Tool wear state recognition and prediction method based on laplacian eigenmap with ensemble learning model

•A multi-algorithm based features screening and LE features downscaling method is proposed.•For features with high dimensionality, feature filtering and feature fusion are applied to downscale the features step by step.•Fast selection of model hyperparameters based on GS.•Evaluate the prediction mod...

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering informatics Vol. 60; p. 102382
Main Authors: Xie, Yang, Gao, Shangshang, Zhang, Chaoyong, Liu, Jinfeng
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2024
Subjects:
ISSN:1474-0346, 1873-5320
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A multi-algorithm based features screening and LE features downscaling method is proposed.•For features with high dimensionality, feature filtering and feature fusion are applied to downscale the features step by step.•Fast selection of model hyperparameters based on GS.•Evaluate the prediction model through multiple experiments and multiple metrics. Accurate prediction of tool wear status plays a critical role in the digital manufacturing industry, and its health level directly affects machining quality, production costs, and overall productivity. In response to the problems of the high dimensionality of extracted features from tool wear characterization sensors, redundant information, and large individual model errors and biases, a novel method for tool wear status identification and prediction that fuses downscaling dimensionality and ensemble models is proposed. First, a multi-algorithm feature filtering based on Random Forest (RF) and extreme gradient boosting (XGBoost) is utilized, and the laplacian eigenmaps (LE) algorithm is combined to perform fusion downscaling on the filtered features. Then, the parameters of the XGBoost algorithm are optimized using grid search (GS). Finally, the performance of the proposed method is evaluated by different tool wear experiments for both regression and classification using model prediction accuracy evaluation metrics (R-squared values and f1 values) and prediction time. The experimental results show that for different tools wear experimental data, the R-squared values of the regression model are higher than 0.98, the f1 values of the classification model are above 0.96, and the prediction speed is improved by an order of magnitude compared with other models. The results are analyzed to verify the effectiveness and applicability of the proposed method, which can provide technical support for the automated machining process.
AbstractList •A multi-algorithm based features screening and LE features downscaling method is proposed.•For features with high dimensionality, feature filtering and feature fusion are applied to downscale the features step by step.•Fast selection of model hyperparameters based on GS.•Evaluate the prediction model through multiple experiments and multiple metrics. Accurate prediction of tool wear status plays a critical role in the digital manufacturing industry, and its health level directly affects machining quality, production costs, and overall productivity. In response to the problems of the high dimensionality of extracted features from tool wear characterization sensors, redundant information, and large individual model errors and biases, a novel method for tool wear status identification and prediction that fuses downscaling dimensionality and ensemble models is proposed. First, a multi-algorithm feature filtering based on Random Forest (RF) and extreme gradient boosting (XGBoost) is utilized, and the laplacian eigenmaps (LE) algorithm is combined to perform fusion downscaling on the filtered features. Then, the parameters of the XGBoost algorithm are optimized using grid search (GS). Finally, the performance of the proposed method is evaluated by different tool wear experiments for both regression and classification using model prediction accuracy evaluation metrics (R-squared values and f1 values) and prediction time. The experimental results show that for different tools wear experimental data, the R-squared values of the regression model are higher than 0.98, the f1 values of the classification model are above 0.96, and the prediction speed is improved by an order of magnitude compared with other models. The results are analyzed to verify the effectiveness and applicability of the proposed method, which can provide technical support for the automated machining process.
ArticleNumber 102382
Author Xie, Yang
Liu, Jinfeng
Zhang, Chaoyong
Gao, Shangshang
Author_xml – sequence: 1
  givenname: Yang
  surname: Xie
  fullname: Xie, Yang
  email: xiey_just@just.edu.cn
  organization: School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
– sequence: 2
  givenname: Shangshang
  surname: Gao
  fullname: Gao, Shangshang
  organization: School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
– sequence: 3
  givenname: Chaoyong
  surname: Zhang
  fullname: Zhang, Chaoyong
  organization: School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 4
  givenname: Jinfeng
  surname: Liu
  fullname: Liu, Jinfeng
  organization: School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
BookMark eNp9kE1LAzEQhoNUsK3-AG_5A1uTzX7iSYpfUPBSz2GSzLZZdpOSLBb_van15KGnmXfgGXifBZk575CQe85WnPHqoV8B2lXO8iLlXDT5FZnzphZZKXI2S3tRFxkTRXVDFjH2LDFNW89Jv_V-oEeEQOMEE9KA2u-cnax3FJyhh4DG6t844rT3hiqIaGjKAxwG0BYcRbtDN8KBHu20p-gijmpAOqS3zrodHb3B4ZZcdzBEvPubS_L58rxdv2Wbj9f39dMm03lbT1lTNKIsy7YuugpVXihRG8ahVXkFnS5BcwChFAiju3SuC16qpitTT8U6hkYsCT__1cHHGLCTh2BHCN-SM3mSJXuZZMmTLHmWlZj6H6Nt0pFaTwHscJF8PJOYKn1ZDDJqi04na0nlJI23F-gfvnOIMg
CitedBy_id crossref_primary_10_1016_j_jmsy_2025_02_003
crossref_primary_10_1007_s40747_025_02061_x
crossref_primary_10_1016_j_aei_2025_103292
crossref_primary_10_1016_j_aei_2025_103790
crossref_primary_10_1016_j_aei_2025_103176
crossref_primary_10_1016_j_measurement_2024_116105
crossref_primary_10_1016_j_aei_2024_103043
crossref_primary_10_3390_electronics13142742
crossref_primary_10_1016_j_aei_2025_103111
crossref_primary_10_1016_j_aei_2025_103234
crossref_primary_10_1016_j_aei_2024_102943
crossref_primary_10_1016_j_aei_2025_103219
crossref_primary_10_1016_j_aei_2025_103518
crossref_primary_10_1016_j_aei_2025_103803
crossref_primary_10_1016_j_measurement_2025_118155
crossref_primary_10_1007_s10845_025_02633_1
crossref_primary_10_1007_s12541_025_01232_7
crossref_primary_10_1016_j_microc_2024_111542
crossref_primary_10_3390_pr13051300
crossref_primary_10_1016_j_jmsy_2024_12_014
crossref_primary_10_1016_j_ymssp_2025_112473
crossref_primary_10_1088_1361_6501_ada4cf
Cites_doi 10.1016/j.precisioneng.2020.09.025
10.1016/S0890-6955(99)00122-4
10.3390/s23083833
10.1016/j.ymssp.2018.05.045
10.1016/j.aei.2023.102218
10.1016/j.neucom.2009.08.021
10.1080/10910344.2010.500954
10.1016/j.wear.2018.05.012
10.1007/s00170-020-05890-x
10.31181/rme2001021901b
10.1109/TII.2019.2949355
10.1016/j.aei.2018.04.006
10.1016/j.measurement.2021.110072
10.3390/app12157739
10.1155/2019/7386523
10.1016/j.rcim.2016.05.010
10.1016/j.compind.2019.06.001
10.1016/j.aei.2023.102200
10.1016/j.aei.2023.102094
10.1186/s10033-021-00565-4
10.1016/j.jmsy.2021.12.002
10.1016/j.aei.2021.101433
10.1007/s00170-022-10455-1
10.1016/j.measurement.2015.10.029
10.1016/j.jmapro.2022.04.066
10.1007/s00170-022-09032-3
10.1504/IJMMS.2016.076168
10.1016/j.mfglet.2021.10.002
10.3390/info13100504
10.1016/j.aei.2022.101749
10.1016/j.jmsy.2021.10.013
10.3390/s20216113
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aei.2024.102382
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-5320
ExternalDocumentID 10_1016_j_aei_2024_102382
S1474034624000302
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
UHS
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-8483555974f6eb24b37d01a9b26afc5ac1aa3bba3dcf1a97415b8f5532b0f0ed3
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001175587400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-0346
IngestDate Tue Nov 18 21:48:17 EST 2025
Sat Nov 29 03:19:52 EST 2025
Tue Jun 18 08:50:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Laplacian eigenmaps
XGBoost algorithm
Ensemble method
Features fusion
Tool wear
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-8483555974f6eb24b37d01a9b26afc5ac1aa3bba3dcf1a97415b8f5532b0f0ed3
ParticipantIDs crossref_primary_10_1016_j_aei_2024_102382
crossref_citationtrail_10_1016_j_aei_2024_102382
elsevier_sciencedirect_doi_10_1016_j_aei_2024_102382
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Advanced engineering informatics
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Yan, Li, Gao, Zhao (b0120) 2019; 111
Wang, Xuan, Shi (b0015) 2022; 54
Aloui, Brahim (b0170) 2021
Niaki, Feng, Ulutan, Mears (b0055) 2016; 9
Wang, Xie, Zhao, Zhang, Duan (b0060) 2017; 45
Chakraborty, Bhattacharya (b0105) 2021; 2
Huang, Wu, Huang, Zhang, Han (b0125) 2022; 13
Li, An (b0040) 2016; 79
Yu, Tan, Zhang, Fang, Tang, Hu (b0075) 2021; 50
Xue, Chen, Wu, Yang, Li (b0130) 2023; 58
Li, Liu, Yue, Liu, Zhang, Li, Liang, Wang (b0100) 2021; 185
Yuan, Liu, Yang, Zhang (b0080) 2020; 20
Duan, Liang, Yu, Si, Zhan, Shi (b0045) 2023; 58
Klaic, Murat, Staroveski, Brezak (b0165) 2018; 408
Feng, Guo, Gao, Chen, Yu, Li (b0025) 2022; 120
Li, Fu, Han, Zhang, Jin (b0145) 2022
M. Shal, H. Borade, V. Sanghavi, A. Purohit, V. Wankhede, V. Vakharia, Enhancing Tool Wear Prediction Accuracy Using Walsh–Hadamard Transform, DCGAN and Dragonfly Algorithm-Based Feature Selection, Sensors 23 (8) (2023) 3833, doi:10.3390/s23083833.
Nasir, Sassani (b0005) 2021; 2
Li, Wang, Huang, Gao (b0020) 2022; 62
Li, Liu, Incecik, Gupta, Krolczyk, Gardoni (b0140) 2022; 79
Li, Wang, He, Hao, Yang, Wei (b0095) 2020; 110
Shi, Zhao, Wang, Xu (b0180) 2022
Snr (b0030) 2000; 40
Karali, SurjyaK, Kingshook (b0050) 2010; 14
Bhadra, Mallik, Hasan, Zhao (b0070) 2022; 23
Zhu, Zhang (b0035) 2019; 115
Cheng, Jiao, Yan, Jiang, Wang, Qiu, Wang (b0115) 2022; 62
Chen, Zhang, Bu, Wang, Chen (b0160) 2010; 73
Wang, Kuo, Chen (b0155) 2022; 12
Li, Qin, Wu, Yang, Huang (b0110) 2022; 123
Mo, Wang, Zhang, Hu (b0010) 2023; 57
Nasir, Dibaji, Alaswad, Cool (b0085) 2021; 30
Gomes, Brito, Silva, Duarte (b0135) 2021; 67
Shi, Luo, He, Li, Liu, Li (b0150) 2019; 16
Xu, Miao, Zhao, Liu, Sun, Yan (b0185) 2021; 34
Hui, Mei, Jiang, Tao, Pei, Ma (b0090) 2019; 2019
Tian, Wang, Zhang, Lu, Ma (b0175) 2018; 36
Cheng (10.1016/j.aei.2024.102382_b0115) 2022; 62
Xu (10.1016/j.aei.2024.102382_b0185) 2021; 34
Wang (10.1016/j.aei.2024.102382_b0015) 2022; 54
Niaki (10.1016/j.aei.2024.102382_b0055) 2016; 9
Tian (10.1016/j.aei.2024.102382_b0175) 2018; 36
Li (10.1016/j.aei.2024.102382_b0110) 2022; 123
Xue (10.1016/j.aei.2024.102382_b0130) 2023; 58
Zhu (10.1016/j.aei.2024.102382_b0035) 2019; 115
Yuan (10.1016/j.aei.2024.102382_b0080) 2020; 20
Bhadra (10.1016/j.aei.2024.102382_b0070) 2022; 23
Chen (10.1016/j.aei.2024.102382_b0160) 2010; 73
10.1016/j.aei.2024.102382_b0065
Li (10.1016/j.aei.2024.102382_b0140) 2022; 79
Li (10.1016/j.aei.2024.102382_b0020) 2022; 62
Hui (10.1016/j.aei.2024.102382_b0090) 2019; 2019
Li (10.1016/j.aei.2024.102382_b0100) 2021; 185
Mo (10.1016/j.aei.2024.102382_b0010) 2023; 57
Huang (10.1016/j.aei.2024.102382_b0125) 2022; 13
Duan (10.1016/j.aei.2024.102382_b0045) 2023; 58
Nasir (10.1016/j.aei.2024.102382_b0005) 2021; 2
Wang (10.1016/j.aei.2024.102382_b0060) 2017; 45
Li (10.1016/j.aei.2024.102382_b0095) 2020; 110
Gomes (10.1016/j.aei.2024.102382_b0135) 2021; 67
Chakraborty (10.1016/j.aei.2024.102382_b0105) 2021; 2
Feng (10.1016/j.aei.2024.102382_b0025) 2022; 120
Wang (10.1016/j.aei.2024.102382_b0120) 2019; 111
Karali (10.1016/j.aei.2024.102382_b0050) 2010; 14
Klaic (10.1016/j.aei.2024.102382_b0165) 2018; 408
Aloui (10.1016/j.aei.2024.102382_b0170) 2021
Snr (10.1016/j.aei.2024.102382_b0030) 2000; 40
Yu (10.1016/j.aei.2024.102382_b0075) 2021; 50
Wang (10.1016/j.aei.2024.102382_b0155) 2022; 12
Nasir (10.1016/j.aei.2024.102382_b0085) 2021; 30
Shi (10.1016/j.aei.2024.102382_b0150) 2019; 16
Li (10.1016/j.aei.2024.102382_b0145) 2022
Li (10.1016/j.aei.2024.102382_b0040) 2016; 79
Shi (10.1016/j.aei.2024.102382_b0180) 2022
References_xml – volume: 79
  start-page: 233
  year: 2022
  end-page: 249
  ident: b0140
  article-title: A novel ensemble deep learning model for cutting tool wear monitoring using audio sensors
  publication-title: J. Manuf. Process.
– volume: 115
  start-page: 147
  year: 2019
  end-page: 161
  ident: b0035
  article-title: A generic tool wear model and its application to force modeling and wear monitoring in high speed milling
  publication-title: Mechanical Systems and Signal Processing
– volume: 58
  year: 2023
  ident: b0045
  article-title: Toward practical tool wear prediction paradigm with optimized regressive Siamese neural network
  publication-title: Adv. Eng. Inf.
– volume: 110
  start-page: 511
  year: 2020
  end-page: 522
  ident: b0095
  article-title: Tool wear state recognition based on gradient boosting decision tree and hybrid classification RBM
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 62
  start-page: 286
  year: 2022
  end-page: 300
  ident: b0115
  article-title: Intelligent tool wear monitoring and multi-step prediction based on deep learning model
  publication-title: J. Manuf. Syst.
– volume: 111
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0120
  article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear prediction
  publication-title: Comput. Ind.
– volume: 9
  start-page: 97
  year: 2016
  end-page: 121
  ident: b0055
  article-title: A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials
  publication-title: International Journal of Mechatronics and Manufacturing Systems
– volume: 2
  start-page: 190
  year: 2021
  end-page: 201
  ident: b0105
  article-title: Application of XGBoost algorithm as a predictive tool in a CNC turning process
  publication-title: Rep. Mech. Eng.
– volume: 50
  year: 2021
  ident: b0075
  article-title: Research on hybrid feature selection method of power transformer based on fuzzy information entropy
  publication-title: Adv. Eng. Inf.
– volume: 408
  start-page: 222
  year: 2018
  end-page: 227
  ident: b0165
  article-title: Tool wear monitoring in rock drilling applications using vibration signals
  publication-title: Wear
– volume: 54
  year: 2022
  ident: b0015
  article-title: Alternative multi-label imitation learning framework monitoring tool wear and bearing fault under different working conditions
  publication-title: Adv. Eng. Inf.
– volume: 12
  start-page: 7739
  year: 2022
  ident: b0155
  article-title: Machine learning prediction of turning precision using optimized XGBoost model
  publication-title: Appl. Sci.
– reference: M. Shal, H. Borade, V. Sanghavi, A. Purohit, V. Wankhede, V. Vakharia, Enhancing Tool Wear Prediction Accuracy Using Walsh–Hadamard Transform, DCGAN and Dragonfly Algorithm-Based Feature Selection, Sensors 23 (8) (2023) 3833, doi:10.3390/s23083833.
– volume: 30
  start-page: 32
  year: 2021
  end-page: 38
  ident: b0085
  article-title: Tool wear monitoring by ensemble learning and sensor fusion using power, sound, vibration, and AE signals
  publication-title: Manuf. Lett.
– volume: 57
  start-page: 102094
  year: 2023
  ident: b0010
  article-title: A cumulative descriptor enhanced ensemble deep neural networks method for remaining useful life prediction of cutting tools
  publication-title: Adv. Eng. Inf.
– volume: 79
  start-page: 44
  year: 2016
  end-page: 52
  ident: b0040
  article-title: An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis
  publication-title: Measurement
– volume: 73
  start-page: 951
  year: 2010
  end-page: 958
  ident: b0160
  article-title: Constrained laplacian eigenmap for dimensionality reduction
  publication-title: Neurocomputing
– volume: 36
  start-page: 194
  year: 2018
  end-page: 206
  ident: b0175
  article-title: A subspace learning-based feature fusion and open-set fault diagnosis approach for machinery components
  publication-title: Adv. Eng. Inf.
– volume: 62
  start-page: 17
  year: 2022
  end-page: 27
  ident: b0020
  article-title: Physics-informed meta learning for machining tool wear prediction
  publication-title: J. Manuf. Syst.
– volume: 23
  start-page: 1
  year: 2022
  end-page: 19
  ident: b0070
  article-title: Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer
  publication-title: BMC Bioinf.
– volume: 16
  year: 2019
  ident: b0150
  article-title: Tool wear prediction via multi-dimensional stacked sparse autoencoders with feature fusion
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 1
  year: 2021
  end-page: 22
  ident: b0170
  article-title: Time-Frequency localization for the fractional fourier transform in signal processing and uncertainty principles
  publication-title: Circuits Syst. Signal Process.
– volume: 45
  start-page: 47
  year: 2017
  end-page: 58
  ident: b0060
  article-title: Multisensory fusion based virtual tool wear ensuing for ubiquitous manufacturing
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 20
  start-page: 6113
  year: 2020
  ident: b0080
  article-title: Tool wear condition monitoring by combining variational mode decomposition and ensemble learning
  publication-title: Sensors
– volume: 13
  year: 2022
  ident: b0125
  article-title: Tool wear prediction based on a multi-scale convolutional neural network with attention fusion
  publication-title: Information
– volume: 185
  year: 2021
  ident: b0100
  article-title: A data-driven approach for tool wear recognition and quantitative prediction based on radar map feature fusion
  publication-title: Measurement
– volume: 123
  start-page: 4025
  year: 2022
  end-page: 4039
  ident: b0110
  article-title: Tool wear prediction based on convolutional bidirectional LSTM model with improved particle swarm optimization
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 40
  start-page: 1073
  year: 2000
  end-page: 1098
  ident: b0030
  article-title: Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods
  publication-title: Int. J. Mach. Tool Manu.
– volume: 67
  start-page: 137
  year: 2021
  end-page: 151
  ident: b0135
  article-title: Tool wear monitoring in micromilling using support vector machine with vibration and sound sensors
  publication-title: Precision Engineering
– volume: 58
  year: 2023
  ident: b0130
  article-title: Hierarchical temporal transformer network for tool wear state recognition
  publication-title: Adv. Eng. Inf.
– volume: 34
  start-page: 53
  year: 2021
  ident: b0185
  article-title: Multi-scale convolutional gated recurrent unit networks for tool wear prediction in smart manufacturing
  publication-title: Chinese J. Mech. Eng.
– volume: 14
  start-page: 280
  year: 2010
  end-page: 300
  ident: b0050
  article-title: Fuzzy radial basis function (FRBF) network based tool condition monitoring system using vibration signals
  publication-title: Mach. Sci. Technol.
– volume: 120
  start-page: 5633
  year: 2022
  end-page: 5648
  ident: b0025
  article-title: A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 198
  year: 2022
  ident: b0180
  article-title: An adaptive grid search algorithm for fitting spherical target of terrestrial LiDAR
  publication-title: Measurement
– start-page: 77
  year: 2022
  ident: b0145
  article-title: Intelligent tool wear prediction based on Informer encoder and stacked bidirectional gated recurrent unit
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0090
  article-title: Milling tool wear state recognition by vibration signal using a stacked generalization ensemble model
  publication-title: Shock Vib.
– volume: 2
  year: 2021
  ident: b0005
  article-title: A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 67
  start-page: 137
  year: 2021
  ident: 10.1016/j.aei.2024.102382_b0135
  article-title: Tool wear monitoring in micromilling using support vector machine with vibration and sound sensors
  publication-title: Precision Engineering
  doi: 10.1016/j.precisioneng.2020.09.025
– volume: 40
  start-page: 1073
  issue: 8
  year: 2000
  ident: 10.1016/j.aei.2024.102382_b0030
  article-title: Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods
  publication-title: Int. J. Mach. Tool Manu.
  doi: 10.1016/S0890-6955(99)00122-4
– ident: 10.1016/j.aei.2024.102382_b0065
  doi: 10.3390/s23083833
– volume: 115
  start-page: 147
  year: 2019
  ident: 10.1016/j.aei.2024.102382_b0035
  article-title: A generic tool wear model and its application to force modeling and wear monitoring in high speed milling
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.05.045
– volume: 58
  year: 2023
  ident: 10.1016/j.aei.2024.102382_b0130
  article-title: Hierarchical temporal transformer network for tool wear state recognition
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2023.102218
– volume: 73
  start-page: 951
  issue: 4
  year: 2010
  ident: 10.1016/j.aei.2024.102382_b0160
  article-title: Constrained laplacian eigenmap for dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.08.021
– start-page: 198
  year: 2022
  ident: 10.1016/j.aei.2024.102382_b0180
  article-title: An adaptive grid search algorithm for fitting spherical target of terrestrial LiDAR
  publication-title: Measurement
– volume: 14
  start-page: 280
  issue: 2
  year: 2010
  ident: 10.1016/j.aei.2024.102382_b0050
  article-title: Fuzzy radial basis function (FRBF) network based tool condition monitoring system using vibration signals
  publication-title: Mach. Sci. Technol.
  doi: 10.1080/10910344.2010.500954
– volume: 408
  start-page: 222
  year: 2018
  ident: 10.1016/j.aei.2024.102382_b0165
  article-title: Tool wear monitoring in rock drilling applications using vibration signals
  publication-title: Wear
  doi: 10.1016/j.wear.2018.05.012
– volume: 110
  start-page: 511
  year: 2020
  ident: 10.1016/j.aei.2024.102382_b0095
  article-title: Tool wear state recognition based on gradient boosting decision tree and hybrid classification RBM
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05890-x
– volume: 2
  start-page: 190
  issue: 1
  year: 2021
  ident: 10.1016/j.aei.2024.102382_b0105
  article-title: Application of XGBoost algorithm as a predictive tool in a CNC turning process
  publication-title: Rep. Mech. Eng.
  doi: 10.31181/rme2001021901b
– volume: 23
  start-page: 1
  issue: 3
  year: 2022
  ident: 10.1016/j.aei.2024.102382_b0070
  article-title: Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer
  publication-title: BMC Bioinf.
– volume: 16
  issue: 8
  year: 2019
  ident: 10.1016/j.aei.2024.102382_b0150
  article-title: Tool wear prediction via multi-dimensional stacked sparse autoencoders with feature fusion
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2949355
– volume: 36
  start-page: 194
  year: 2018
  ident: 10.1016/j.aei.2024.102382_b0175
  article-title: A subspace learning-based feature fusion and open-set fault diagnosis approach for machinery components
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2018.04.006
– volume: 185
  year: 2021
  ident: 10.1016/j.aei.2024.102382_b0100
  article-title: A data-driven approach for tool wear recognition and quantitative prediction based on radar map feature fusion
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110072
– volume: 12
  start-page: 7739
  issue: 15
  year: 2022
  ident: 10.1016/j.aei.2024.102382_b0155
  article-title: Machine learning prediction of turning precision using optimized XGBoost model
  publication-title: Appl. Sci.
  doi: 10.3390/app12157739
– start-page: 1
  year: 2021
  ident: 10.1016/j.aei.2024.102382_b0170
  article-title: Time-Frequency localization for the fractional fourier transform in signal processing and uncertainty principles
  publication-title: Circuits Syst. Signal Process.
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.aei.2024.102382_b0090
  article-title: Milling tool wear state recognition by vibration signal using a stacked generalization ensemble model
  publication-title: Shock Vib.
  doi: 10.1155/2019/7386523
– start-page: 77
  year: 2022
  ident: 10.1016/j.aei.2024.102382_b0145
  article-title: Intelligent tool wear prediction based on Informer encoder and stacked bidirectional gated recurrent unit
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 45
  start-page: 47
  year: 2017
  ident: 10.1016/j.aei.2024.102382_b0060
  article-title: Multisensory fusion based virtual tool wear ensuing for ubiquitous manufacturing
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2016.05.010
– volume: 111
  start-page: 1
  year: 2019
  ident: 10.1016/j.aei.2024.102382_b0120
  article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear prediction
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.06.001
– volume: 58
  year: 2023
  ident: 10.1016/j.aei.2024.102382_b0045
  article-title: Toward practical tool wear prediction paradigm with optimized regressive Siamese neural network
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2023.102200
– volume: 57
  start-page: 102094
  year: 2023
  ident: 10.1016/j.aei.2024.102382_b0010
  article-title: A cumulative descriptor enhanced ensemble deep neural networks method for remaining useful life prediction of cutting tools
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2023.102094
– volume: 34
  start-page: 53
  issue: 1
  year: 2021
  ident: 10.1016/j.aei.2024.102382_b0185
  article-title: Multi-scale convolutional gated recurrent unit networks for tool wear prediction in smart manufacturing
  publication-title: Chinese J. Mech. Eng.
  doi: 10.1186/s10033-021-00565-4
– volume: 62
  start-page: 286
  year: 2022
  ident: 10.1016/j.aei.2024.102382_b0115
  article-title: Intelligent tool wear monitoring and multi-step prediction based on deep learning model
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.12.002
– volume: 50
  year: 2021
  ident: 10.1016/j.aei.2024.102382_b0075
  article-title: Research on hybrid feature selection method of power transformer based on fuzzy information entropy
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2021.101433
– volume: 123
  start-page: 4025
  issue: 11–12
  year: 2022
  ident: 10.1016/j.aei.2024.102382_b0110
  article-title: Tool wear prediction based on convolutional bidirectional LSTM model with improved particle swarm optimization
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-022-10455-1
– volume: 2
  year: 2021
  ident: 10.1016/j.aei.2024.102382_b0005
  article-title: A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 79
  start-page: 44
  year: 2016
  ident: 10.1016/j.aei.2024.102382_b0040
  article-title: An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.10.029
– volume: 79
  start-page: 233
  year: 2022
  ident: 10.1016/j.aei.2024.102382_b0140
  article-title: A novel ensemble deep learning model for cutting tool wear monitoring using audio sensors
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2022.04.066
– volume: 120
  start-page: 5633
  issue: 7–8
  year: 2022
  ident: 10.1016/j.aei.2024.102382_b0025
  article-title: A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-022-09032-3
– volume: 9
  start-page: 97
  issue: 2
  year: 2016
  ident: 10.1016/j.aei.2024.102382_b0055
  article-title: A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials
  publication-title: International Journal of Mechatronics and Manufacturing Systems
  doi: 10.1504/IJMMS.2016.076168
– volume: 30
  start-page: 32
  year: 2021
  ident: 10.1016/j.aei.2024.102382_b0085
  article-title: Tool wear monitoring by ensemble learning and sensor fusion using power, sound, vibration, and AE signals
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2021.10.002
– volume: 13
  issue: 10
  year: 2022
  ident: 10.1016/j.aei.2024.102382_b0125
  article-title: Tool wear prediction based on a multi-scale convolutional neural network with attention fusion
  publication-title: Information
  doi: 10.3390/info13100504
– volume: 54
  year: 2022
  ident: 10.1016/j.aei.2024.102382_b0015
  article-title: Alternative multi-label imitation learning framework monitoring tool wear and bearing fault under different working conditions
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2022.101749
– volume: 62
  start-page: 17
  year: 2022
  ident: 10.1016/j.aei.2024.102382_b0020
  article-title: Physics-informed meta learning for machining tool wear prediction
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.10.013
– volume: 20
  start-page: 6113
  issue: 21
  year: 2020
  ident: 10.1016/j.aei.2024.102382_b0080
  article-title: Tool wear condition monitoring by combining variational mode decomposition and ensemble learning
  publication-title: Sensors
  doi: 10.3390/s20216113
SSID ssj0016897
Score 2.486439
Snippet •A multi-algorithm based features screening and LE features downscaling method is proposed.•For features with high dimensionality, feature filtering and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102382
SubjectTerms Ensemble method
Features fusion
Laplacian eigenmaps
Tool wear
XGBoost algorithm
Title Tool wear state recognition and prediction method based on laplacian eigenmap with ensemble learning model
URI https://dx.doi.org/10.1016/j.aei.2024.102382
Volume 60
WOSCitedRecordID wos001175587400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5320
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016897
  issn: 1474-0346
  databaseCode: AIEXJ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBZht4de-i7dvtChpwYvjh-yfAzLlraUpbBbSE9mZEtsQtYJSXa7PfePd0YP22wftIVejC1ZUdB8Ho1Gn2YYe2WgzE1Sq8iITESo_bIIkhgioUxcC7RQJ8LYZBPFyYmczcqPo9G3cBbmalm0rby-Ltf_VdRYhsKmo7N_Ie7uR7EA71HoeEWx4_XPBE9RNb9QfB57WGjcUYQ873i9ob0Z--jSR49pJmto12AJRNGiT15TkM4LWDs_LS519QUdsVoGR4pNoDM0bKeBS6D7AIdjH5V1N2DUz9x-yGfwMyZRf8C6a0_Jdb09H1R0zuyjc1h9XfUVH-aXFn3EJPOl3nGRDPku1psWTtT09CVSwFmBb6XeLaldmSzSiBJYDLW2y0LwwwTgfBGLQ9DzQ-rUhqZw6Y1uxNU-pa6oJ2LRoqrDeXw_KfIStfv-9N3x7H23GSWky9ET_lrYHLc0wRsd_dy8GZgsZ_fYHb_W4FOHkftspNsH7K5fd3Cv1bcP2YIgwwky3EKGDyDDETK8hwx3kOEWMhyfO8jwABlOkOEBMjxAhlvIPGKf3hyfHb2NfA6OqE7KYhfJDE10u-o0QqskU2nRxBMoVSLA1DnUE4BUKUib2mAx2adKmhylpWIT6yZ9zPbaVaufMN7IDArIsEKbTMcaQCgBZSLFRIHM8wMWh6Grah-gnvKkLKvARFxUONoVjXblRvuAve6arF10lt-9nAV5VN68dGZjheD5dbOn_9bsGbvdg_4529ttLvULdqu-2s23m5ceYt8BVgKiAg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tool+wear+state+recognition+and+prediction+method+based+on+laplacian+eigenmap+with+ensemble+learning+model&rft.jtitle=Advanced+engineering+informatics&rft.au=Xie%2C+Yang&rft.au=Gao%2C+Shangshang&rft.au=Zhang%2C+Chaoyong&rft.au=Liu%2C+Jinfeng&rft.date=2024-04-01&rft.pub=Elsevier+Ltd&rft.issn=1474-0346&rft.eissn=1873-5320&rft.volume=60&rft_id=info:doi/10.1016%2Fj.aei.2024.102382&rft.externalDocID=S1474034624000302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon