8LYZBPFyYmczcqPo9G3cBbmalm0rby-Ltf_VdRYhsKmo7N_Ie7uR7EA71HoeEWx4_XPBE9RNb9QfB57WGjcUYQ873i9ob0Z--jSR49pJmto12AJRNGiT15TkM4LWDs_LS519QUdsVoGR4pNoDM0bKeBS6D7AIdjH5V1N2DUz9x-yGfwMyZRf8C6a0_Jdb09H1R0zuyjc1h9XfUVH-aXFn3EJPOl3nGRDPku1psWTtT09CVSwFmBb6XeLaldmSzSiBJYDLW2y0LwwwTgfBGLQ9DzQ-rUhqZw6Y1uxNU-pa6oJ2LRoqrDeXw_KfIStfv-9N3x7H23GSWky9ET_lrYHLc0wRsd_dy8GZgsZ_fYHb_W4FOHkftspNsH7K5fd3Cv1bcP2YIgwwky3EKGDyDDETK8hwx3kOEWMhyfO8jwABlOkOEBMjxAhlvIPGKf3hyfHb2NfA6OqE7KYhfJDE10u-o0QqskU2nRxBMoVSLA1DnUE4BUKUib2mAx2adKmhylpWIT6yZ9zPbaVaufMN7IDArIsEKbTMcaQCgBZSLFRIHM8wMWh6Grah-gnvKkLKvARFxUONoVjXblRvuAve6arF10lt-9nAV5VN68dGZjheD5dbOn_9bsGbvdg_4529ttLvULdqu-2s23m5ceYt8BVgKiAg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tool+wear+state+recognition+and+prediction+method+based+on+laplacian+eigenmap+with+ensemble+learning+model&rft.jtitle=Advanced+engineering+informatics&rft.au=Xie%2C+Yang&rft.au=Gao%2C+Shangshang&rft.au=Zhang%2C+Chaoyong&rft.au=Liu%2C+Jinfeng&rft.date=2024-04-01&rft.pub=Elsevier+Ltd&rft.issn=1474-0346&rft.eissn=1873-5320&rft.volume=60&rft_id=info:doi/10.1016%2Fj.aei.2024.102382&rft.externalDocID=S1474034624000302 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon |