A combined prediction model based on secondary decomposition and intelligence optimization for carbon emission
•An improved singular spectrum decomposition is proposed.•High complexity components are secondarily decomposed to reduce its complexity.•An improved prediction model of optimization algorithm is proposed.•Intelligent weighting strategy is introduced to overcome traditional weighting problem.•A comb...
Saved in:
| Published in: | Applied mathematical modelling Vol. 121; pp. 484 - 505 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.09.2023
|
| Subjects: | |
| ISSN: | 0307-904X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •An improved singular spectrum decomposition is proposed.•High complexity components are secondarily decomposed to reduce its complexity.•An improved prediction model of optimization algorithm is proposed.•Intelligent weighting strategy is introduced to overcome traditional weighting problem.•A combined prediction model for carbon emission is proposed.
Accurate prediction of carbon emission is critical for the development of low-carbon economy. However, most carbon emission prediction studies use a single model with low prediction accuracy, and do not consider the instability of carbon emission. Therefore, this paper proposes a combined prediction model of carbon emission. Firstly, the original data is decomposed by singular spectrum decomposition to obtain a limited amount of singular spectrum components. Secondly, high complexity components are secondarily decomposed by variational mode decomposition. Then, chameleon swarm algorithm and carnivorous plant algorithm are used to train the regularization coefficients and kernel parameters of kernel extreme learning machine and least squares support vector machine respectively, and the trained model is used to predict the decomposition components. Finally, induced ordered weighted averaging operator is used to calculate the weight of single model, and error correction is introduced to further promote the prediction accuracy. The carbon emission data of China and the United States is used to make a prediction experiment. The results indicate that the proposed model is superior to other comparative models in different indexes, which provides a new idea for carbon emission prediction. |
|---|---|
| AbstractList | •An improved singular spectrum decomposition is proposed.•High complexity components are secondarily decomposed to reduce its complexity.•An improved prediction model of optimization algorithm is proposed.•Intelligent weighting strategy is introduced to overcome traditional weighting problem.•A combined prediction model for carbon emission is proposed.
Accurate prediction of carbon emission is critical for the development of low-carbon economy. However, most carbon emission prediction studies use a single model with low prediction accuracy, and do not consider the instability of carbon emission. Therefore, this paper proposes a combined prediction model of carbon emission. Firstly, the original data is decomposed by singular spectrum decomposition to obtain a limited amount of singular spectrum components. Secondly, high complexity components are secondarily decomposed by variational mode decomposition. Then, chameleon swarm algorithm and carnivorous plant algorithm are used to train the regularization coefficients and kernel parameters of kernel extreme learning machine and least squares support vector machine respectively, and the trained model is used to predict the decomposition components. Finally, induced ordered weighted averaging operator is used to calculate the weight of single model, and error correction is introduced to further promote the prediction accuracy. The carbon emission data of China and the United States is used to make a prediction experiment. The results indicate that the proposed model is superior to other comparative models in different indexes, which provides a new idea for carbon emission prediction. |
| Author | Yang, Hong Wang, Maozhu Li, Guohui |
| Author_xml | – sequence: 1 givenname: Hong surname: Yang fullname: Yang, Hong email: uestcyhong@163.com – sequence: 2 givenname: Maozhu surname: Wang fullname: Wang, Maozhu – sequence: 3 givenname: Guohui surname: Li fullname: Li, Guohui |
| BookMark | eNp9kEtLAzEQgHOoYFv9Ad72D-w62WcXT6X4goIXBW8hj4lM2U2WZBH015tWTx56mkfmGzLfii2cd8jYDYeCA29vD4WcxqKEsiqgKQC6BVtCBV3eQ_1-yVYxHgCgSdWSuW2m_ajIocmmgIb0TN5lozc4ZErG1E5lRO2dkeErMykbJx_pNCadycjNOAz0gU5j5qeZRvqWp1frQ6ZlUCnFkWJMvSt2YeUQ8fovrtnbw_3r7infvzw-77b7XJd9N-ebuoHWNmVdgdLY4qZruDS1qtoaLEgsla0bXmtljDI977UEro3t1KbnlldltWbd714dfIwBrdA0n341B0mD4CCOqsRBJFXiqEpAI5KqRPJ_5BRoTKefZe5-GUwnfRIGETUdfRgKqGdhPJ2hfwDefIkJ |
| CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_119976 crossref_primary_10_1016_j_measurement_2023_113554 crossref_primary_10_1016_j_oceaneng_2023_116311 crossref_primary_10_1016_j_esr_2023_101160 crossref_primary_10_3390_su17010059 crossref_primary_10_1016_j_pnucene_2025_105800 crossref_primary_10_1016_j_apenergy_2024_124626 crossref_primary_10_1016_j_uclim_2024_101916 crossref_primary_10_1080_13504509_2023_2301370 crossref_primary_10_3390_su151813934 crossref_primary_10_1016_j_engappai_2023_106692 crossref_primary_10_1016_j_oceaneng_2023_116629 crossref_primary_10_1016_j_measurement_2024_114193 crossref_primary_10_1016_j_jclepro_2024_141303 crossref_primary_10_3390_buildings13071617 crossref_primary_10_1016_j_apm_2024_115643 crossref_primary_10_1016_j_jclepro_2024_143680 crossref_primary_10_1016_j_jclepro_2024_143445 crossref_primary_10_1016_j_jclepro_2024_143301 crossref_primary_10_1080_19427867_2024_2339631 crossref_primary_10_1016_j_spc_2023_12_030 crossref_primary_10_3390_math13121955 crossref_primary_10_1142_S281094302550012X crossref_primary_10_1088_1361_6501_ad76c8 crossref_primary_10_1016_j_oceaneng_2024_118633 crossref_primary_10_3390_biomimetics8080569 crossref_primary_10_1007_s11356_024_32333_x crossref_primary_10_1016_j_engappai_2025_111702 crossref_primary_10_1016_j_apm_2023_06_040 crossref_primary_10_1016_j_oceaneng_2024_116959 |
| Cites_doi | 10.1142/S1793536914500113 10.15244/pjoes/68881 10.3390/en14051328 10.1371/journal.pone.0236685 10.1007/s12065-019-00295-6 10.3390/min12020252 10.1016/j.aej.2021.11.019 10.1007/s12206-022-1205-4 10.3390/jmse9080871 10.1007/s11356-022-21277-9 10.15244/pjoes/94619 10.1016/j.chaos.2018.07.039 10.1088/1361-6501/aca349 10.1016/j.aej.2022.12.059 10.1016/j.apm.2022.01.023 10.1016/j.renene.2022.10.027 10.1016/j.eswa.2021.114685 10.1016/j.jclepro.2023.136701 10.3390/en14248466 10.1063/1.4959236 10.1007/s11356-021-18162-2 10.3389/fenrg.2021.756311 10.1007/s11356-022-24020-6 10.1016/j.apenergy.2022.118934 10.1016/j.asoc.2020.106833 10.1155/2021/1441942 10.1007/s11356-022-20393-w 10.1002/ese3.1304 10.1016/j.enbuild.2019.05.060 10.1007/s10661-020-08617-3 10.3390/e23111432 10.1016/j.ymssp.2022.109436 10.3390/su142315988 10.1016/S0167-2789(98)00240-1 10.1198/jasa.2002.s239 10.1007/s11356-021-14591-1 10.1016/0375-9601(93)90080-J 10.1016/j.matpr.2021.11.581 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Inc. |
| Copyright_xml | – notice: 2023 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apm.2023.05.007 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EndPage | 505 |
| ExternalDocumentID | 10_1016_j_apm_2023_05_007 S0307904X23002007 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-84506f52430bce6e8751ad4b3640f0ae2bf4514cbddbd919ca01cdf7b891f1323 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001012065000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0307-904X |
| IngestDate | Tue Nov 18 22:18:54 EST 2025 Sat Nov 29 07:20:55 EST 2025 Fri Feb 23 02:37:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Carbon emission Error correction Intelligent optimization algorithm Secondary decomposition Weighted combination |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-84506f52430bce6e8751ad4b3640f0ae2bf4514cbddbd919ca01cdf7b891f1323 |
| PageCount | 22 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_apm_2023_05_007 crossref_primary_10_1016_j_apm_2023_05_007 elsevier_sciencedirect_doi_10_1016_j_apm_2023_05_007 |
| PublicationCentury | 2000 |
| PublicationDate | September 2023 2023-09-00 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematical modelling |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Brock, Hsieh (bib0039) 1991 Ning, Pei, Li (bib0004) 2021; 2021 Elsner (bib0035) 2002; 97 Sun, Ren (bib0016) 2021; 28 Sun, Ye, Xu (bib0007) 2016; 8 Parida, Mishra, Das (bib0040) 2021; 14 Duan, Liao (bib0022) 2022; 180 Yang, Yang, Li (bib0020) 2023; 401 Bonizzi, Karel, Meste (bib0019) 2014; 6 Xiao, Tang, Ren (bib0036) 2022; 61 Lee, Gupta, Kircher (bib0033) 2019; 198 Kong, Song, Yang (bib0013) 2022; 29 Zou, Zhang (bib0006) 2022; 2022 Li, Yang, Yang (bib0018) 2023; 68 Wang, Yan, Liu (bib0028) 2022; 14 Wang, Watanabe, Hirata (bib0011) 2021; 9 Ong, Ong, Sia (bib0030) 2021; 98 Modise, Mpofu, Adenuga (bib0003) 2021; 14 Amar, Ouaer, Ghriga (bib0010) 2022; 311 Santhosh, Shetty, Manasa (bib0026) 2022; 52 Wang, Yang, Song (bib0014) 2023 Chu, Zhao (bib0044) 2021; 41 Sun, Zhang (bib0025) 2020; 192 Chen, Yao, Xue (bib0001) 2023; 30 Jin (bib0008) 2021; 16 Salehi, Mohammadi, Hemmati-Sarapardeh (bib0009) 2022; 12 Yun, Huang, Wu (bib0012) 2023; 11 Zhou, Wu, Liu (bib0043) 2022; 34 Niu, Wang, Wei (bib0015) 2022; 201 Zhou, Wang (bib0024) 2021; 14 Xu, Zhang, Deng (bib0034) 2018; 117 Sprott (bib0038) 1993; 173 Cui, Guo, Zhang (bib0021) 2023; 37 Wang, Shi, He (bib0005) 2022; 838 De Lorenzi, Gambarotta, Marzi (bib0032) 2022; 314 Sun, Jin, Wang (bib0041) 2019; 28 Zhou, Du, Shi (bib0027) 2017; 26 Kim, Eykholt, Salas (bib0037) 1999; 127 Kong, Song, Yang (bib0017) 2022; 29 Bai, Liu, Wang (bib0042) 2022; 106 Shi (bib0029) 2022; 29 Braik (bib0031) 2021; 174 Zeng, Zhang, Qu (bib0002) 2021; 21 Velichko, Heidari (bib0023) 2021; 23 Ma, Shum, Han (bib0045) 2021; 9 Elsner (10.1016/j.apm.2023.05.007_bib0035) 2002; 97 Wang (10.1016/j.apm.2023.05.007_bib0014) 2023 Amar (10.1016/j.apm.2023.05.007_bib0010) 2022; 311 Chu (10.1016/j.apm.2023.05.007_bib0044) 2021; 41 Bonizzi (10.1016/j.apm.2023.05.007_bib0019) 2014; 6 Ning (10.1016/j.apm.2023.05.007_bib0004) 2021; 2021 Brock (10.1016/j.apm.2023.05.007_bib0039) 1991 Kong (10.1016/j.apm.2023.05.007_bib0017) 2022; 29 Kim (10.1016/j.apm.2023.05.007_bib0037) 1999; 127 Chen (10.1016/j.apm.2023.05.007_bib0001) 2023; 30 Wang (10.1016/j.apm.2023.05.007_bib0005) 2022; 838 Sun (10.1016/j.apm.2023.05.007_bib0007) 2016; 8 Li (10.1016/j.apm.2023.05.007_bib0018) 2023; 68 Zhou (10.1016/j.apm.2023.05.007_bib0024) 2021; 14 Wang (10.1016/j.apm.2023.05.007_bib0028) 2022; 14 Sun (10.1016/j.apm.2023.05.007_bib0016) 2021; 28 Duan (10.1016/j.apm.2023.05.007_bib0022) 2022; 180 Zeng (10.1016/j.apm.2023.05.007_bib0002) 2021; 21 Sun (10.1016/j.apm.2023.05.007_bib0025) 2020; 192 Lee (10.1016/j.apm.2023.05.007_bib0033) 2019; 198 Ong (10.1016/j.apm.2023.05.007_bib0030) 2021; 98 Modise (10.1016/j.apm.2023.05.007_bib0003) 2021; 14 Niu (10.1016/j.apm.2023.05.007_bib0015) 2022; 201 Braik (10.1016/j.apm.2023.05.007_bib0031) 2021; 174 Parida (10.1016/j.apm.2023.05.007_bib0040) 2021; 14 Wang (10.1016/j.apm.2023.05.007_bib0011) 2021; 9 Salehi (10.1016/j.apm.2023.05.007_bib0009) 2022; 12 Shi (10.1016/j.apm.2023.05.007_bib0029) 2022; 29 Zou (10.1016/j.apm.2023.05.007_bib0006) 2022; 2022 De Lorenzi (10.1016/j.apm.2023.05.007_bib0032) 2022; 314 Kong (10.1016/j.apm.2023.05.007_bib0013) 2022; 29 Velichko (10.1016/j.apm.2023.05.007_bib0023) 2021; 23 Xu (10.1016/j.apm.2023.05.007_bib0034) 2018; 117 Bai (10.1016/j.apm.2023.05.007_bib0042) 2022; 106 Zhou (10.1016/j.apm.2023.05.007_bib0043) 2022; 34 Sprott (10.1016/j.apm.2023.05.007_bib0038) 1993; 173 Cui (10.1016/j.apm.2023.05.007_bib0021) 2023; 37 Ma (10.1016/j.apm.2023.05.007_bib0045) 2021; 9 Santhosh (10.1016/j.apm.2023.05.007_bib0026) 2022; 52 Yun (10.1016/j.apm.2023.05.007_bib0012) 2023; 11 Sun (10.1016/j.apm.2023.05.007_bib0041) 2019; 28 Jin (10.1016/j.apm.2023.05.007_bib0008) 2021; 16 Yang (10.1016/j.apm.2023.05.007_bib0020) 2023; 401 Zhou (10.1016/j.apm.2023.05.007_bib0027) 2017; 26 Xiao (10.1016/j.apm.2023.05.007_bib0036) 2022; 61 |
| References_xml | – volume: 21 start-page: 201 year: 2021 end-page: 212 ident: bib0002 article-title: Study on price fluctuation and influencing factors of regional carbon emission trading in China under the background of high-quality economic development publication-title: Int. J. Energy Res. – volume: 26 start-page: 1895 year: 2017 end-page: 1904 ident: bib0027 article-title: Carbon emissions scenario prediction of the thermal power industry in the Beijing-Tianjin-Hebei region based on a back propagation neural network optimized by an improved particle swarm optimization algorithm publication-title: Pol. J. Environ. Stud. – volume: 2022 year: 2022 ident: bib0006 article-title: Correlation and dynamic volatility spillover between green investing market, coal market, and CO publication-title: Adv. Civ. Eng. – volume: 52 start-page: 1935 year: 2022 end-page: 1941 ident: bib0026 article-title: Performance and emission modeling of a 4-stroke diesel engine with biodiesel extracts from waste cooking oil blends with ZnO nanoparticle using ELM publication-title: Mater. Today Proc. – start-page: 41 year: 1991 end-page: 82 ident: bib0039 article-title: Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence – volume: 838 year: 2022 ident: bib0005 article-title: Spill-over effect and efficiency of seven pilot carbon emission trading exchanges in China publication-title: Sci. Total Environ. – volume: 16 year: 2021 ident: bib0008 article-title: Prediction of direct carbon emission of Chinese provinces using artificial neural networks publication-title: PLoS One – volume: 14 start-page: 529 year: 2021 end-page: 544 ident: bib0040 article-title: Development and performance evaluation of hybrid KELM models for forecasting of agro-commodity price publication-title: Evol. Intell. – volume: 98 year: 2021 ident: bib0030 article-title: A carnivorous plant algorithm for solving global optimization problems publication-title: Appl. Soft Comput. – volume: 117 start-page: 201 year: 2018 end-page: 208 ident: bib0034 article-title: A novel visibility graph transformation of time series into weighted networks publication-title: Chaos Solitons Fractals – volume: 34 year: 2022 ident: bib0043 article-title: Application of IPSO-MCKD-IVMD-CAF in the compound fault diagnosis of rolling bearing publication-title: Meas. Sci. Technol. – volume: 6 year: 2014 ident: bib0019 article-title: Singular spectrum decomposition: A new method for time series decomposition publication-title: Adv. Adapt Data Anal. – volume: 9 year: 2021 ident: bib0045 article-title: Can machine learning be applied to carbon emissions analysis: An application to the CO publication-title: Front. Energy Res. – volume: 12 start-page: 252 year: 2022 ident: bib0009 article-title: Modeling interfacial tension of N publication-title: Minerals – volume: 37 start-page: 31 year: 2023 end-page: 42 ident: bib0021 article-title: Research on fault diagnosis of rolling bearing based on the MCKD-SSD-TEO with optimal parameters publication-title: J. Mech. Sci. Technol. – volume: 201 start-page: 46 year: 2022 end-page: 59 ident: bib0015 article-title: A combined forecasting framework including point prediction and interval prediction for carbon emission trading prices publication-title: Renew. Energ. – volume: 14 start-page: 15988 year: 2022 ident: bib0028 article-title: Research on carbon emissions prediction model of thermal power plant based on SSA-LSTM algorithm with boiler feed water influencing factors publication-title: Sustainability – volume: 68 start-page: 93 year: 2023 end-page: 110 ident: bib0018 article-title: A new hybrid short-term carbon emissions prediction model for aviation industry in China publication-title: Alex. Eng. J. – volume: 198 start-page: 75 year: 2019 end-page: 83 ident: bib0033 article-title: Mixed-integer model predictive control of variable-speed heat pumps publication-title: Energy Build. – volume: 29 start-page: 64983 year: 2022 end-page: 64998 ident: bib0017 article-title: A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network publication-title: Environ. Sci. Pollut. Res. – volume: 314 year: 2022 ident: bib0032 article-title: Predictive control of a combined heat and power plant for grid flexibility under demand uncertainty publication-title: Appl. Energy – volume: 29 start-page: 43019 year: 2022 end-page: 43033 ident: bib0029 article-title: Forecast of China's carbon emissions under the background of carbon neutrality publication-title: Environ. Sci. Pollut. Res. – volume: 97 start-page: 1207 year: 2002 end-page: 1208 ident: bib0035 article-title: Analysis of time series structure: SSA and related techniques publication-title: J. Am. Stat. Assoc. – volume: 9 start-page: 871 year: 2021 ident: bib0011 article-title: Real-time management of vessel carbon dioxide emissions based on automatic identification system database using deep learning publication-title: J. Mar. Sci. Eng. – volume: 30 start-page: 30700 year: 2023 end-page: 30713 ident: bib0001 article-title: Identifying carbon emission characteristics and carbon peak in China based on the perspective of regional clusters publication-title: Environ. Sci. Pollut. Res. – year: 2023 ident: bib0014 article-title: Intelligent prediction of annual CO publication-title: Comput. Econ. – volume: 2021 year: 2021 ident: bib0004 article-title: Forecast of China's carbon emission based on ARIMA method publication-title: Discrete Dyn. Nat. Soc. – volume: 127 start-page: 48 year: 1999 end-page: 60 ident: bib0037 article-title: Nonlinear dynamics, delay times, and embedding windows publication-title: Phys. D Nonlinear Phenom. – volume: 28 start-page: 4391 year: 2019 end-page: 4401 ident: bib0041 article-title: Predicting and analyzing CO2 emission based on an improved least squares support vector machine publication-title: Pol. J. Environ. Stud. – volume: 401 year: 2023 ident: bib0020 article-title: Forecasting carbon price in China using a novel hybrid model based on secondary decomposition, multi-complexity and error correction publication-title: J. Clean. Prod. – volume: 23 start-page: 1432 year: 2021 ident: bib0023 article-title: A method for estimating the entropy of time series using artificial neural networks publication-title: Entropy – volume: 106 start-page: 177 year: 2022 end-page: 198 ident: bib0042 article-title: Novel hybrid extreme learning machine and multi-objective optimization algorithm for air pollution prediction publication-title: Appl. Math. Model. – volume: 14 start-page: 8466 year: 2021 ident: bib0003 article-title: Energy and carbon emission efficiency prediction: Applications in future transport manufacturing publication-title: Energies – volume: 174 year: 2021 ident: bib0031 article-title: Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems publication-title: Expert Syst. Appl. – volume: 180 year: 2022 ident: bib0022 article-title: Impulsive feature extraction with improved singular spectrum decomposition and sparsity-closing morphological analysis publication-title: Mech. Syst. Signal Process. – volume: 41 start-page: 7473 year: 2021 end-page: 7484 ident: bib0044 article-title: A building carbon emission prediction model by PSO-SVR method under multi-criteria evaluation publication-title: J. Intell. Fuzzy Syst. – volume: 11 start-page: 79 year: 2023 end-page: 96 ident: bib0012 article-title: Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN-LSTM publication-title: Energy Sci. Eng. – volume: 173 start-page: 21 year: 1993 end-page: 24 ident: bib0038 article-title: How common is chaos publication-title: Phys. Lett. A – volume: 29 start-page: 87983 year: 2022 end-page: 87997 ident: bib0013 article-title: A daily carbon emission prediction model combining two-stage feature selection and optimized extreme learning machine publication-title: Environ. Sci. Pollut. Res. – volume: 311 year: 2022 ident: bib0010 article-title: Robust smart schemes for modeling carbon dioxide uptake in metal-organic frameworks publication-title: Fuel – volume: 61 start-page: 5869 year: 2022 end-page: 5885 ident: bib0036 article-title: Fuzzy entropy assisted singular spectrum decomposition to detect bearing faults in axial piston pump publication-title: Alex. Eng. J. – volume: 28 start-page: 56580 year: 2021 end-page: 56594 ident: bib0016 article-title: Short-term prediction of carbon emissions based on the EEMD-PSOBP model publication-title: Environ. Sci. Pollut. Res. – volume: 14 start-page: 1328 year: 2021 ident: bib0024 article-title: A carbon price prediction model based on the secondary decomposition algorithm and influencing factors publication-title: Energies – volume: 8 year: 2016 ident: bib0007 article-title: Study of carbon dioxide emissions prediction in Hebei province, China using a BPNN based on GA publication-title: J. Renew. Sustain. Energy – volume: 192 start-page: 665 year: 2020 ident: bib0025 article-title: Analysis influence factors and forecast energy-related CO2 emission: evidence from Hebei publication-title: Environ. Monit. Assess – volume: 6 issue: 4 year: 2014 ident: 10.1016/j.apm.2023.05.007_bib0019 article-title: Singular spectrum decomposition: A new method for time series decomposition publication-title: Adv. Adapt Data Anal. doi: 10.1142/S1793536914500113 – volume: 26 start-page: 1895 issue: 4 year: 2017 ident: 10.1016/j.apm.2023.05.007_bib0027 article-title: Carbon emissions scenario prediction of the thermal power industry in the Beijing-Tianjin-Hebei region based on a back propagation neural network optimized by an improved particle swarm optimization algorithm publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/68881 – volume: 14 start-page: 1328 issue: 5 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0024 article-title: A carbon price prediction model based on the secondary decomposition algorithm and influencing factors publication-title: Energies doi: 10.3390/en14051328 – volume: 16 issue: 5 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0008 article-title: Prediction of direct carbon emission of Chinese provinces using artificial neural networks publication-title: PLoS One doi: 10.1371/journal.pone.0236685 – volume: 14 start-page: 529 issue: 2 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0040 article-title: Development and performance evaluation of hybrid KELM models for forecasting of agro-commodity price publication-title: Evol. Intell. doi: 10.1007/s12065-019-00295-6 – volume: 12 start-page: 252 issue: 2 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0009 article-title: Modeling interfacial tension of N2/CO2 mixture + n-alkanes with machine learning methods: application to EOR in conventional and unconventional reservoirs by flue gas injection publication-title: Minerals doi: 10.3390/min12020252 – volume: 61 start-page: 5869 issue: 8 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0036 article-title: Fuzzy entropy assisted singular spectrum decomposition to detect bearing faults in axial piston pump publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.11.019 – volume: 37 start-page: 31 issue: 1 year: 2023 ident: 10.1016/j.apm.2023.05.007_bib0021 article-title: Research on fault diagnosis of rolling bearing based on the MCKD-SSD-TEO with optimal parameters publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-022-1205-4 – volume: 9 start-page: 871 issue: 8 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0011 article-title: Real-time management of vessel carbon dioxide emissions based on automatic identification system database using deep learning publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse9080871 – volume: 41 start-page: 7473 issue: 6 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0044 article-title: A building carbon emission prediction model by PSO-SVR method under multi-criteria evaluation publication-title: J. Intell. Fuzzy Syst. – volume: 29 start-page: 87983 issue: 58 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0013 article-title: A daily carbon emission prediction model combining two-stage feature selection and optimized extreme learning machine publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-21277-9 – volume: 28 start-page: 4391 issue: 6 year: 2019 ident: 10.1016/j.apm.2023.05.007_bib0041 article-title: Predicting and analyzing CO2 emission based on an improved least squares support vector machine publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/94619 – volume: 117 start-page: 201 year: 2018 ident: 10.1016/j.apm.2023.05.007_bib0034 article-title: A novel visibility graph transformation of time series into weighted networks publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.07.039 – volume: 34 issue: 3 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0043 article-title: Application of IPSO-MCKD-IVMD-CAF in the compound fault diagnosis of rolling bearing publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aca349 – volume: 68 start-page: 93 year: 2023 ident: 10.1016/j.apm.2023.05.007_bib0018 article-title: A new hybrid short-term carbon emissions prediction model for aviation industry in China publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.12.059 – volume: 106 start-page: 177 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0042 article-title: Novel hybrid extreme learning machine and multi-objective optimization algorithm for air pollution prediction publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2022.01.023 – volume: 21 start-page: 201 issue: 2 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0002 article-title: Study on price fluctuation and influencing factors of regional carbon emission trading in China under the background of high-quality economic development publication-title: Int. J. Energy Res. – volume: 201 start-page: 46 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0015 article-title: A combined forecasting framework including point prediction and interval prediction for carbon emission trading prices publication-title: Renew. Energ. doi: 10.1016/j.renene.2022.10.027 – volume: 174 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0031 article-title: Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114685 – volume: 401 year: 2023 ident: 10.1016/j.apm.2023.05.007_bib0020 article-title: Forecasting carbon price in China using a novel hybrid model based on secondary decomposition, multi-complexity and error correction publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.136701 – volume: 14 start-page: 8466 issue: 24 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0003 article-title: Energy and carbon emission efficiency prediction: Applications in future transport manufacturing publication-title: Energies doi: 10.3390/en14248466 – volume: 8 issue: 4 year: 2016 ident: 10.1016/j.apm.2023.05.007_bib0007 article-title: Study of carbon dioxide emissions prediction in Hebei province, China using a BPNN based on GA publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4959236 – volume: 29 start-page: 43019 issue: 28 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0029 article-title: Forecast of China's carbon emissions under the background of carbon neutrality publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-18162-2 – volume: 9 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0045 article-title: Can machine learning be applied to carbon emissions analysis: An application to the CO2 emissions analysis using Gaussian process regression publication-title: Front. Energy Res. doi: 10.3389/fenrg.2021.756311 – volume: 30 start-page: 30700 year: 2023 ident: 10.1016/j.apm.2023.05.007_bib0001 article-title: Identifying carbon emission characteristics and carbon peak in China based on the perspective of regional clusters publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-24020-6 – volume: 314 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0032 article-title: Predictive control of a combined heat and power plant for grid flexibility under demand uncertainty publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118934 – volume: 98 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0030 article-title: A carnivorous plant algorithm for solving global optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106833 – volume: 2021 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0004 article-title: Forecast of China's carbon emission based on ARIMA method publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2021/1441942 – volume: 29 start-page: 64983 issue: 43 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0017 article-title: A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-20393-w – volume: 11 start-page: 79 issue: 1 year: 2023 ident: 10.1016/j.apm.2023.05.007_bib0012 article-title: Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN-LSTM publication-title: Energy Sci. Eng. doi: 10.1002/ese3.1304 – volume: 198 start-page: 75 year: 2019 ident: 10.1016/j.apm.2023.05.007_bib0033 article-title: Mixed-integer model predictive control of variable-speed heat pumps publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.05.060 – volume: 192 start-page: 665 issue: 10 year: 2020 ident: 10.1016/j.apm.2023.05.007_bib0025 article-title: Analysis influence factors and forecast energy-related CO2 emission: evidence from Hebei publication-title: Environ. Monit. Assess doi: 10.1007/s10661-020-08617-3 – volume: 23 start-page: 1432 issue: 11 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0023 article-title: A method for estimating the entropy of time series using artificial neural networks publication-title: Entropy doi: 10.3390/e23111432 – volume: 311 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0010 article-title: Robust smart schemes for modeling carbon dioxide uptake in metal-organic frameworks publication-title: Fuel – volume: 838 issue: 1 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0005 article-title: Spill-over effect and efficiency of seven pilot carbon emission trading exchanges in China publication-title: Sci. Total Environ. – volume: 2022 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0006 article-title: Correlation and dynamic volatility spillover between green investing market, coal market, and CO2 emission: Evidence from Shenzhen carbon market in China publication-title: Adv. Civ. Eng. – volume: 180 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0022 article-title: Impulsive feature extraction with improved singular spectrum decomposition and sparsity-closing morphological analysis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109436 – volume: 14 start-page: 15988 issue: 23 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0028 article-title: Research on carbon emissions prediction model of thermal power plant based on SSA-LSTM algorithm with boiler feed water influencing factors publication-title: Sustainability doi: 10.3390/su142315988 – volume: 127 start-page: 48 issue: 1–2 year: 1999 ident: 10.1016/j.apm.2023.05.007_bib0037 article-title: Nonlinear dynamics, delay times, and embedding windows publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/S0167-2789(98)00240-1 – year: 2023 ident: 10.1016/j.apm.2023.05.007_bib0014 article-title: Intelligent prediction of annual CO2 emissions under data decomposition mode publication-title: Comput. Econ. – volume: 97 start-page: 1207 issue: 460 year: 2002 ident: 10.1016/j.apm.2023.05.007_bib0035 article-title: Analysis of time series structure: SSA and related techniques publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2002.s239 – start-page: 41 year: 1991 ident: 10.1016/j.apm.2023.05.007_bib0039 – volume: 28 start-page: 56580 issue: 40 year: 2021 ident: 10.1016/j.apm.2023.05.007_bib0016 article-title: Short-term prediction of carbon emissions based on the EEMD-PSOBP model publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-14591-1 – volume: 173 start-page: 21 issue: 1 year: 1993 ident: 10.1016/j.apm.2023.05.007_bib0038 article-title: How common is chaos publication-title: Phys. Lett. A doi: 10.1016/0375-9601(93)90080-J – volume: 52 start-page: 1935 year: 2022 ident: 10.1016/j.apm.2023.05.007_bib0026 article-title: Performance and emission modeling of a 4-stroke diesel engine with biodiesel extracts from waste cooking oil blends with ZnO nanoparticle using ELM publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.11.581 |
| SSID | ssj0005904 |
| Score | 2.5184174 |
| Snippet | •An improved singular spectrum decomposition is proposed.•High complexity components are secondarily decomposed to reduce its complexity.•An improved... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 484 |
| SubjectTerms | Carbon emission Error correction Intelligent optimization algorithm Secondary decomposition Weighted combination |
| Title | A combined prediction model based on secondary decomposition and intelligence optimization for carbon emission |
| URI | https://dx.doi.org/10.1016/j.apm.2023.05.007 |
| Volume | 121 |
| WOSCitedRecordID | wos001012065000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0307-904X databaseCode: AIEXJ dateStart: 20211207 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005904 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB1FLQtYoPISpYBmwQpkNB6PX8sItRSkViyKyM6al9VUqR3lUVXtz_fOM26hiC7YWM4oHic5JzN3xueei9AHWdSpymWRMF4yOCj4SxGZJrSqVCEVYVwSW2yiPD6uJpP6x2h0HXJhLmZl11WXl_X8v0INbQC2SZ19ANyxU2iAcwAdjgA7HP8J-LGRicN6V1sDADV1tcBtxZtPZs5S5vnA0qyDlVHMKW1U5V665b2YBi6dPQwp5z5X00oSJV8IODVl4pYB0-Bi6yPa82gFa1JTzI1nYYI044vfoT7sN22_fNsR769O11EkZJUGX9f96Xo63J2gWZRfxawsUgL6ToUZR1yXFO3HTGdmGqbf3GZh_z6yu02Gs898bvwDaGb9Vl3B3Nsu2ndmt6g5DHK2swa6aEwXDckb60SwTcu8hiFxe_xtf_J9oxCqCQs-muYrhIfiVh5453P8OawZhConO-ipX2PgsePGMzTS3XP05CiisnyBujEOLMEblmALFrYswfAysgTfYgkGluAhS_CQJRhYgh1LcGDJS_TzYP_ky2HiS28kktblKqlYToo2pywjQupCw6o25YqJrGCkJVxT0TIItaVQSqg6rSUnqVRtKao6bdOMZq_QVtd3-jXCqs1yqUvKWa6YYgwWHKnQEDVmSnLB811Ewi_XSO9Lb8qjzJp7EdtFH-Mlc2fK8rc3swBH46NKFy02QK37L3vzkHvsoccb8r9FW6vFWr9Dj-TFarpcvPe8ugHnvZ1e |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+combined+prediction+model+based+on+secondary+decomposition+and+intelligence+optimization+for+carbon+emission&rft.jtitle=Applied+mathematical+modelling&rft.au=Yang%2C+Hong&rft.au=Wang%2C+Maozhu&rft.au=Li%2C+Guohui&rft.date=2023-09-01&rft.issn=0307-904X&rft.volume=121&rft.spage=484&rft.epage=505&rft_id=info:doi/10.1016%2Fj.apm.2023.05.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2023_05_007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |