Hybrid SGD algorithms to solve stochastic composite optimization problems with application in sparse portfolio selection problems

In this paper, we study stochastic composite problems where the objective can be the composition of an outer single-valued function and an inner vector-valued mapping. In this stochastic composite optimization, the inner mapping can be expressed as an expectation over random component mappings. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 436; S. 115425
Hauptverfasser: Yang, Zhen-Ping, Zhao, Yong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.01.2024
Schlagworte:
ISSN:0377-0427, 1879-1778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we study stochastic composite problems where the objective can be the composition of an outer single-valued function and an inner vector-valued mapping. In this stochastic composite optimization, the inner mapping can be expressed as an expectation over random component mappings. In this study, we propose two algorithms to address the generality and possible singularities of this problem and bound their sample complexities for finding an ϵ-stationary point. The first algorithm is the prox-linear hybrid stochastic gradient algorithm, which may achieve sample complexities of O(ϵ2τ−5/2) and O(ϵτ−3/2) for the component mappings and their Jacobians respectively, where τ∈[0,1]. The second algorithm is the normalized proximal hybrid stochastic gradient algorithm, which takes advantage of the special structure of the regularizer. This algorithm may achieve sample complexities of O(ϵ2τ−4) for both the component mappings and the Jacobians, where τ∈[5/4,7/4]. Numerical experiments prove that the two proposed algorithms are quite competitive with other existing algorithms. A real-life application in sparse portfolio selection problems is also promising. •We study a class of stochastic composite optimization problems.•We present two hybrid SGD algorithms for the considered problem.•We investigate the convergence rates and complexity of the algorithms.•We apply the proposed approach to the sparse portfolio selection problem.
AbstractList In this paper, we study stochastic composite problems where the objective can be the composition of an outer single-valued function and an inner vector-valued mapping. In this stochastic composite optimization, the inner mapping can be expressed as an expectation over random component mappings. In this study, we propose two algorithms to address the generality and possible singularities of this problem and bound their sample complexities for finding an ϵ-stationary point. The first algorithm is the prox-linear hybrid stochastic gradient algorithm, which may achieve sample complexities of O(ϵ2τ−5/2) and O(ϵτ−3/2) for the component mappings and their Jacobians respectively, where τ∈[0,1]. The second algorithm is the normalized proximal hybrid stochastic gradient algorithm, which takes advantage of the special structure of the regularizer. This algorithm may achieve sample complexities of O(ϵ2τ−4) for both the component mappings and the Jacobians, where τ∈[5/4,7/4]. Numerical experiments prove that the two proposed algorithms are quite competitive with other existing algorithms. A real-life application in sparse portfolio selection problems is also promising. •We study a class of stochastic composite optimization problems.•We present two hybrid SGD algorithms for the considered problem.•We investigate the convergence rates and complexity of the algorithms.•We apply the proposed approach to the sparse portfolio selection problem.
ArticleNumber 115425
Author Zhao, Yong
Yang, Zhen-Ping
Author_xml – sequence: 1
  givenname: Zhen-Ping
  surname: Yang
  fullname: Yang, Zhen-Ping
  email: yangzhenping1026@163.com
  organization: School of Mathematics, Jiaying University, Meizhou, Guangdong 514015, China
– sequence: 2
  givenname: Yong
  surname: Zhao
  fullname: Zhao, Yong
  email: zhaoyongty@126.com
  organization: College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
BookMark eNp90L1OwzAQwHELFYm28ABsfoEE2_lwIiZUoEWqxADMluPY9KoktmyrqGy8OSllgaHTDaffSfefoclgB43QNSUpJbS82aZK9ikjLEspLXJWnKEprXidUM6rCZqSjPOE5IxfoFkIW0JIWdN8ir5W-8ZDi1-W91h279ZD3PQBR4uD7XYah2jVRoYICivbOxsgamxdhB4-ZQQ7YOdt0-nRfIwUS-c6UMcNDDg46YPGzvpobAfjVd1p9cddonMju6CvfuccvT0-vC5Wyfp5-bS4WyeK1TwmFdV1rjNjStIWrWwlM4oUhTEya6q61LxoZKlIKWsqianamjJelUzmvKizpiizOaLHu8rbELw2wnnopd8LSsShodiKsaE4NBTHhqPh_4yC-PNc9BK6k_L2KPX40g60F0GBHpRuwY8BRGvhhP4G-cSR8w
CitedBy_id crossref_primary_10_1007_s10957_025_02771_9
Cites_doi 10.1007/s10107-021-01709-z
10.1137/19M1285457
10.1109/TNNLS.2018.2866699
10.1137/17M1144799
10.1137/21M1406222
10.1073/pnas.1908018116
10.1137/15M1031953
10.1109/TSP.2021.3092377
10.1007/s12190-022-01722-1
10.1137/18M1230323
10.1007/s10107-014-0769-x
10.1609/aaai.v32i1.11795
10.1007/s10107-020-01583-1
10.1109/TAC.2012.2215413
10.1137/20M1312952
10.1609/aaai.v33i01.33011633
10.1137/18M1230542
10.1109/TAC.2008.925853
10.1007/s10107-016-1017-3
10.1137/18M1164846
10.1007/s10107-017-1175-y
10.1137/18M1178244
10.23919/ACC45564.2020.9147515
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2023.115425
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
ExternalDocumentID 10_1016_j_cam_2023_115425
S0377042723003692
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: 12101262; 12001072; 12271067
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Group Building Scientific Innovation Project for universities in Chongqing
  grantid: CXQT21021
– fundername: Key Laboratory for Optimization and Control of Ministry of Education, Chongqing Normal University
  grantid: CSSXKFKTQ202006
  funderid: http://dx.doi.org/10.13039/100010338
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2022A1515010263
– fundername: Chongqing Natural Science Foundation
  grantid: CSTB2022NSCQ-MSX1318; cstc2019jcyj-zdxmX0016
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
9DU
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FGOYB
G-2
HZ~
NHB
R2-
SSZ
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-81e94e3ff60d5dada2fc055ffa3b896e75ba6c06a91a0f8d9127862a47593b563
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001039105300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Sat Nov 29 07:16:48 EST 2025
Tue Nov 18 22:33:51 EST 2025
Fri Feb 23 02:35:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 68W20
68Q25
Stochastic nonsmooth composite optimization
90C26
Hybrid stochastic estimator
Normalized proximal gradient algorithm
Prox-linear algorithm
Complexity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-81e94e3ff60d5dada2fc055ffa3b896e75ba6c06a91a0f8d9127862a47593b563
ParticipantIDs crossref_primary_10_1016_j_cam_2023_115425
crossref_citationtrail_10_1016_j_cam_2023_115425
elsevier_sciencedirect_doi_10_1016_j_cam_2023_115425
PublicationCentury 2000
PublicationDate 2024-01-15
PublicationDateYYYYMMDD 2024-01-15
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Balasubramanian, Ghadimi, Nguyen (b44) 2022; 32
Wang, Yang (b30) 2022
Yuan, Hu (b25) 2020
Zhang, Xiao (b3) 2019
Yousefian, Nedić, Shanbhag (b6) 2017; 165
Wang, Fang, Liu (b14) 2017; 161
H. Gao, H. Huang, Fast training method for stochastic compositional optimization problems, in: Proceedings of the 34th Advances in Neural Information Processing Systems, 2021, pp. 25334–25345.
Iusem, Jofré, Oliveira, Thompsn (b9) 2017; 27
Q. Tran-Dinh, D. Liu, L. Nguyen, Hybrid variance-reduced SGD algorithms for minimax problems with nonconvex-linear function, in: Proceedings of the 33rd Advances in Neural Information Processing Systems, 2020, pp. 11096–11107.
Xiao, Balasubramanian, Ghadimi (b43) 2022
Chen, Zhou (b48) 2020
Rockafellar (b1) 2007
Ghadimi, Ruszczyński, Wang (b11) 2020; 30
Zhang, Xiao (b17) 2022; 195
Jiang, Wang, Wang, Zhang, Yang (b45) 2022
Z. Huo, B. Gu, J. Liu, H. Huang, Accelerated method for stochastic composition optimization with nonsmooth regularization, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 3287–3294.
Ruszczyński (b41) 2021; 59
Wang, Bertsekas (b7) 2015; 150
Iusem, Jofré, Oliveira, Thompsn (b10) 2019; 29
Asi, Duchi (b19) 2019; 29
A. Cutkosky, F. Orabona, Momentum-based variance reduction in non-convex SGD, in: Proceedings of the 32nd Advances in Neural Information Processing Systems, 2019, pp. 15210–15219.
Liu, Liu, Tao (b35) 2018; 30
Wang, Wen (b50) 2022; 68
Davis, Drusvyatskiy (b20) 2019; 29
Xu, Xu (b38) 2021; 3
Wang, Liu, Fang (b15) 2017; 18
Tran-Dinh, Pham, Phan, Nguyen (b52) 2022; 191
Nguyen, Liu, Scheinberg, Takáč (b53) 2017
Sutton, Barto (b13) 1998
P. Wang, R. Liu, N. Zheng, Z. Gong, Asynchronous proximal stochastic gradient algorithm for composition optimization problems, in: Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019, pp. 1633–1640.
Tutunov, Li, Cowen-Rivers, Wang, Bou-Ammar (b26) 2022
Blanchet, Goldfarb, Iyengar, Li, Zhou (b27) 2017
Iusem, Jofré, Thompsn (b8) 2018; 44
Y. Hu, S. Zhang, X. Chen, N. He, Biased stochastic first-order methods for conditional stochastic optimization and applications in meta learning, in: Proceedings of the 33rd Advances in Neural Information Processing Systems, 2020, pp. 2759–2770.
Tran-Dinh, Pham, Nguyen (b49) 2020
Asi, Duchi (b18) 2019; 116
Yu.M. Ermoliev, Methods of Stochastic Programming, Nauka, Moscow, 1976.
Chen, Sun, Yin (b29) 2021
Ruszczyński (b2) 2013
X. Lian, M. Wang, J. Liu, Finite-sum composition optimization via variance reduced gradient descent, in: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS, 2017, pp. 1159–1167.
Koshal, Nedić, Shanbhag (b5) 2013; 58
J. Zhang, L. Xiao, A stochastic composite gradient method with incremental variance reduction, in: Proceedings of the 32nd Advances in Neural Information Processing Systems, 2019, pp. 9078–9088.
Zhao, Liu (b33) 2022
Chen, Sun, Yin (b31) 2021; 69
Liu, Liu, Tao (b24) 2021; 44
Dann, Neumann, Peters (b12) 2014; 15
Ortega, Rheinboldt (b16) 1970
W. Hu, C.J. Li, X. Lian, J. Liu, H. Yuan, Efficient smooth non-convex stochastic compositional optimization via stochastic recursive gradient descent, in: Proceedings of the 32nd Advances in Neural Information Processing Systems, 2019, pp. 6926–6935.
Jiang, Xu (b4) 2008; 53
Zhang, Xiao (b42) 2021; 31
T. Lin, C. Fan, M. Wang, M.I. Jordan, Improved sample complexity for stochastic compositional variance reduced gradient, in: Proceedings of the 2020 American Control Conference, ACC, 2020, pp. 126–131.
Yang, Wang, Fang (b39) 2019; 29
Zhang, Lan (b40) 2022
Yan, Man, Yang (b47) 2020
Yuan (10.1016/j.cam.2023.115425_b25) 2020
Zhang (10.1016/j.cam.2023.115425_b3) 2019
Asi (10.1016/j.cam.2023.115425_b19) 2019; 29
10.1016/j.cam.2023.115425_b51
Wang (10.1016/j.cam.2023.115425_b14) 2017; 161
10.1016/j.cam.2023.115425_b54
Ghadimi (10.1016/j.cam.2023.115425_b11) 2020; 30
Wang (10.1016/j.cam.2023.115425_b30) 2022
Liu (10.1016/j.cam.2023.115425_b24) 2021; 44
Chen (10.1016/j.cam.2023.115425_b31) 2021; 69
Nguyen (10.1016/j.cam.2023.115425_b53) 2017
Koshal (10.1016/j.cam.2023.115425_b5) 2013; 58
10.1016/j.cam.2023.115425_b28
Dann (10.1016/j.cam.2023.115425_b12) 2014; 15
Wang (10.1016/j.cam.2023.115425_b15) 2017; 18
10.1016/j.cam.2023.115425_b23
10.1016/j.cam.2023.115425_b21
10.1016/j.cam.2023.115425_b22
Ruszczyński (10.1016/j.cam.2023.115425_b41) 2021; 59
Balasubramanian (10.1016/j.cam.2023.115425_b44) 2022; 32
Jiang (10.1016/j.cam.2023.115425_b45) 2022
Chen (10.1016/j.cam.2023.115425_b48) 2020
Tutunov (10.1016/j.cam.2023.115425_b26) 2022
Liu (10.1016/j.cam.2023.115425_b35) 2018; 30
10.1016/j.cam.2023.115425_b36
10.1016/j.cam.2023.115425_b37
Iusem (10.1016/j.cam.2023.115425_b10) 2019; 29
Xu (10.1016/j.cam.2023.115425_b38) 2021; 3
Tran-Dinh (10.1016/j.cam.2023.115425_b52) 2022; 191
Ortega (10.1016/j.cam.2023.115425_b16) 1970
Zhang (10.1016/j.cam.2023.115425_b17) 2022; 195
Wang (10.1016/j.cam.2023.115425_b7) 2015; 150
10.1016/j.cam.2023.115425_b34
10.1016/j.cam.2023.115425_b32
Blanchet (10.1016/j.cam.2023.115425_b27) 2017
Zhang (10.1016/j.cam.2023.115425_b42) 2021; 31
Chen (10.1016/j.cam.2023.115425_b29) 2021
Iusem (10.1016/j.cam.2023.115425_b9) 2017; 27
Xiao (10.1016/j.cam.2023.115425_b43) 2022
Zhao (10.1016/j.cam.2023.115425_b33) 2022
Zhang (10.1016/j.cam.2023.115425_b40) 2022
Asi (10.1016/j.cam.2023.115425_b18) 2019; 116
Davis (10.1016/j.cam.2023.115425_b20) 2019; 29
Yang (10.1016/j.cam.2023.115425_b39) 2019; 29
10.1016/j.cam.2023.115425_b46
Yan (10.1016/j.cam.2023.115425_b47) 2020
Tran-Dinh (10.1016/j.cam.2023.115425_b49) 2020
Rockafellar (10.1016/j.cam.2023.115425_b1) 2007
Sutton (10.1016/j.cam.2023.115425_b13) 1998
Yousefian (10.1016/j.cam.2023.115425_b6) 2017; 165
Iusem (10.1016/j.cam.2023.115425_b8) 2018; 44
Jiang (10.1016/j.cam.2023.115425_b4) 2008; 53
Wang (10.1016/j.cam.2023.115425_b50) 2022; 68
Ruszczyński (10.1016/j.cam.2023.115425_b2) 2013
References_xml – volume: 29
  start-page: 175
  year: 2019
  end-page: 206
  ident: b10
  article-title: Variance-based extragradient methods with line search for stochastic variational inequalities
  publication-title: SIAM J. Optim.
– reference: W. Hu, C.J. Li, X. Lian, J. Liu, H. Yuan, Efficient smooth non-convex stochastic compositional optimization via stochastic recursive gradient descent, in: Proceedings of the 32nd Advances in Neural Information Processing Systems, 2019, pp. 6926–6935.
– year: 2017
  ident: b27
  article-title: Unbiased simulation for optimizing stochastic function compositions
– year: 1970
  ident: b16
  article-title: Iterative Solution of Nonlinear Equations in Several Variables
– year: 1998
  ident: b13
  article-title: Reinforcement Learning: An Introduction
– volume: 165
  start-page: 391
  year: 2017
  end-page: 431
  ident: b6
  article-title: On smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problems
  publication-title: Math. Program.
– volume: 18
  start-page: 1
  year: 2017
  end-page: 23
  ident: b15
  article-title: Accelerating stochastic composition optimization
  publication-title: J. Mach. Learn. Res.
– year: 2022
  ident: b33
  article-title: Distributed stochastic compositional optimization problems over directed networks
– volume: 15
  start-page: 809
  year: 2014
  end-page: 883
  ident: b12
  article-title: Policy evaluation with temporal differences: A survey and comparison
  publication-title: J. Mach. Learn. Res.
– reference: T. Lin, C. Fan, M. Wang, M.I. Jordan, Improved sample complexity for stochastic compositional variance reduced gradient, in: Proceedings of the 2020 American Control Conference, ACC, 2020, pp. 126–131.
– start-page: 38
  year: 2007
  end-page: 61
  ident: b1
  article-title: Coherent approaches to risk in optimization under uncertainty
  publication-title: OR Tools and Applications: Glimpses of Future Technologies
– reference: X. Lian, M. Wang, J. Liu, Finite-sum composition optimization via variance reduced gradient descent, in: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS, 2017, pp. 1159–1167.
– volume: 58
  start-page: 594
  year: 2013
  end-page: 609
  ident: b5
  article-title: Regularized iterative stochastic approximation methods for stochastic variational inequality problems
  publication-title: IEEE Trans. Automat. Control
– reference: P. Wang, R. Liu, N. Zheng, Z. Gong, Asynchronous proximal stochastic gradient algorithm for composition optimization problems, in: Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019, pp. 1633–1640.
– volume: 44
  start-page: 5813
  year: 2021
  end-page: 5825
  ident: b24
  article-title: Variance reduced methods for non-convex composition optimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 168
  year: 2013
  end-page: 190
  ident: b2
  article-title: Advances in risk-averse optimization
  publication-title: Theory Driven By Influential Applications
– year: 2020
  ident: b48
  article-title: Momentum with variance reduction for nonconvex composition optimization
– year: 2020
  ident: b25
  article-title: Stochastic recursive momentum method for non-convex compositional optimization
– volume: 116
  start-page: 22924
  year: 2019
  end-page: 22930
  ident: b18
  article-title: The importance of better models in stochastic optimization
  publication-title: Proc. Natl. Acad. Sci.
– reference: H. Gao, H. Huang, Fast training method for stochastic compositional optimization problems, in: Proceedings of the 34th Advances in Neural Information Processing Systems, 2021, pp. 25334–25345.
– volume: 59
  start-page: 2301
  year: 2021
  end-page: 2320
  ident: b41
  article-title: A stochastic subgradient method for nonsmooth nonconvex multilevel composition optimization
  publication-title: SIAM J. Control Optim.
– volume: 44
  start-page: 236
  year: 2018
  end-page: 263
  ident: b8
  article-title: Incremental constraint projection methods for monotone stochastic variational inequalities
  publication-title: Math. Oper. Res.
– volume: 69
  start-page: 4937
  year: 2021
  end-page: 4948
  ident: b31
  article-title: Solving stochastic compositional optimization is nearly as easy as solving stochastic optimization
  publication-title: IEEE Trans. Signal Process.
– volume: 30
  start-page: 960
  year: 2020
  end-page: 979
  ident: b11
  article-title: A single time-scale stochastic approximation method for nested stochastic optimization
  publication-title: SIAM J. Optim.
– year: 2022
  ident: b40
  article-title: Optimal algorithms for convex nested stochastic composite optimization
– year: 2020
  ident: b47
  article-title: Nearly optimal robust method for convex compositional problems with heavy-tailed noise
– reference: Z. Huo, B. Gu, J. Liu, H. Huang, Accelerated method for stochastic composition optimization with nonsmooth regularization, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 3287–3294.
– volume: 29
  start-page: 616
  year: 2019
  end-page: 659
  ident: b39
  article-title: Multilevel stochastic gradient methods for nested composition optimization
  publication-title: SIAM J. Optim.
– start-page: 10195
  year: 2022
  end-page: 10216
  ident: b45
  article-title: Optimal algorithms for stochastic multi-level compositional optimization
  publication-title: Proceedings of the 39th International Conference on Machine Learning, Vol. 162
– start-page: 23292
  year: 2022
  end-page: 23317
  ident: b30
  article-title: Finite-sum coupled compositional stochastic optimization: Theory and applications
  publication-title: Proceedings of the 39th International Conference on Machine Learning, Vol. 162
– reference: Q. Tran-Dinh, D. Liu, L. Nguyen, Hybrid variance-reduced SGD algorithms for minimax problems with nonconvex-linear function, in: Proceedings of the 33rd Advances in Neural Information Processing Systems, 2020, pp. 11096–11107.
– start-page: 7454
  year: 2019
  end-page: 7462
  ident: b3
  article-title: A composite randomized incremental gradient method
  publication-title: Proceedings of the 36th International Conference on Machine Learning, Vol. 97
– year: 2022
  ident: b26
  article-title: Compositional adam: An adaptive compositional solver
– start-page: 9572
  year: 2020
  end-page: 9582
  ident: b49
  article-title: Stochastic Gauss–Newton algorithms for nonconvex compositional optimization
  publication-title: Proceedings of the 37th International Conference on Machine Learning, Vol. 119
– reference: A. Cutkosky, F. Orabona, Momentum-based variance reduction in non-convex SGD, in: Proceedings of the 32nd Advances in Neural Information Processing Systems, 2019, pp. 15210–15219.
– volume: 161
  start-page: 419
  year: 2017
  end-page: 449
  ident: b14
  article-title: Stochastic compositional gradient descent: Algorithms for minimizing compositions of expected-value functions
  publication-title: Math. Program.
– volume: 31
  start-page: 1131
  year: 2021
  end-page: 1157
  ident: b42
  article-title: Multilevel composite stochastic optimization via nested variance reduction
  publication-title: SIAM J. Optim.
– volume: 53
  start-page: 1462
  year: 2008
  end-page: 1475
  ident: b4
  article-title: Stochastic approximation approaches to the stochastic variational inequality problem
  publication-title: IEEE Trans. Automat. Control
– year: 2021
  ident: b29
  article-title: Tighter analysis of alternating stochastic gradient method for stochastic nested problems
– volume: 191
  start-page: 1005
  year: 2022
  end-page: 1071
  ident: b52
  article-title: A hybrid stochastic optimization framework for composite nonconvex optimization
  publication-title: Math. Program.
– volume: 27
  start-page: 686
  year: 2017
  end-page: 724
  ident: b9
  article-title: Extragradient method with variance reduction for stochastic variational inequalities
  publication-title: SIAM J. Optim.
– volume: 29
  start-page: 2257
  year: 2019
  end-page: 2290
  ident: b19
  article-title: Stochastic (approximate) proximal point methods: Convergence, optimality, and adaptivity
  publication-title: SIAM J. Optim.
– volume: 68
  start-page: 4621
  year: 2022
  end-page: 4643
  ident: b50
  article-title: Stochastic Gauss–Newton algorithm with STORM estimators for nonconvex composite optimization
  publication-title: J. Appl. Math. Comput.
– volume: 195
  start-page: 649
  year: 2022
  end-page: 691
  ident: b17
  article-title: Stochastic variance-reduced prox-linear algorithms for nonconvex composite optimization
  publication-title: Math. Program.
– year: 2022
  ident: b43
  article-title: A projection-free algorithm for constrained stochastic multi-level composition optimization
– volume: 150
  start-page: 321
  year: 2015
  end-page: 363
  ident: b7
  article-title: Incremental constraint projection methods for variational inequalities
  publication-title: Math. Program.
– volume: 29
  start-page: 207
  year: 2019
  end-page: 239
  ident: b20
  article-title: Stochastic model-based minimization of weakly convex functions
  publication-title: SIAM J. Optim.
– volume: 30
  start-page: 1205
  year: 2018
  end-page: 1217
  ident: b35
  article-title: Duality-free methods for stochastic composition optimization
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
– reference: J. Zhang, L. Xiao, A stochastic composite gradient method with incremental variance reduction, in: Proceedings of the 32nd Advances in Neural Information Processing Systems, 2019, pp. 9078–9088.
– volume: 32
  start-page: 519
  year: 2022
  end-page: 544
  ident: b44
  article-title: Stochastic multilevel composition optimization algorithms with level-independent convergence rates
  publication-title: SIAM J. Optim.
– volume: 3
  start-page: 418
  year: 2021
  end-page: 443
  ident: b38
  article-title: Katyusha acceleration for convex finite-sum compositional optimization
  publication-title: INFORMS J. Comput.
– reference: Yu.M. Ermoliev, Methods of Stochastic Programming, Nauka, Moscow, 1976.
– reference: Y. Hu, S. Zhang, X. Chen, N. He, Biased stochastic first-order methods for conditional stochastic optimization and applications in meta learning, in: Proceedings of the 33rd Advances in Neural Information Processing Systems, 2020, pp. 2759–2770.
– start-page: 2613
  year: 2017
  end-page: 2621
  ident: b53
  article-title: SARAH: A novel method for machine learning problems using stochastic recursive gradient
  publication-title: Proceedings of the 34th International Conference on Machine Learning, Vol. 70
– volume: 195
  start-page: 649
  issue: 1–2
  year: 2022
  ident: 10.1016/j.cam.2023.115425_b17
  article-title: Stochastic variance-reduced prox-linear algorithms for nonconvex composite optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-021-01709-z
– start-page: 10195
  year: 2022
  ident: 10.1016/j.cam.2023.115425_b45
  article-title: Optimal algorithms for stochastic multi-level compositional optimization
– year: 1970
  ident: 10.1016/j.cam.2023.115425_b16
– volume: 31
  start-page: 1131
  issue: 2
  year: 2021
  ident: 10.1016/j.cam.2023.115425_b42
  article-title: Multilevel composite stochastic optimization via nested variance reduction
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1285457
– start-page: 2613
  year: 2017
  ident: 10.1016/j.cam.2023.115425_b53
  article-title: SARAH: A novel method for machine learning problems using stochastic recursive gradient
– start-page: 38
  year: 2007
  ident: 10.1016/j.cam.2023.115425_b1
  article-title: Coherent approaches to risk in optimization under uncertainty
– ident: 10.1016/j.cam.2023.115425_b23
– start-page: 23292
  year: 2022
  ident: 10.1016/j.cam.2023.115425_b30
  article-title: Finite-sum coupled compositional stochastic optimization: Theory and applications
– volume: 30
  start-page: 1205
  issue: 4
  year: 2018
  ident: 10.1016/j.cam.2023.115425_b35
  article-title: Duality-free methods for stochastic composition optimization
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2866699
– volume: 29
  start-page: 175
  issue: 1
  year: 2019
  ident: 10.1016/j.cam.2023.115425_b10
  article-title: Variance-based extragradient methods with line search for stochastic variational inequalities
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1144799
– ident: 10.1016/j.cam.2023.115425_b46
– volume: 32
  start-page: 519
  issue: 2
  year: 2022
  ident: 10.1016/j.cam.2023.115425_b44
  article-title: Stochastic multilevel composition optimization algorithms with level-independent convergence rates
  publication-title: SIAM J. Optim.
  doi: 10.1137/21M1406222
– volume: 116
  start-page: 22924
  issue: 46
  year: 2019
  ident: 10.1016/j.cam.2023.115425_b18
  article-title: The importance of better models in stochastic optimization
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1908018116
– year: 1998
  ident: 10.1016/j.cam.2023.115425_b13
– volume: 18
  start-page: 1
  year: 2017
  ident: 10.1016/j.cam.2023.115425_b15
  article-title: Accelerating stochastic composition optimization
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 686
  issue: 2
  year: 2017
  ident: 10.1016/j.cam.2023.115425_b9
  article-title: Extragradient method with variance reduction for stochastic variational inequalities
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1031953
– volume: 69
  start-page: 4937
  year: 2021
  ident: 10.1016/j.cam.2023.115425_b31
  article-title: Solving stochastic compositional optimization is nearly as easy as solving stochastic optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2021.3092377
– year: 2022
  ident: 10.1016/j.cam.2023.115425_b43
– volume: 68
  start-page: 4621
  year: 2022
  ident: 10.1016/j.cam.2023.115425_b50
  article-title: Stochastic Gauss–Newton algorithm with STORM estimators for nonconvex composite optimization
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-022-01722-1
– volume: 29
  start-page: 2257
  issue: 3
  year: 2019
  ident: 10.1016/j.cam.2023.115425_b19
  article-title: Stochastic (approximate) proximal point methods: Convergence, optimality, and adaptivity
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1230323
– ident: 10.1016/j.cam.2023.115425_b32
– volume: 3
  start-page: 418
  issue: 4
  year: 2021
  ident: 10.1016/j.cam.2023.115425_b38
  article-title: Katyusha acceleration for convex finite-sum compositional optimization
  publication-title: INFORMS J. Comput.
– volume: 150
  start-page: 321
  issue: 2
  year: 2015
  ident: 10.1016/j.cam.2023.115425_b7
  article-title: Incremental constraint projection methods for variational inequalities
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0769-x
– ident: 10.1016/j.cam.2023.115425_b28
– year: 2017
  ident: 10.1016/j.cam.2023.115425_b27
– ident: 10.1016/j.cam.2023.115425_b34
  doi: 10.1609/aaai.v32i1.11795
– volume: 191
  start-page: 1005
  issue: 2
  year: 2022
  ident: 10.1016/j.cam.2023.115425_b52
  article-title: A hybrid stochastic optimization framework for composite nonconvex optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-020-01583-1
– volume: 58
  start-page: 594
  issue: 3
  year: 2013
  ident: 10.1016/j.cam.2023.115425_b5
  article-title: Regularized iterative stochastic approximation methods for stochastic variational inequality problems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2012.2215413
– ident: 10.1016/j.cam.2023.115425_b21
– year: 2020
  ident: 10.1016/j.cam.2023.115425_b47
– volume: 44
  start-page: 236
  issue: 1
  year: 2018
  ident: 10.1016/j.cam.2023.115425_b8
  article-title: Incremental constraint projection methods for monotone stochastic variational inequalities
  publication-title: Math. Oper. Res.
– volume: 59
  start-page: 2301
  issue: 3
  year: 2021
  ident: 10.1016/j.cam.2023.115425_b41
  article-title: A stochastic subgradient method for nonsmooth nonconvex multilevel composition optimization
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/20M1312952
– ident: 10.1016/j.cam.2023.115425_b54
– start-page: 168
  year: 2013
  ident: 10.1016/j.cam.2023.115425_b2
  article-title: Advances in risk-averse optimization
– ident: 10.1016/j.cam.2023.115425_b36
  doi: 10.1609/aaai.v33i01.33011633
– year: 2022
  ident: 10.1016/j.cam.2023.115425_b40
– volume: 30
  start-page: 960
  issue: 1
  year: 2020
  ident: 10.1016/j.cam.2023.115425_b11
  article-title: A single time-scale stochastic approximation method for nested stochastic optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1230542
– year: 2022
  ident: 10.1016/j.cam.2023.115425_b33
– start-page: 9572
  year: 2020
  ident: 10.1016/j.cam.2023.115425_b49
  article-title: Stochastic Gauss–Newton algorithms for nonconvex compositional optimization
– ident: 10.1016/j.cam.2023.115425_b22
– volume: 53
  start-page: 1462
  issue: 6
  year: 2008
  ident: 10.1016/j.cam.2023.115425_b4
  article-title: Stochastic approximation approaches to the stochastic variational inequality problem
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2008.925853
– volume: 161
  start-page: 419
  issue: 1–2
  year: 2017
  ident: 10.1016/j.cam.2023.115425_b14
  article-title: Stochastic compositional gradient descent: Algorithms for minimizing compositions of expected-value functions
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1017-3
– ident: 10.1016/j.cam.2023.115425_b51
– volume: 29
  start-page: 616
  issue: 1
  year: 2019
  ident: 10.1016/j.cam.2023.115425_b39
  article-title: Multilevel stochastic gradient methods for nested composition optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1164846
– volume: 165
  start-page: 391
  issue: 1
  year: 2017
  ident: 10.1016/j.cam.2023.115425_b6
  article-title: On smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1175-y
– volume: 15
  start-page: 809
  issue: 1
  year: 2014
  ident: 10.1016/j.cam.2023.115425_b12
  article-title: Policy evaluation with temporal differences: A survey and comparison
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 207
  issue: 1
  year: 2019
  ident: 10.1016/j.cam.2023.115425_b20
  article-title: Stochastic model-based minimization of weakly convex functions
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1178244
– start-page: 7454
  year: 2019
  ident: 10.1016/j.cam.2023.115425_b3
  article-title: A composite randomized incremental gradient method
– year: 2022
  ident: 10.1016/j.cam.2023.115425_b26
– volume: 44
  start-page: 5813
  issue: 9
  year: 2021
  ident: 10.1016/j.cam.2023.115425_b24
  article-title: Variance reduced methods for non-convex composition optimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.cam.2023.115425_b37
  doi: 10.23919/ACC45564.2020.9147515
– year: 2020
  ident: 10.1016/j.cam.2023.115425_b48
– year: 2020
  ident: 10.1016/j.cam.2023.115425_b25
– year: 2021
  ident: 10.1016/j.cam.2023.115425_b29
SSID ssj0006914
Score 2.4075892
Snippet In this paper, we study stochastic composite problems where the objective can be the composition of an outer single-valued function and an inner vector-valued...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115425
SubjectTerms Complexity
Hybrid stochastic estimator
Normalized proximal gradient algorithm
Prox-linear algorithm
Stochastic nonsmooth composite optimization
Title Hybrid SGD algorithms to solve stochastic composite optimization problems with application in sparse portfolio selection problems
URI https://dx.doi.org/10.1016/j.cam.2023.115425
Volume 436
WOSCitedRecordID wos001039105300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RaJEPnIiCEufh-FhBS0FQVaKgLZfISWx2q92k2i6rckTih3f8TCgsogcuUWTFTuT5Mh6PZ75B6Hmjeb8yEgJA8jCVKYN_TjZhJGD54GlBan2C__k9PTwsxmN2NBr9dLkwqxlt2-Ligp39V1FDGwhbpc5eQ9x-UGiAexA6XEHscP0nwR98V0lYwcc3rwM--9rB5n8y1zQO8NqV4pPt6glX7Mw6nFzFbImgA8UxtxmZga0x4_Le-hNu5RsBBbQ4F4Gy2mU3m8KoupDOsN8ae7fW9SOc71FzxFoLeO6pY72Bf2Ld2F8mog2P3PJqHNzauXvS2TbrsSAqyiU0OZsuU4vSUNX4GGrhNBnqUUUSZBKif1PxxttwCtt3RSRAkpf9s7_SaV9Z5nzwoYtrOy1hiFINUZohbqBNQjMGunFz9-3e-J1f0XNmOOLdd7vTcR0neOU7_mzfDGyW47vojp18vGtAcg-NRHsf3f7QT_cD9MPABQNccA8XvOywhgvu4YI9XPAQLtiJHSu44AFc8LTFBi7YwwV7uPh-D9Gn_b3jVwehLcsR1oTRZVjEgqUikTKPmqzhDSeyjrJMSp5UBcsFzSqe11HOWcwjWTQsJhT2zVwxSyZVlieP0EbbteIxwkRZ85JSCatOWnNWxXFVkSaBPQWnTUO3UOQms6wtZ70qnTIr1wpxC73wXc4MYcvfHk6dhEprcRpLsgS0re_25DrveIpu9T_BNtpYLr6JHXSzXi2n54tnFmqXQ8mnhw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+SGD+algorithms+to+solve+stochastic+composite+optimization+problems+with+application+in+sparse+portfolio+selection+problems&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Yang%2C+Zhen-Ping&rft.au=Zhao%2C+Yong&rft.date=2024-01-15&rft.issn=0377-0427&rft.volume=436&rft.spage=115425&rft_id=info:doi/10.1016%2Fj.cam.2023.115425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2023_115425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon