Optimal charging of Li-ion batteries using sparse identification of nonlinear dynamics

Optimal charging of Li-ion batteries requires careful management of charge rates, as high rates can lead to accelerated degradation, while low rates significantly extend charging times. Traditional methods for determining charge rates often rely on rule-based approaches, which typically fail to effe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemical engineering journal (Lausanne, Switzerland : 1996) Ročník 499; s. 155015
Hlavní autoři: Bhadriraju, Bhavana, Lee, Jooyoung, Pahari, Silabrata, Yu, Choongho, Khan, Faisal, Kwon, Joseph Sang-Il
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2024
Témata:
ISSN:1385-8947
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Optimal charging of Li-ion batteries requires careful management of charge rates, as high rates can lead to accelerated degradation, while low rates significantly extend charging times. Traditional methods for determining charge rates often rely on rule-based approaches, which typically fail to effectively balance battery performance with charging duration. To address this, we introduce a novel optimization approach that directly integrates the dual objectives of minimizing charge time and maximizing battery lifetime into the optimization process. Unlike most existing charge optimization methods that do not directly track battery lifetime and charge time simultaneously, our method employs a data-driven model that facilitates direct and dynamic estimation of both battery lifetime and charge time at each step of the optimization process. Specifically, we utilize the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm to predict battery capacity and voltage dynamics, which informs the calculations of lifetime and charge time required to solve the optimization problem. This approach provides a balanced optimization strategy that enhances the effectiveness of battery’s performance while maintaining the efficiency of the charging process. We applied this method to a novel next-generation NMC811 battery, featuring a cathode comprised of 80% nickel, 10% manganese, and 10% cobalt, and a lithium metal foil anode — a combination not extensively studied previously. Experimental validation demonstrated that when optimized charge rates are applied every 10 cycles in a 100-cycle operation, the method leads to more stable cycling and improved capacity retention of approximately 7.4% over the nominal charge rate, demonstrating the potential of the developed approach. [Display omitted] •Optimized Li-ion battery charging by balancing battery lifetime with charge time.•Estimated lifetime and charge time from capacity and voltage predictions by SINDy.•Compared NMC811 battery performance under nominal vs. optimal charge rates.•Observed improved capacity retention and more stable cycling than the nominal case.
AbstractList Optimal charging of Li-ion batteries requires careful management of charge rates, as high rates can lead to accelerated degradation, while low rates significantly extend charging times. Traditional methods for determining charge rates often rely on rule-based approaches, which typically fail to effectively balance battery performance with charging duration. To address this, we introduce a novel optimization approach that directly integrates the dual objectives of minimizing charge time and maximizing battery lifetime into the optimization process. Unlike most existing charge optimization methods that do not directly track battery lifetime and charge time simultaneously, our method employs a data-driven model that facilitates direct and dynamic estimation of both battery lifetime and charge time at each step of the optimization process. Specifically, we utilize the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm to predict battery capacity and voltage dynamics, which informs the calculations of lifetime and charge time required to solve the optimization problem. This approach provides a balanced optimization strategy that enhances the effectiveness of battery’s performance while maintaining the efficiency of the charging process. We applied this method to a novel next-generation NMC811 battery, featuring a cathode comprised of 80% nickel, 10% manganese, and 10% cobalt, and a lithium metal foil anode — a combination not extensively studied previously. Experimental validation demonstrated that when optimized charge rates are applied every 10 cycles in a 100-cycle operation, the method leads to more stable cycling and improved capacity retention of approximately 7.4% over the nominal charge rate, demonstrating the potential of the developed approach. [Display omitted] •Optimized Li-ion battery charging by balancing battery lifetime with charge time.•Estimated lifetime and charge time from capacity and voltage predictions by SINDy.•Compared NMC811 battery performance under nominal vs. optimal charge rates.•Observed improved capacity retention and more stable cycling than the nominal case.
ArticleNumber 155015
Author Bhadriraju, Bhavana
Pahari, Silabrata
Khan, Faisal
Yu, Choongho
Lee, Jooyoung
Kwon, Joseph Sang-Il
Author_xml – sequence: 1
  givenname: Bhavana
  surname: Bhadriraju
  fullname: Bhadriraju, Bhavana
  organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA
– sequence: 2
  givenname: Jooyoung
  surname: Lee
  fullname: Lee, Jooyoung
  organization: J. Mike Walker’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77845, USA
– sequence: 3
  givenname: Silabrata
  surname: Pahari
  fullname: Pahari, Silabrata
  organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA
– sequence: 4
  givenname: Choongho
  surname: Yu
  fullname: Yu, Choongho
  organization: J. Mike Walker’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77845, USA
– sequence: 5
  givenname: Faisal
  surname: Khan
  fullname: Khan, Faisal
  organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA
– sequence: 6
  givenname: Joseph Sang-Il
  orcidid: 0000-0002-7903-5681
  surname: Kwon
  fullname: Kwon, Joseph Sang-Il
  email: kwonx075@tamu.edu
  organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA
BookMark eNp9kLtOwzAUhj0UiRZ4ALa8QIKdxIktJlRxkyp1AVbrxJdyotSpbIPUtyehTAydznD-71y-FVn40VtCbhktGGXNXV9o2xclLeuCcU4ZX5AlqwTPhazbS7KKsaeUNpLJJfnYHhLuYcj0J4Qd-l02umyDOY4-6yAlG9DG7CvOnXiAEG2GxvqEDjWkOTXlp_0DegshM0cPe9Txmlw4GKK9-atX5P3p8W39km-2z6_rh02uS9mmXDDRVaKRnNeOdwYoM6ysGqAgKsolVByga4yU0BkhXG1At510rqzbyjVQVlekPc3VYYwxWKc0pt-7UgAcFKNqVqJ6NSlRsxJ1UjKR7B95CJOIcDzL3J8YO730jTaoqNF6bQ0Gq5MyI56hfwCGIn7A
CitedBy_id crossref_primary_10_1016_j_etran_2025_100426
crossref_primary_10_1016_j_etran_2025_100420
crossref_primary_10_1016_j_ijoes_2025_100946
crossref_primary_10_1007_s10846_025_02274_9
Cites_doi 10.1016/j.jpowsour.2019.226835
10.1007/s11071-022-08178-9
10.1109/ACCESS.2018.2886528
10.1016/j.compchemeng.2019.106696
10.1016/j.energy.2024.131114
10.1149/1945-7111/ac8ee2
10.1016/j.est.2024.110580
10.1016/j.cej.2022.135643
10.1109/TVT.2017.2676044
10.1103/PhysRevE.104.015206
10.1016/j.est.2020.101933
10.1109/TII.2019.2935326
10.1021/acs.jpca.2c06513
10.1016/j.cej.2022.134768
10.1109/TMECH.2018.2798930
10.1016/j.ress.2023.109654
10.1016/j.jclepro.2020.123456
10.1371/journal.pcbi.1008472
10.1016/j.compchemeng.2023.108275
10.1016/j.cherd.2023.04.028
10.1109/ACCESS.2020.3023625
10.1109/TII.2019.2951060
10.1002/aic.17946
10.1149/2.018408jes
10.3390/en10050709
10.1016/j.cherd.2022.01.041
10.1016/j.apenergy.2021.118244
10.1016/j.jprocont.2021.10.006
10.1016/j.ifacol.2016.10.249
10.1016/j.jpowsour.2019.227015
10.1021/acs.iecr.3c02624
10.3390/batteries8020018
10.1016/j.compchemeng.2023.108339
10.1080/00401706.1970.10488634
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TEC.2021.3065983
10.1109/TIM.2021.3111009
10.1149/1.2221597
10.1149/1945-7111/abd607
10.1016/j.est.2024.112365
10.3390/s23094404
10.1073/pnas.1517384113
10.1016/j.renene.2016.06.009
10.1016/j.procs.2022.12.383
10.1017/jfm.2017.823
10.1016/j.ress.2022.108920
10.1016/j.ensm.2022.12.034
10.1115/1.4064026
10.1016/j.compchemeng.2021.107378
10.1016/j.ensm.2022.12.040
10.1002/aic.16980
10.1016/j.ifacol.2023.10.1546
10.1109/TII.2020.2983176
10.1016/j.psep.2024.03.095
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2024.155015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2024_155015
S1385894724065069
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
~HD
9DU
AAYXX
ABXDB
AFFNX
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
ZY4
ID FETCH-LOGICAL-c297t-818b3869554f5bda01d1236a0a83059a35aab6d99abd88f4dac7b9ff2473f6a23
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001340311200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-8947
IngestDate Tue Nov 18 22:26:02 EST 2025
Sat Nov 29 06:59:04 EST 2025
Wed Dec 10 14:23:07 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Charge time
Sparse modeling
Li-ion battery
Charge optimization
Battery degradation
Remaining lifetime
Mixed-integer quadratic programming (MIQP)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-818b3869554f5bda01d1236a0a83059a35aab6d99abd88f4dac7b9ff2473f6a23
ORCID 0000-0002-7903-5681
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2024_155015
crossref_primary_10_1016_j_cej_2024_155015
elsevier_sciencedirect_doi_10_1016_j_cej_2024_155015
PublicationCentury 2000
PublicationDate 2024-11-01
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Song, Wu, Shen, Boulet (b53) 2023; 217
Catelani, Ciani, Fantacci, Patrizi, Picano (b51) 2021; 70
Sitapure, Kwon (b55) 2023; 194
Champion, Zheng, Aravkin, Brunton, Kutz (b37) 2020; 8
Lee, Jayaraman, Kwon (b42) 2020; 16
Song, Choe (b19) 2019; 436
Tian, Fang, Wang (b2) 2020; 17
Hwang, Sitapure, Moon, Lee, Hwang, Kwon (b18) 2022
Bertsimas, King, Mazumder (b41) 2016
Bhadriraju, Kwon, Khan (b49) 2021; 107
Sarkar, Amin, El-Halwagi, Khan (b13) 2024; 186
Weng, Zhou (b44) 2022; 126
Dong, Feng, Lou, Zhang, Wei (b7) 2023
Pozzi, Barbierato, Toti (b25) 2023; 23
Brunton, Proctor, Kutz (b26) 2016; 113
Bhadriraju, Kwon, Khan (b30) 2023; 175
Zou, Manzie, Nešić (b31) 2018; 23
Berliner, Jiang, Cogswell, Bazant, Braatz (b3) 2022
Faria, Velho, Calado, Pombo, Fermeiro, Mariano (b24) 2022; 8
Rodriguez, Ahmadzadeh, Wang, Soudbakhsh (b28) 2024; 146
Li, Vilathgamuwa, Wikner, Wei, Zhang, Thiringer, Wik, Zou (b21) 2021; 36
Bangi, Kwon (b43) 2020; 134
Li (b1) 2017; 100
Jiang, Berliner, Lai, Asinger, Zhao, Herring, Bazant, Braatz (b22) 2022; 307
Tian, Wang, Chen (b15) 2021; 278
Sitapure, Sang-Il Kwon (b56) 2023; 62
Hoerl, Kennard (b34) 1970; 12
Brunton, Proctor, Kutz (b32) 2016; 49
Shah, Sheriff, Bangi, Kravaris, Kwon, Botre, Hirota (b45) 2022; 441
Bertsimas, Gurnee (b40) 2023; 111
Yin, Bi, Hu, Choe (b20) 2021; 167
Zheng, Askham, Brunton, Kutz, Aravkin (b35) 2018; 7
Luo, Han, Zhang, Ruan (b10) 2024; 93
Yu, Huang, Xu, Yan, Rong, Sun (b9) 2024; 82
Bhadriraju, Bangi, Narasingam, Kwon (b29) 2020
Ahmadzadeh, Wang, Soudbakhsh (b27) 2023; 56
Gao, Zhang, Guo, Zhu, Wiedemann, Wang, Cao (b17) 2019; 16
Xu, Wang, Zhao, Wang (b58) 2019; 438
Bangi, Kao, Kwon (b46) 2022; 179
Duquesnoy, Liu, Dominguez, Kumar, Ayerbe, Franco (b23) 2023; 56
Wei, Yang, Li, He, Li, Sauer (b6) 2023; 56
Northrop, Suthar, Ramadesigan, Santhanagopalan, Braatz, Subramanian (b14) 2014; 161
Kaptanoglu, Morgan, Hansen, Brunton (b39) 2021; 104
Wang, Fan, Jin, Takyi-Aninakwa, Fernandez (b52) 2023; 230
Bhadriraju, Kwon, Khan (b50) 2021
Chen, Liu, Wang, Luo, Yang (b8) 2021; 33
Gomez, Wang, Chou (b54) 2024; 296
Doyle, Fuller, Newman (b11) 1993; 140
Gholamizadeh, Zarei, Yazdi, Ramezanifar, Aliabadi (b48) 2024; 241
Sarkar, Halim, El-Halwagi, Khan (b12) 2022; 169
Sitapure, Kwon (b57) 2023; 177
Ouyang, Wang, Liu, Xu, Li (b5) 2019; 16
Perez, Hu, Dey, Moura (b16) 2017; 66
Loiseau, Brunton (b36) 2018; 838
Tibshirani (b33) 1996; 58
Shah, Sheriff, Bangi, Kravaris, Kwon, Botre, Hirota (b47) 2023; 69
Sarić, Sarić, Transtrum, Stanković (b38) 2020; 36
Min, Sun, Li, Guo, Yu, Zhu, Zhao (b4) 2017; 10
Tian (10.1016/j.cej.2024.155015_b2) 2020; 17
Sarić (10.1016/j.cej.2024.155015_b38) 2020; 36
Brunton (10.1016/j.cej.2024.155015_b32) 2016; 49
Lee (10.1016/j.cej.2024.155015_b42) 2020; 16
Gholamizadeh (10.1016/j.cej.2024.155015_b48) 2024; 241
Bangi (10.1016/j.cej.2024.155015_b46) 2022; 179
Li (10.1016/j.cej.2024.155015_b1) 2017; 100
Bhadriraju (10.1016/j.cej.2024.155015_b29) 2020
Champion (10.1016/j.cej.2024.155015_b37) 2020; 8
Song (10.1016/j.cej.2024.155015_b53) 2023; 217
Northrop (10.1016/j.cej.2024.155015_b14) 2014; 161
Hwang (10.1016/j.cej.2024.155015_b18) 2022
Kaptanoglu (10.1016/j.cej.2024.155015_b39) 2021; 104
Ahmadzadeh (10.1016/j.cej.2024.155015_b27) 2023; 56
Gao (10.1016/j.cej.2024.155015_b17) 2019; 16
Loiseau (10.1016/j.cej.2024.155015_b36) 2018; 838
Sitapure (10.1016/j.cej.2024.155015_b55) 2023; 194
Duquesnoy (10.1016/j.cej.2024.155015_b23) 2023; 56
Gomez (10.1016/j.cej.2024.155015_b54) 2024; 296
Shah (10.1016/j.cej.2024.155015_b47) 2023; 69
Chen (10.1016/j.cej.2024.155015_b8) 2021; 33
Yu (10.1016/j.cej.2024.155015_b9) 2024; 82
Sitapure (10.1016/j.cej.2024.155015_b56) 2023; 62
Xu (10.1016/j.cej.2024.155015_b58) 2019; 438
Rodriguez (10.1016/j.cej.2024.155015_b28) 2024; 146
Weng (10.1016/j.cej.2024.155015_b44) 2022; 126
Berliner (10.1016/j.cej.2024.155015_b3) 2022
Ouyang (10.1016/j.cej.2024.155015_b5) 2019; 16
Perez (10.1016/j.cej.2024.155015_b16) 2017; 66
Zheng (10.1016/j.cej.2024.155015_b35) 2018; 7
Bhadriraju (10.1016/j.cej.2024.155015_b49) 2021; 107
Sitapure (10.1016/j.cej.2024.155015_b57) 2023; 177
Faria (10.1016/j.cej.2024.155015_b24) 2022; 8
Shah (10.1016/j.cej.2024.155015_b45) 2022; 441
Wang (10.1016/j.cej.2024.155015_b52) 2023; 230
Wei (10.1016/j.cej.2024.155015_b6) 2023; 56
Brunton (10.1016/j.cej.2024.155015_b26) 2016; 113
Tian (10.1016/j.cej.2024.155015_b15) 2021; 278
Doyle (10.1016/j.cej.2024.155015_b11) 1993; 140
Yin (10.1016/j.cej.2024.155015_b20) 2021; 167
Li (10.1016/j.cej.2024.155015_b21) 2021; 36
Sarkar (10.1016/j.cej.2024.155015_b12) 2022; 169
Bertsimas (10.1016/j.cej.2024.155015_b40) 2023; 111
Song (10.1016/j.cej.2024.155015_b19) 2019; 436
Pozzi (10.1016/j.cej.2024.155015_b25) 2023; 23
Sarkar (10.1016/j.cej.2024.155015_b13) 2024; 186
Min (10.1016/j.cej.2024.155015_b4) 2017; 10
Jiang (10.1016/j.cej.2024.155015_b22) 2022; 307
Luo (10.1016/j.cej.2024.155015_b10) 2024; 93
Zou (10.1016/j.cej.2024.155015_b31) 2018; 23
Dong (10.1016/j.cej.2024.155015_b7) 2023
Bertsimas (10.1016/j.cej.2024.155015_b41) 2016
Hoerl (10.1016/j.cej.2024.155015_b34) 1970; 12
Bangi (10.1016/j.cej.2024.155015_b43) 2020; 134
Catelani (10.1016/j.cej.2024.155015_b51) 2021; 70
Bhadriraju (10.1016/j.cej.2024.155015_b50) 2021
Bhadriraju (10.1016/j.cej.2024.155015_b30) 2023; 175
Tibshirani (10.1016/j.cej.2024.155015_b33) 1996; 58
References_xml – year: 2021
  ident: b50
  article-title: Risk-based fault prediction of chemical processes using operable adaptive sparse identification of systems (OASIS)
  publication-title: Comput. Chem. Eng.
– volume: 217
  start-page: 1830
  year: 2023
  end-page: 1838
  ident: b53
  article-title: A remaining useful life prediction method for lithium-ion battery based on temporal transformer network
  publication-title: Procedia Comput. Sci.
– volume: 104
  year: 2021
  ident: b39
  article-title: Physics-constrained, low-dimensional models for magnetohydrodynamics: First-principles and data-driven approaches
  publication-title: Phys. Rev. E
– volume: 23
  start-page: 4404
  year: 2023
  ident: b25
  article-title: Optimizing battery charging using neural networks in the presence of unknown states and parameters
  publication-title: Sensors
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  ident: b51
  article-title: Remaining useful life estimation for prognostics of lithium-ion batteries based on recurrent neural network
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 126
  start-page: 8534
  year: 2022
  end-page: 8543
  ident: b44
  article-title: Multiscale physics-informed neural networks for stiff chemical kinetics
  publication-title: J. Phys. Chem. A
– volume: 436
  year: 2019
  ident: b19
  article-title: Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery
  publication-title: J. Power Sources
– volume: 17
  start-page: 1318
  year: 2020
  end-page: 1330
  ident: b2
  article-title: Real-time optimal lithium-ion battery charging based on explicit model predictive control
  publication-title: IEEE Trans. Ind. Inform.
– volume: 230
  year: 2023
  ident: b52
  article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 438
  year: 2019
  ident: b58
  article-title: Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model
  publication-title: J. Power Sources
– volume: 82
  year: 2024
  ident: b9
  article-title: Optimal charging of lithium-ion batteries based on lithium precipitation suppression
  publication-title: J. Energy Storage
– volume: 100
  start-page: 44
  year: 2017
  end-page: 52
  ident: b1
  article-title: Li-ion dynamics and state of charge estimation
  publication-title: Renew. Energy
– volume: 23
  start-page: 947
  year: 2018
  end-page: 957
  ident: b31
  article-title: Model predictive control for lithium-ion battery optimal charging
  publication-title: IEEE/ASME Trans. Mechatronics
– volume: 441
  year: 2022
  ident: b45
  article-title: Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters
  publication-title: Chem. Eng. J.
– start-page: 813
  year: 2016
  end-page: 852
  ident: b41
  article-title: Best subset selection via a modern optimization lens
  publication-title: Ann. Statist.
– volume: 296
  year: 2024
  ident: b54
  article-title: Li-ion battery capacity prediction using improved temporal fusion transformer model
  publication-title: Energy
– volume: 175
  year: 2023
  ident: b30
  article-title: An adaptive data-driven approach for two-timescale dynamics prediction and remaining useful life estimation of li-ion batteries
  publication-title: Comput. Chem. Eng.
– volume: 49
  start-page: 710
  year: 2016
  end-page: 715
  ident: b32
  article-title: Sparse identification of nonlinear dynamics with control (SINDYc).
  publication-title: IFAC-PapersOnLine
– volume: 241
  year: 2024
  ident: b48
  article-title: A hybrid model for dynamic analysis of domino effects in chemical process industries
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 56
  start-page: 62
  year: 2023
  end-page: 75
  ident: b6
  article-title: Machine learning-based fast charging of lithium-ion battery by perceiving and regulating internal microscopic states
  publication-title: Energy Storage Mater.
– volume: 36
  start-page: 2390
  year: 2020
  end-page: 2402
  ident: b38
  article-title: Symbolic regression for data-driven dynamic model refinement in power systems
  publication-title: IEEE Trans. Power Syst.
– volume: 134
  year: 2020
  ident: b43
  article-title: Deep hybrid modeling of chemical process: application to hydraulic fracturing
  publication-title: Comput. Chem. Eng.
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  ident: b34
  article-title: Ridge regression: Biased estimation for nonorthogonal problems.
  publication-title: Technometrics
– volume: 107
  start-page: 114
  year: 2021
  end-page: 126
  ident: b49
  article-title: OASIS-P: Operable adaptive sparse identification of systems for fault prognosis of chemical processes
  publication-title: J. Process Control
– volume: 161
  start-page: E3149
  year: 2014
  ident: b14
  article-title: Efficient simulation and reformulation of lithium-ion battery models for enabling electric transportation
  publication-title: J. Electrochem. Soc.
– year: 2022
  ident: b18
  article-title: Model predictive control of lithium-ion batteries: Development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms
  publication-title: Chem. Eng. J.
– volume: 146
  year: 2024
  ident: b28
  article-title: Data-driven discovery of lithium-ion battery state of charge dynamics
  publication-title: J. Dyn. Syst. Meas. Control
– year: 2023
  ident: b7
  article-title: Data-driven fast charging optimization for lithium-ion battery using Bayesian optimization with fast convergence
  publication-title: IEEE Trans. Transp. Electrif.
– volume: 36
  start-page: 3208
  year: 2021
  end-page: 3220
  ident: b21
  article-title: Electrochemical model-based fast charging: Physical constraint-triggered PI control
  publication-title: IEEE Trans. Energy Convers.
– volume: 56
  start-page: 3764
  year: 2023
  end-page: 3769
  ident: b27
  article-title: Sparse modeling of energy storage systems in presence of noise
  publication-title: IFAC-PapersOnLine
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b33
  article-title: Regression shrinkage and selection via the lasso.
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– start-page: 5265
  year: 2022
  end-page: 5270
  ident: b3
  article-title: Fast charging of lithium-ion batteries by mathematical reformulation as mixed continuous-discrete simulation
  publication-title: 2022 American Control Conference
– year: 2020
  ident: b29
  article-title: Operable adaptive sparse identification of systems (OASIS): application to chemical processes
  publication-title: AIChE J.
– volume: 838
  start-page: 42
  year: 2018
  end-page: 67
  ident: b36
  article-title: Constrained sparse Galerkin regression.
  publication-title: J. Fluid Mech.
– volume: 16
  start-page: 3430
  year: 2019
  end-page: 3438
  ident: b5
  article-title: Optimal charging control for lithium-ion battery packs: A distributed average tracking approach
  publication-title: IEEE Trans. Ind. Inform.
– volume: 93
  year: 2024
  ident: b10
  article-title: A digital twin for advancing battery fast charging based on a Bayesian optimization-based method
  publication-title: J. Energy Storage
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: b26
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
– volume: 179
  start-page: 415
  year: 2022
  end-page: 423
  ident: b46
  article-title: Physics-informed neural networks for hybrid modeling of lab-scale batch fermentation for
  publication-title: Chem. Eng. Res. Des.
– volume: 33
  year: 2021
  ident: b8
  article-title: Searching for the optimal current pattern based on grey wolf optimizer and equivalent circuit model of li-ion batteries
  publication-title: J. Energy Storage
– volume: 7
  start-page: 1404
  year: 2018
  end-page: 1423
  ident: b35
  article-title: A unified framework for sparse relaxed regularized regression: Sr3
  publication-title: IEEE Access
– volume: 111
  start-page: 6585
  year: 2023
  end-page: 6604
  ident: b40
  article-title: Learning sparse nonlinear dynamics via mixed-integer optimization
  publication-title: Nonlinear Dynam.
– volume: 69
  year: 2023
  ident: b47
  article-title: Multi-rate observer design and optimal control to maximize productivity of an industry-scale fermentation process
  publication-title: AIChE J.
– volume: 177
  year: 2023
  ident: b57
  article-title: CrystalGPT: Enhancing system-to-system transferability in crystallization prediction and control using time-series-transformers
  publication-title: Comput. Chem. Eng.
– volume: 186
  start-page: 118
  year: 2024
  end-page: 133
  ident: b13
  article-title: Thermal behavior of LiFePO4 battery at faster C-rates and lower ambient temperatures
  publication-title: Process Safety Environ. Protect.
– volume: 8
  start-page: 169259
  year: 2020
  end-page: 169271
  ident: b37
  article-title: A unified sparse optimization framework to learn parsimonious physics-informed models from data
  publication-title: IEEE Access
– volume: 56
  start-page: 50
  year: 2023
  end-page: 61
  ident: b23
  article-title: Machine learning-assisted multi-objective optimization of battery manufacturing from synthetic data generated by physics-based simulations
  publication-title: Energy Storage Mater.
– volume: 66
  start-page: 7761
  year: 2017
  end-page: 7770
  ident: b16
  article-title: Optimal charging of li-ion batteries with coupled electro-thermal-aging dynamics
  publication-title: IEEE Trans. Veh. Technol.
– volume: 167
  year: 2021
  ident: b20
  article-title: Optimal fast charging method for a large-format lithium-ion battery based on nonlinear model predictive control and reduced order electrochemical model
  publication-title: J. Electrochem. Soc.
– volume: 307
  year: 2022
  ident: b22
  article-title: Fast charging design for lithium-ion batteries via Bayesian optimization
  publication-title: Appl. Energy
– volume: 62
  start-page: 21278
  year: 2023
  end-page: 21291
  ident: b56
  article-title: Introducing hybrid modeling with time-series-transformers: A comparative study of series and parallel approach in batch crystallization
  publication-title: Ind. Eng. Chem. Res.
– volume: 169
  year: 2022
  ident: b12
  article-title: Electrochemical models: Methods and applications for safer lithium-ion battery operation
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 18
  year: 2022
  ident: b24
  article-title: A new charging algorithm for li-ion battery packs based on artificial neural networks
  publication-title: Batteries
– volume: 194
  start-page: 461
  year: 2023
  end-page: 477
  ident: b55
  article-title: Exploring the potential of time-series transformers for process modeling and control in chemical systems: an inevitable paradigm shift?
  publication-title: Chem. Eng. Res. Des.
– volume: 16
  start-page: 3417
  year: 2019
  end-page: 3429
  ident: b17
  article-title: Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery
  publication-title: IEEE Trans. Ind. Informat.
– volume: 10
  start-page: 709
  year: 2017
  ident: b4
  article-title: Research on the optimal charging strategy for li-ion batteries based on multi-objective optimization
  publication-title: Energies
– volume: 16
  year: 2020
  ident: b42
  article-title: Development of a hybrid model for a partially known intracellular signaling pathway through correction term estimation and neural network modeling
  publication-title: PLoS Comput. Biol.
– volume: 140
  start-page: 1526
  year: 1993
  ident: b11
  article-title: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell
  publication-title: J. Electrochem. Soc.
– volume: 278
  year: 2021
  ident: b15
  article-title: An improved single particle model for lithium-ion batteries based on main stress factor compensation
  publication-title: J. Clean. Prod.
– volume: 436
  year: 2019
  ident: 10.1016/j.cej.2024.155015_b19
  article-title: Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226835
– volume: 111
  start-page: 6585
  issue: 7
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b40
  article-title: Learning sparse nonlinear dynamics via mixed-integer optimization
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-022-08178-9
– volume: 7
  start-page: 1404
  year: 2018
  ident: 10.1016/j.cej.2024.155015_b35
  article-title: A unified framework for sparse relaxed regularized regression: Sr3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886528
– volume: 134
  year: 2020
  ident: 10.1016/j.cej.2024.155015_b43
  article-title: Deep hybrid modeling of chemical process: application to hydraulic fracturing
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106696
– volume: 296
  year: 2024
  ident: 10.1016/j.cej.2024.155015_b54
  article-title: Li-ion battery capacity prediction using improved temporal fusion transformer model
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131114
– start-page: 5265
  year: 2022
  ident: 10.1016/j.cej.2024.155015_b3
  article-title: Fast charging of lithium-ion batteries by mathematical reformulation as mixed continuous-discrete simulation
– start-page: 813
  year: 2016
  ident: 10.1016/j.cej.2024.155015_b41
  article-title: Best subset selection via a modern optimization lens
  publication-title: Ann. Statist.
– volume: 169
  issue: 10
  year: 2022
  ident: 10.1016/j.cej.2024.155015_b12
  article-title: Electrochemical models: Methods and applications for safer lithium-ion battery operation
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac8ee2
– volume: 82
  year: 2024
  ident: 10.1016/j.cej.2024.155015_b9
  article-title: Optimal charging of lithium-ion batteries based on lithium precipitation suppression
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.110580
– volume: 441
  year: 2022
  ident: 10.1016/j.cej.2024.155015_b45
  article-title: Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135643
– volume: 66
  start-page: 7761
  issue: 9
  year: 2017
  ident: 10.1016/j.cej.2024.155015_b16
  article-title: Optimal charging of li-ion batteries with coupled electro-thermal-aging dynamics
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2676044
– volume: 104
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2024.155015_b39
  article-title: Physics-constrained, low-dimensional models for magnetohydrodynamics: First-principles and data-driven approaches
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.104.015206
– volume: 33
  year: 2021
  ident: 10.1016/j.cej.2024.155015_b8
  article-title: Searching for the optimal current pattern based on grey wolf optimizer and equivalent circuit model of li-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101933
– volume: 16
  start-page: 3417
  issue: 5
  year: 2019
  ident: 10.1016/j.cej.2024.155015_b17
  article-title: Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2019.2935326
– volume: 126
  start-page: 8534
  issue: 45
  year: 2022
  ident: 10.1016/j.cej.2024.155015_b44
  article-title: Multiscale physics-informed neural networks for stiff chemical kinetics
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.2c06513
– year: 2022
  ident: 10.1016/j.cej.2024.155015_b18
  article-title: Model predictive control of lithium-ion batteries: Development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134768
– volume: 23
  start-page: 947
  issue: 2
  year: 2018
  ident: 10.1016/j.cej.2024.155015_b31
  article-title: Model predictive control for lithium-ion battery optimal charging
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2018.2798930
– year: 2023
  ident: 10.1016/j.cej.2024.155015_b7
  article-title: Data-driven fast charging optimization for lithium-ion battery using Bayesian optimization with fast convergence
  publication-title: IEEE Trans. Transp. Electrif.
– volume: 241
  year: 2024
  ident: 10.1016/j.cej.2024.155015_b48
  article-title: A hybrid model for dynamic analysis of domino effects in chemical process industries
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109654
– volume: 278
  year: 2021
  ident: 10.1016/j.cej.2024.155015_b15
  article-title: An improved single particle model for lithium-ion batteries based on main stress factor compensation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123456
– volume: 16
  issue: 12
  year: 2020
  ident: 10.1016/j.cej.2024.155015_b42
  article-title: Development of a hybrid model for a partially known intracellular signaling pathway through correction term estimation and neural network modeling
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008472
– volume: 175
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b30
  article-title: An adaptive data-driven approach for two-timescale dynamics prediction and remaining useful life estimation of li-ion batteries
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108275
– volume: 194
  start-page: 461
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b55
  article-title: Exploring the potential of time-series transformers for process modeling and control in chemical systems: an inevitable paradigm shift?
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2023.04.028
– volume: 8
  start-page: 169259
  year: 2020
  ident: 10.1016/j.cej.2024.155015_b37
  article-title: A unified sparse optimization framework to learn parsimonious physics-informed models from data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023625
– volume: 16
  start-page: 3430
  issue: 5
  year: 2019
  ident: 10.1016/j.cej.2024.155015_b5
  article-title: Optimal charging control for lithium-ion battery packs: A distributed average tracking approach
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2951060
– volume: 69
  issue: 2
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b47
  article-title: Multi-rate observer design and optimal control to maximize productivity of an industry-scale fermentation process
  publication-title: AIChE J.
  doi: 10.1002/aic.17946
– volume: 161
  start-page: E3149
  issue: 8
  year: 2014
  ident: 10.1016/j.cej.2024.155015_b14
  article-title: Efficient simulation and reformulation of lithium-ion battery models for enabling electric transportation
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.018408jes
– volume: 10
  start-page: 709
  issue: 5
  year: 2017
  ident: 10.1016/j.cej.2024.155015_b4
  article-title: Research on the optimal charging strategy for li-ion batteries based on multi-objective optimization
  publication-title: Energies
  doi: 10.3390/en10050709
– volume: 36
  start-page: 2390
  issue: 3
  year: 2020
  ident: 10.1016/j.cej.2024.155015_b38
  article-title: Symbolic regression for data-driven dynamic model refinement in power systems
  publication-title: IEEE Trans. Power Syst.
– volume: 179
  start-page: 415
  year: 2022
  ident: 10.1016/j.cej.2024.155015_b46
  article-title: Physics-informed neural networks for hybrid modeling of lab-scale batch fermentation for β-carotene production using saccharomyces cerevisiae
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2022.01.041
– volume: 307
  year: 2022
  ident: 10.1016/j.cej.2024.155015_b22
  article-title: Fast charging design for lithium-ion batteries via Bayesian optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118244
– volume: 107
  start-page: 114
  year: 2021
  ident: 10.1016/j.cej.2024.155015_b49
  article-title: OASIS-P: Operable adaptive sparse identification of systems for fault prognosis of chemical processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.10.006
– volume: 49
  start-page: 710
  issue: 18
  year: 2016
  ident: 10.1016/j.cej.2024.155015_b32
  article-title: Sparse identification of nonlinear dynamics with control (SINDYc).
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.10.249
– volume: 438
  year: 2019
  ident: 10.1016/j.cej.2024.155015_b58
  article-title: Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227015
– volume: 62
  start-page: 21278
  issue: 49
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b56
  article-title: Introducing hybrid modeling with time-series-transformers: A comparative study of series and parallel approach in batch crystallization
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c02624
– volume: 8
  start-page: 18
  issue: 2
  year: 2022
  ident: 10.1016/j.cej.2024.155015_b24
  article-title: A new charging algorithm for li-ion battery packs based on artificial neural networks
  publication-title: Batteries
  doi: 10.3390/batteries8020018
– volume: 177
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b57
  article-title: CrystalGPT: Enhancing system-to-system transferability in crystallization prediction and control using time-series-transformers
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108339
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  ident: 10.1016/j.cej.2024.155015_b34
  article-title: Ridge regression: Biased estimation for nonorthogonal problems.
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.cej.2024.155015_b33
  article-title: Regression shrinkage and selection via the lasso.
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 36
  start-page: 3208
  issue: 4
  year: 2021
  ident: 10.1016/j.cej.2024.155015_b21
  article-title: Electrochemical model-based fast charging: Physical constraint-triggered PI control
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2021.3065983
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.cej.2024.155015_b51
  article-title: Remaining useful life estimation for prognostics of lithium-ion batteries based on recurrent neural network
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3111009
– volume: 140
  start-page: 1526
  issue: 6
  year: 1993
  ident: 10.1016/j.cej.2024.155015_b11
  article-title: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221597
– volume: 167
  issue: 16
  year: 2021
  ident: 10.1016/j.cej.2024.155015_b20
  article-title: Optimal fast charging method for a large-format lithium-ion battery based on nonlinear model predictive control and reduced order electrochemical model
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abd607
– volume: 93
  year: 2024
  ident: 10.1016/j.cej.2024.155015_b10
  article-title: A digital twin for advancing battery fast charging based on a Bayesian optimization-based method
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112365
– volume: 23
  start-page: 4404
  issue: 9
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b25
  article-title: Optimizing battery charging using neural networks in the presence of unknown states and parameters
  publication-title: Sensors
  doi: 10.3390/s23094404
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  ident: 10.1016/j.cej.2024.155015_b26
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– volume: 100
  start-page: 44
  year: 2017
  ident: 10.1016/j.cej.2024.155015_b1
  article-title: Li-ion dynamics and state of charge estimation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.06.009
– volume: 217
  start-page: 1830
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b53
  article-title: A remaining useful life prediction method for lithium-ion battery based on temporal transformer network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.12.383
– volume: 838
  start-page: 42
  year: 2018
  ident: 10.1016/j.cej.2024.155015_b36
  article-title: Constrained sparse Galerkin regression.
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.823
– volume: 230
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b52
  article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108920
– volume: 56
  start-page: 62
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b6
  article-title: Machine learning-based fast charging of lithium-ion battery by perceiving and regulating internal microscopic states
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.12.034
– volume: 146
  issue: 1
  year: 2024
  ident: 10.1016/j.cej.2024.155015_b28
  article-title: Data-driven discovery of lithium-ion battery state of charge dynamics
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.4064026
– year: 2021
  ident: 10.1016/j.cej.2024.155015_b50
  article-title: Risk-based fault prediction of chemical processes using operable adaptive sparse identification of systems (OASIS)
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107378
– volume: 56
  start-page: 50
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b23
  article-title: Machine learning-assisted multi-objective optimization of battery manufacturing from synthetic data generated by physics-based simulations
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.12.040
– year: 2020
  ident: 10.1016/j.cej.2024.155015_b29
  article-title: Operable adaptive sparse identification of systems (OASIS): application to chemical processes
  publication-title: AIChE J.
  doi: 10.1002/aic.16980
– volume: 56
  start-page: 3764
  issue: 2
  year: 2023
  ident: 10.1016/j.cej.2024.155015_b27
  article-title: Sparse modeling of energy storage systems in presence of noise
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2023.10.1546
– volume: 17
  start-page: 1318
  issue: 2
  year: 2020
  ident: 10.1016/j.cej.2024.155015_b2
  article-title: Real-time optimal lithium-ion battery charging based on explicit model predictive control
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2983176
– volume: 186
  start-page: 118
  year: 2024
  ident: 10.1016/j.cej.2024.155015_b13
  article-title: Thermal behavior of LiFePO4 battery at faster C-rates and lower ambient temperatures
  publication-title: Process Safety Environ. Protect.
  doi: 10.1016/j.psep.2024.03.095
SSID ssj0006919
Score 2.4727654
Snippet Optimal charging of Li-ion batteries requires careful management of charge rates, as high rates can lead to accelerated degradation, while low rates...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 155015
SubjectTerms Battery degradation
Charge optimization
Charge time
Li-ion battery
Mixed-integer quadratic programming (MIQP)
Remaining lifetime
Sparse modeling
Title Optimal charging of Li-ion batteries using sparse identification of nonlinear dynamics
URI https://dx.doi.org/10.1016/j.cej.2024.155015
Volume 499
WOSCitedRecordID wos001340311200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006919
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKxwM8oPFLGzDkB56oUmWNE9uPAw0BQgOpA_UtchKbphrJlLZj8B_wX3MXO27oAAESL1EUxXbr-3I-n---I-SJSELG8sQEucx0wAw7DJBWLDAJfB5aK8F50Rab4CcnYjaT7waDb10uzMUZrypxeSnP_6uo4RkIG1Nn_0LcvlN4APcgdLiC2OH6R4J_C0rgE7J-IAeSi2l-UwYo5qwl04S98WjdughAmzRLPSoLFzLkzcfKEmioZlTYivXLvhHrSQb0hszQU1BgiRCFoT7WVTr9XK6-2oxi532QSc_78GyuiqZs1GLdAm2usMbzdpBQXX9BnbQ57YJ_1gYhTEvAcGOz61x5MRtCUNfVx3nd92hMmEvt8262K6k2rWaORBwIaek5O9XNbHGlK8uA9UgsxrlejHGEMW7EbNroFrv2FPvFbtGyicNEXiM7Ex5LMSQ7R6-OZ6_9sp7ItkqM_x3dEXkbLLg10M-NnJ7hcrpLbrkdBz2ySLlNBrq6Q272eCjvkg8OM7TDDK0NtZihHjO0xQy1mKE_Ygbf95ihHWbukfcvjk-fvwxcwY0gn0i-CsB4yyKRSDAxTZwVKjwskJxHhUrAsiBVFCuVJYWUKiuEMKxQOc-kMRPGI5OoSXSfDGEwvUeogY2oRo1v8Bw5N5nkysDyoWXBFVPxPgm7GUpzx0aPRVHO0i7scJHCpKY4qamd1H3y1Dc5t1Qsv3uZddOeOlvS2ogpYOTXzR78W7OH5MYGyI_IcNWs9QG5nl-symXz2CHpO74smWE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+charging+of+Li-ion+batteries+using+sparse+identification+of+nonlinear+dynamics&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Bhadriraju%2C+Bhavana&rft.au=Lee%2C+Jooyoung&rft.au=Pahari%2C+Silabrata&rft.au=Yu%2C+Choongho&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=499&rft_id=info:doi/10.1016%2Fj.cej.2024.155015&rft.externalDocID=S1385894724065069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon