Optimal charging of Li-ion batteries using sparse identification of nonlinear dynamics
Optimal charging of Li-ion batteries requires careful management of charge rates, as high rates can lead to accelerated degradation, while low rates significantly extend charging times. Traditional methods for determining charge rates often rely on rule-based approaches, which typically fail to effe...
Uloženo v:
| Vydáno v: | Chemical engineering journal (Lausanne, Switzerland : 1996) Ročník 499; s. 155015 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.11.2024
|
| Témata: | |
| ISSN: | 1385-8947 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Optimal charging of Li-ion batteries requires careful management of charge rates, as high rates can lead to accelerated degradation, while low rates significantly extend charging times. Traditional methods for determining charge rates often rely on rule-based approaches, which typically fail to effectively balance battery performance with charging duration. To address this, we introduce a novel optimization approach that directly integrates the dual objectives of minimizing charge time and maximizing battery lifetime into the optimization process. Unlike most existing charge optimization methods that do not directly track battery lifetime and charge time simultaneously, our method employs a data-driven model that facilitates direct and dynamic estimation of both battery lifetime and charge time at each step of the optimization process. Specifically, we utilize the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm to predict battery capacity and voltage dynamics, which informs the calculations of lifetime and charge time required to solve the optimization problem. This approach provides a balanced optimization strategy that enhances the effectiveness of battery’s performance while maintaining the efficiency of the charging process. We applied this method to a novel next-generation NMC811 battery, featuring a cathode comprised of 80% nickel, 10% manganese, and 10% cobalt, and a lithium metal foil anode — a combination not extensively studied previously. Experimental validation demonstrated that when optimized charge rates are applied every 10 cycles in a 100-cycle operation, the method leads to more stable cycling and improved capacity retention of approximately 7.4% over the nominal charge rate, demonstrating the potential of the developed approach.
[Display omitted]
•Optimized Li-ion battery charging by balancing battery lifetime with charge time.•Estimated lifetime and charge time from capacity and voltage predictions by SINDy.•Compared NMC811 battery performance under nominal vs. optimal charge rates.•Observed improved capacity retention and more stable cycling than the nominal case. |
|---|---|
| AbstractList | Optimal charging of Li-ion batteries requires careful management of charge rates, as high rates can lead to accelerated degradation, while low rates significantly extend charging times. Traditional methods for determining charge rates often rely on rule-based approaches, which typically fail to effectively balance battery performance with charging duration. To address this, we introduce a novel optimization approach that directly integrates the dual objectives of minimizing charge time and maximizing battery lifetime into the optimization process. Unlike most existing charge optimization methods that do not directly track battery lifetime and charge time simultaneously, our method employs a data-driven model that facilitates direct and dynamic estimation of both battery lifetime and charge time at each step of the optimization process. Specifically, we utilize the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm to predict battery capacity and voltage dynamics, which informs the calculations of lifetime and charge time required to solve the optimization problem. This approach provides a balanced optimization strategy that enhances the effectiveness of battery’s performance while maintaining the efficiency of the charging process. We applied this method to a novel next-generation NMC811 battery, featuring a cathode comprised of 80% nickel, 10% manganese, and 10% cobalt, and a lithium metal foil anode — a combination not extensively studied previously. Experimental validation demonstrated that when optimized charge rates are applied every 10 cycles in a 100-cycle operation, the method leads to more stable cycling and improved capacity retention of approximately 7.4% over the nominal charge rate, demonstrating the potential of the developed approach.
[Display omitted]
•Optimized Li-ion battery charging by balancing battery lifetime with charge time.•Estimated lifetime and charge time from capacity and voltage predictions by SINDy.•Compared NMC811 battery performance under nominal vs. optimal charge rates.•Observed improved capacity retention and more stable cycling than the nominal case. |
| ArticleNumber | 155015 |
| Author | Bhadriraju, Bhavana Pahari, Silabrata Khan, Faisal Yu, Choongho Lee, Jooyoung Kwon, Joseph Sang-Il |
| Author_xml | – sequence: 1 givenname: Bhavana surname: Bhadriraju fullname: Bhadriraju, Bhavana organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA – sequence: 2 givenname: Jooyoung surname: Lee fullname: Lee, Jooyoung organization: J. Mike Walker’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77845, USA – sequence: 3 givenname: Silabrata surname: Pahari fullname: Pahari, Silabrata organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA – sequence: 4 givenname: Choongho surname: Yu fullname: Yu, Choongho organization: J. Mike Walker’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77845, USA – sequence: 5 givenname: Faisal surname: Khan fullname: Khan, Faisal organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA – sequence: 6 givenname: Joseph Sang-Il orcidid: 0000-0002-7903-5681 surname: Kwon fullname: Kwon, Joseph Sang-Il email: kwonx075@tamu.edu organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA |
| BookMark | eNp9kLtOwzAUhj0UiRZ4ALa8QIKdxIktJlRxkyp1AVbrxJdyotSpbIPUtyehTAydznD-71y-FVn40VtCbhktGGXNXV9o2xclLeuCcU4ZX5AlqwTPhazbS7KKsaeUNpLJJfnYHhLuYcj0J4Qd-l02umyDOY4-6yAlG9DG7CvOnXiAEG2GxvqEDjWkOTXlp_0DegshM0cPe9Txmlw4GKK9-atX5P3p8W39km-2z6_rh02uS9mmXDDRVaKRnNeOdwYoM6ysGqAgKsolVByga4yU0BkhXG1At510rqzbyjVQVlekPc3VYYwxWKc0pt-7UgAcFKNqVqJ6NSlRsxJ1UjKR7B95CJOIcDzL3J8YO730jTaoqNF6bQ0Gq5MyI56hfwCGIn7A |
| CitedBy_id | crossref_primary_10_1016_j_etran_2025_100426 crossref_primary_10_1016_j_etran_2025_100420 crossref_primary_10_1016_j_ijoes_2025_100946 crossref_primary_10_1007_s10846_025_02274_9 |
| Cites_doi | 10.1016/j.jpowsour.2019.226835 10.1007/s11071-022-08178-9 10.1109/ACCESS.2018.2886528 10.1016/j.compchemeng.2019.106696 10.1016/j.energy.2024.131114 10.1149/1945-7111/ac8ee2 10.1016/j.est.2024.110580 10.1016/j.cej.2022.135643 10.1109/TVT.2017.2676044 10.1103/PhysRevE.104.015206 10.1016/j.est.2020.101933 10.1109/TII.2019.2935326 10.1021/acs.jpca.2c06513 10.1016/j.cej.2022.134768 10.1109/TMECH.2018.2798930 10.1016/j.ress.2023.109654 10.1016/j.jclepro.2020.123456 10.1371/journal.pcbi.1008472 10.1016/j.compchemeng.2023.108275 10.1016/j.cherd.2023.04.028 10.1109/ACCESS.2020.3023625 10.1109/TII.2019.2951060 10.1002/aic.17946 10.1149/2.018408jes 10.3390/en10050709 10.1016/j.cherd.2022.01.041 10.1016/j.apenergy.2021.118244 10.1016/j.jprocont.2021.10.006 10.1016/j.ifacol.2016.10.249 10.1016/j.jpowsour.2019.227015 10.1021/acs.iecr.3c02624 10.3390/batteries8020018 10.1016/j.compchemeng.2023.108339 10.1080/00401706.1970.10488634 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TEC.2021.3065983 10.1109/TIM.2021.3111009 10.1149/1.2221597 10.1149/1945-7111/abd607 10.1016/j.est.2024.112365 10.3390/s23094404 10.1073/pnas.1517384113 10.1016/j.renene.2016.06.009 10.1016/j.procs.2022.12.383 10.1017/jfm.2017.823 10.1016/j.ress.2022.108920 10.1016/j.ensm.2022.12.034 10.1115/1.4064026 10.1016/j.compchemeng.2021.107378 10.1016/j.ensm.2022.12.040 10.1002/aic.16980 10.1016/j.ifacol.2023.10.1546 10.1109/TII.2020.2983176 10.1016/j.psep.2024.03.095 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2024.155015 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_cej_2024_155015 S1385894724065069 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACLOT ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- ~HD 9DU AAYXX ABXDB AFFNX ASPBG AVWKF AZFZN BKOMP CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- SEW ZY4 |
| ID | FETCH-LOGICAL-c297t-818b3869554f5bda01d1236a0a83059a35aab6d99abd88f4dac7b9ff2473f6a23 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001340311200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1385-8947 |
| IngestDate | Tue Nov 18 22:26:02 EST 2025 Sat Nov 29 06:59:04 EST 2025 Wed Dec 10 14:23:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Charge time Sparse modeling Li-ion battery Charge optimization Battery degradation Remaining lifetime Mixed-integer quadratic programming (MIQP) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-818b3869554f5bda01d1236a0a83059a35aab6d99abd88f4dac7b9ff2473f6a23 |
| ORCID | 0000-0002-7903-5681 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2024_155015 crossref_primary_10_1016_j_cej_2024_155015 elsevier_sciencedirect_doi_10_1016_j_cej_2024_155015 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 2024-11-00 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Song, Wu, Shen, Boulet (b53) 2023; 217 Catelani, Ciani, Fantacci, Patrizi, Picano (b51) 2021; 70 Sitapure, Kwon (b55) 2023; 194 Champion, Zheng, Aravkin, Brunton, Kutz (b37) 2020; 8 Lee, Jayaraman, Kwon (b42) 2020; 16 Song, Choe (b19) 2019; 436 Tian, Fang, Wang (b2) 2020; 17 Hwang, Sitapure, Moon, Lee, Hwang, Kwon (b18) 2022 Bertsimas, King, Mazumder (b41) 2016 Bhadriraju, Kwon, Khan (b49) 2021; 107 Sarkar, Amin, El-Halwagi, Khan (b13) 2024; 186 Weng, Zhou (b44) 2022; 126 Dong, Feng, Lou, Zhang, Wei (b7) 2023 Pozzi, Barbierato, Toti (b25) 2023; 23 Brunton, Proctor, Kutz (b26) 2016; 113 Bhadriraju, Kwon, Khan (b30) 2023; 175 Zou, Manzie, Nešić (b31) 2018; 23 Berliner, Jiang, Cogswell, Bazant, Braatz (b3) 2022 Faria, Velho, Calado, Pombo, Fermeiro, Mariano (b24) 2022; 8 Rodriguez, Ahmadzadeh, Wang, Soudbakhsh (b28) 2024; 146 Li, Vilathgamuwa, Wikner, Wei, Zhang, Thiringer, Wik, Zou (b21) 2021; 36 Bangi, Kwon (b43) 2020; 134 Li (b1) 2017; 100 Jiang, Berliner, Lai, Asinger, Zhao, Herring, Bazant, Braatz (b22) 2022; 307 Tian, Wang, Chen (b15) 2021; 278 Sitapure, Sang-Il Kwon (b56) 2023; 62 Hoerl, Kennard (b34) 1970; 12 Brunton, Proctor, Kutz (b32) 2016; 49 Shah, Sheriff, Bangi, Kravaris, Kwon, Botre, Hirota (b45) 2022; 441 Bertsimas, Gurnee (b40) 2023; 111 Yin, Bi, Hu, Choe (b20) 2021; 167 Zheng, Askham, Brunton, Kutz, Aravkin (b35) 2018; 7 Luo, Han, Zhang, Ruan (b10) 2024; 93 Yu, Huang, Xu, Yan, Rong, Sun (b9) 2024; 82 Bhadriraju, Bangi, Narasingam, Kwon (b29) 2020 Ahmadzadeh, Wang, Soudbakhsh (b27) 2023; 56 Gao, Zhang, Guo, Zhu, Wiedemann, Wang, Cao (b17) 2019; 16 Xu, Wang, Zhao, Wang (b58) 2019; 438 Bangi, Kao, Kwon (b46) 2022; 179 Duquesnoy, Liu, Dominguez, Kumar, Ayerbe, Franco (b23) 2023; 56 Wei, Yang, Li, He, Li, Sauer (b6) 2023; 56 Northrop, Suthar, Ramadesigan, Santhanagopalan, Braatz, Subramanian (b14) 2014; 161 Kaptanoglu, Morgan, Hansen, Brunton (b39) 2021; 104 Wang, Fan, Jin, Takyi-Aninakwa, Fernandez (b52) 2023; 230 Bhadriraju, Kwon, Khan (b50) 2021 Chen, Liu, Wang, Luo, Yang (b8) 2021; 33 Gomez, Wang, Chou (b54) 2024; 296 Doyle, Fuller, Newman (b11) 1993; 140 Gholamizadeh, Zarei, Yazdi, Ramezanifar, Aliabadi (b48) 2024; 241 Sarkar, Halim, El-Halwagi, Khan (b12) 2022; 169 Sitapure, Kwon (b57) 2023; 177 Ouyang, Wang, Liu, Xu, Li (b5) 2019; 16 Perez, Hu, Dey, Moura (b16) 2017; 66 Loiseau, Brunton (b36) 2018; 838 Tibshirani (b33) 1996; 58 Shah, Sheriff, Bangi, Kravaris, Kwon, Botre, Hirota (b47) 2023; 69 Sarić, Sarić, Transtrum, Stanković (b38) 2020; 36 Min, Sun, Li, Guo, Yu, Zhu, Zhao (b4) 2017; 10 Tian (10.1016/j.cej.2024.155015_b2) 2020; 17 Sarić (10.1016/j.cej.2024.155015_b38) 2020; 36 Brunton (10.1016/j.cej.2024.155015_b32) 2016; 49 Lee (10.1016/j.cej.2024.155015_b42) 2020; 16 Gholamizadeh (10.1016/j.cej.2024.155015_b48) 2024; 241 Bangi (10.1016/j.cej.2024.155015_b46) 2022; 179 Li (10.1016/j.cej.2024.155015_b1) 2017; 100 Bhadriraju (10.1016/j.cej.2024.155015_b29) 2020 Champion (10.1016/j.cej.2024.155015_b37) 2020; 8 Song (10.1016/j.cej.2024.155015_b53) 2023; 217 Northrop (10.1016/j.cej.2024.155015_b14) 2014; 161 Hwang (10.1016/j.cej.2024.155015_b18) 2022 Kaptanoglu (10.1016/j.cej.2024.155015_b39) 2021; 104 Ahmadzadeh (10.1016/j.cej.2024.155015_b27) 2023; 56 Gao (10.1016/j.cej.2024.155015_b17) 2019; 16 Loiseau (10.1016/j.cej.2024.155015_b36) 2018; 838 Sitapure (10.1016/j.cej.2024.155015_b55) 2023; 194 Duquesnoy (10.1016/j.cej.2024.155015_b23) 2023; 56 Gomez (10.1016/j.cej.2024.155015_b54) 2024; 296 Shah (10.1016/j.cej.2024.155015_b47) 2023; 69 Chen (10.1016/j.cej.2024.155015_b8) 2021; 33 Yu (10.1016/j.cej.2024.155015_b9) 2024; 82 Sitapure (10.1016/j.cej.2024.155015_b56) 2023; 62 Xu (10.1016/j.cej.2024.155015_b58) 2019; 438 Rodriguez (10.1016/j.cej.2024.155015_b28) 2024; 146 Weng (10.1016/j.cej.2024.155015_b44) 2022; 126 Berliner (10.1016/j.cej.2024.155015_b3) 2022 Ouyang (10.1016/j.cej.2024.155015_b5) 2019; 16 Perez (10.1016/j.cej.2024.155015_b16) 2017; 66 Zheng (10.1016/j.cej.2024.155015_b35) 2018; 7 Bhadriraju (10.1016/j.cej.2024.155015_b49) 2021; 107 Sitapure (10.1016/j.cej.2024.155015_b57) 2023; 177 Faria (10.1016/j.cej.2024.155015_b24) 2022; 8 Shah (10.1016/j.cej.2024.155015_b45) 2022; 441 Wang (10.1016/j.cej.2024.155015_b52) 2023; 230 Wei (10.1016/j.cej.2024.155015_b6) 2023; 56 Brunton (10.1016/j.cej.2024.155015_b26) 2016; 113 Tian (10.1016/j.cej.2024.155015_b15) 2021; 278 Doyle (10.1016/j.cej.2024.155015_b11) 1993; 140 Yin (10.1016/j.cej.2024.155015_b20) 2021; 167 Li (10.1016/j.cej.2024.155015_b21) 2021; 36 Sarkar (10.1016/j.cej.2024.155015_b12) 2022; 169 Bertsimas (10.1016/j.cej.2024.155015_b40) 2023; 111 Song (10.1016/j.cej.2024.155015_b19) 2019; 436 Pozzi (10.1016/j.cej.2024.155015_b25) 2023; 23 Sarkar (10.1016/j.cej.2024.155015_b13) 2024; 186 Min (10.1016/j.cej.2024.155015_b4) 2017; 10 Jiang (10.1016/j.cej.2024.155015_b22) 2022; 307 Luo (10.1016/j.cej.2024.155015_b10) 2024; 93 Zou (10.1016/j.cej.2024.155015_b31) 2018; 23 Dong (10.1016/j.cej.2024.155015_b7) 2023 Bertsimas (10.1016/j.cej.2024.155015_b41) 2016 Hoerl (10.1016/j.cej.2024.155015_b34) 1970; 12 Bangi (10.1016/j.cej.2024.155015_b43) 2020; 134 Catelani (10.1016/j.cej.2024.155015_b51) 2021; 70 Bhadriraju (10.1016/j.cej.2024.155015_b50) 2021 Bhadriraju (10.1016/j.cej.2024.155015_b30) 2023; 175 Tibshirani (10.1016/j.cej.2024.155015_b33) 1996; 58 |
| References_xml | – year: 2021 ident: b50 article-title: Risk-based fault prediction of chemical processes using operable adaptive sparse identification of systems (OASIS) publication-title: Comput. Chem. Eng. – volume: 217 start-page: 1830 year: 2023 end-page: 1838 ident: b53 article-title: A remaining useful life prediction method for lithium-ion battery based on temporal transformer network publication-title: Procedia Comput. Sci. – volume: 104 year: 2021 ident: b39 article-title: Physics-constrained, low-dimensional models for magnetohydrodynamics: First-principles and data-driven approaches publication-title: Phys. Rev. E – volume: 23 start-page: 4404 year: 2023 ident: b25 article-title: Optimizing battery charging using neural networks in the presence of unknown states and parameters publication-title: Sensors – volume: 70 start-page: 1 year: 2021 end-page: 11 ident: b51 article-title: Remaining useful life estimation for prognostics of lithium-ion batteries based on recurrent neural network publication-title: IEEE Trans. Instrum. Meas. – volume: 126 start-page: 8534 year: 2022 end-page: 8543 ident: b44 article-title: Multiscale physics-informed neural networks for stiff chemical kinetics publication-title: J. Phys. Chem. A – volume: 436 year: 2019 ident: b19 article-title: Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery publication-title: J. Power Sources – volume: 17 start-page: 1318 year: 2020 end-page: 1330 ident: b2 article-title: Real-time optimal lithium-ion battery charging based on explicit model predictive control publication-title: IEEE Trans. Ind. Inform. – volume: 230 year: 2023 ident: b52 article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries publication-title: Reliab. Eng. Syst. Saf. – volume: 438 year: 2019 ident: b58 article-title: Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model publication-title: J. Power Sources – volume: 82 year: 2024 ident: b9 article-title: Optimal charging of lithium-ion batteries based on lithium precipitation suppression publication-title: J. Energy Storage – volume: 100 start-page: 44 year: 2017 end-page: 52 ident: b1 article-title: Li-ion dynamics and state of charge estimation publication-title: Renew. Energy – volume: 23 start-page: 947 year: 2018 end-page: 957 ident: b31 article-title: Model predictive control for lithium-ion battery optimal charging publication-title: IEEE/ASME Trans. Mechatronics – volume: 441 year: 2022 ident: b45 article-title: Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters publication-title: Chem. Eng. J. – start-page: 813 year: 2016 end-page: 852 ident: b41 article-title: Best subset selection via a modern optimization lens publication-title: Ann. Statist. – volume: 296 year: 2024 ident: b54 article-title: Li-ion battery capacity prediction using improved temporal fusion transformer model publication-title: Energy – volume: 175 year: 2023 ident: b30 article-title: An adaptive data-driven approach for two-timescale dynamics prediction and remaining useful life estimation of li-ion batteries publication-title: Comput. Chem. Eng. – volume: 49 start-page: 710 year: 2016 end-page: 715 ident: b32 article-title: Sparse identification of nonlinear dynamics with control (SINDYc). publication-title: IFAC-PapersOnLine – volume: 241 year: 2024 ident: b48 article-title: A hybrid model for dynamic analysis of domino effects in chemical process industries publication-title: Reliab. Eng. Syst. Saf. – volume: 56 start-page: 62 year: 2023 end-page: 75 ident: b6 article-title: Machine learning-based fast charging of lithium-ion battery by perceiving and regulating internal microscopic states publication-title: Energy Storage Mater. – volume: 36 start-page: 2390 year: 2020 end-page: 2402 ident: b38 article-title: Symbolic regression for data-driven dynamic model refinement in power systems publication-title: IEEE Trans. Power Syst. – volume: 134 year: 2020 ident: b43 article-title: Deep hybrid modeling of chemical process: application to hydraulic fracturing publication-title: Comput. Chem. Eng. – volume: 12 start-page: 55 year: 1970 end-page: 67 ident: b34 article-title: Ridge regression: Biased estimation for nonorthogonal problems. publication-title: Technometrics – volume: 107 start-page: 114 year: 2021 end-page: 126 ident: b49 article-title: OASIS-P: Operable adaptive sparse identification of systems for fault prognosis of chemical processes publication-title: J. Process Control – volume: 161 start-page: E3149 year: 2014 ident: b14 article-title: Efficient simulation and reformulation of lithium-ion battery models for enabling electric transportation publication-title: J. Electrochem. Soc. – year: 2022 ident: b18 article-title: Model predictive control of lithium-ion batteries: Development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms publication-title: Chem. Eng. J. – volume: 146 year: 2024 ident: b28 article-title: Data-driven discovery of lithium-ion battery state of charge dynamics publication-title: J. Dyn. Syst. Meas. Control – year: 2023 ident: b7 article-title: Data-driven fast charging optimization for lithium-ion battery using Bayesian optimization with fast convergence publication-title: IEEE Trans. Transp. Electrif. – volume: 36 start-page: 3208 year: 2021 end-page: 3220 ident: b21 article-title: Electrochemical model-based fast charging: Physical constraint-triggered PI control publication-title: IEEE Trans. Energy Convers. – volume: 56 start-page: 3764 year: 2023 end-page: 3769 ident: b27 article-title: Sparse modeling of energy storage systems in presence of noise publication-title: IFAC-PapersOnLine – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b33 article-title: Regression shrinkage and selection via the lasso. publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – start-page: 5265 year: 2022 end-page: 5270 ident: b3 article-title: Fast charging of lithium-ion batteries by mathematical reformulation as mixed continuous-discrete simulation publication-title: 2022 American Control Conference – year: 2020 ident: b29 article-title: Operable adaptive sparse identification of systems (OASIS): application to chemical processes publication-title: AIChE J. – volume: 838 start-page: 42 year: 2018 end-page: 67 ident: b36 article-title: Constrained sparse Galerkin regression. publication-title: J. Fluid Mech. – volume: 16 start-page: 3430 year: 2019 end-page: 3438 ident: b5 article-title: Optimal charging control for lithium-ion battery packs: A distributed average tracking approach publication-title: IEEE Trans. Ind. Inform. – volume: 93 year: 2024 ident: b10 article-title: A digital twin for advancing battery fast charging based on a Bayesian optimization-based method publication-title: J. Energy Storage – volume: 113 start-page: 3932 year: 2016 end-page: 3937 ident: b26 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. – volume: 179 start-page: 415 year: 2022 end-page: 423 ident: b46 article-title: Physics-informed neural networks for hybrid modeling of lab-scale batch fermentation for publication-title: Chem. Eng. Res. Des. – volume: 33 year: 2021 ident: b8 article-title: Searching for the optimal current pattern based on grey wolf optimizer and equivalent circuit model of li-ion batteries publication-title: J. Energy Storage – volume: 7 start-page: 1404 year: 2018 end-page: 1423 ident: b35 article-title: A unified framework for sparse relaxed regularized regression: Sr3 publication-title: IEEE Access – volume: 111 start-page: 6585 year: 2023 end-page: 6604 ident: b40 article-title: Learning sparse nonlinear dynamics via mixed-integer optimization publication-title: Nonlinear Dynam. – volume: 69 year: 2023 ident: b47 article-title: Multi-rate observer design and optimal control to maximize productivity of an industry-scale fermentation process publication-title: AIChE J. – volume: 177 year: 2023 ident: b57 article-title: CrystalGPT: Enhancing system-to-system transferability in crystallization prediction and control using time-series-transformers publication-title: Comput. Chem. Eng. – volume: 186 start-page: 118 year: 2024 end-page: 133 ident: b13 article-title: Thermal behavior of LiFePO4 battery at faster C-rates and lower ambient temperatures publication-title: Process Safety Environ. Protect. – volume: 8 start-page: 169259 year: 2020 end-page: 169271 ident: b37 article-title: A unified sparse optimization framework to learn parsimonious physics-informed models from data publication-title: IEEE Access – volume: 56 start-page: 50 year: 2023 end-page: 61 ident: b23 article-title: Machine learning-assisted multi-objective optimization of battery manufacturing from synthetic data generated by physics-based simulations publication-title: Energy Storage Mater. – volume: 66 start-page: 7761 year: 2017 end-page: 7770 ident: b16 article-title: Optimal charging of li-ion batteries with coupled electro-thermal-aging dynamics publication-title: IEEE Trans. Veh. Technol. – volume: 167 year: 2021 ident: b20 article-title: Optimal fast charging method for a large-format lithium-ion battery based on nonlinear model predictive control and reduced order electrochemical model publication-title: J. Electrochem. Soc. – volume: 307 year: 2022 ident: b22 article-title: Fast charging design for lithium-ion batteries via Bayesian optimization publication-title: Appl. Energy – volume: 62 start-page: 21278 year: 2023 end-page: 21291 ident: b56 article-title: Introducing hybrid modeling with time-series-transformers: A comparative study of series and parallel approach in batch crystallization publication-title: Ind. Eng. Chem. Res. – volume: 169 year: 2022 ident: b12 article-title: Electrochemical models: Methods and applications for safer lithium-ion battery operation publication-title: J. Electrochem. Soc. – volume: 8 start-page: 18 year: 2022 ident: b24 article-title: A new charging algorithm for li-ion battery packs based on artificial neural networks publication-title: Batteries – volume: 194 start-page: 461 year: 2023 end-page: 477 ident: b55 article-title: Exploring the potential of time-series transformers for process modeling and control in chemical systems: an inevitable paradigm shift? publication-title: Chem. Eng. Res. Des. – volume: 16 start-page: 3417 year: 2019 end-page: 3429 ident: b17 article-title: Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery publication-title: IEEE Trans. Ind. Informat. – volume: 10 start-page: 709 year: 2017 ident: b4 article-title: Research on the optimal charging strategy for li-ion batteries based on multi-objective optimization publication-title: Energies – volume: 16 year: 2020 ident: b42 article-title: Development of a hybrid model for a partially known intracellular signaling pathway through correction term estimation and neural network modeling publication-title: PLoS Comput. Biol. – volume: 140 start-page: 1526 year: 1993 ident: b11 article-title: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell publication-title: J. Electrochem. Soc. – volume: 278 year: 2021 ident: b15 article-title: An improved single particle model for lithium-ion batteries based on main stress factor compensation publication-title: J. Clean. Prod. – volume: 436 year: 2019 ident: 10.1016/j.cej.2024.155015_b19 article-title: Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226835 – volume: 111 start-page: 6585 issue: 7 year: 2023 ident: 10.1016/j.cej.2024.155015_b40 article-title: Learning sparse nonlinear dynamics via mixed-integer optimization publication-title: Nonlinear Dynam. doi: 10.1007/s11071-022-08178-9 – volume: 7 start-page: 1404 year: 2018 ident: 10.1016/j.cej.2024.155015_b35 article-title: A unified framework for sparse relaxed regularized regression: Sr3 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886528 – volume: 134 year: 2020 ident: 10.1016/j.cej.2024.155015_b43 article-title: Deep hybrid modeling of chemical process: application to hydraulic fracturing publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106696 – volume: 296 year: 2024 ident: 10.1016/j.cej.2024.155015_b54 article-title: Li-ion battery capacity prediction using improved temporal fusion transformer model publication-title: Energy doi: 10.1016/j.energy.2024.131114 – start-page: 5265 year: 2022 ident: 10.1016/j.cej.2024.155015_b3 article-title: Fast charging of lithium-ion batteries by mathematical reformulation as mixed continuous-discrete simulation – start-page: 813 year: 2016 ident: 10.1016/j.cej.2024.155015_b41 article-title: Best subset selection via a modern optimization lens publication-title: Ann. Statist. – volume: 169 issue: 10 year: 2022 ident: 10.1016/j.cej.2024.155015_b12 article-title: Electrochemical models: Methods and applications for safer lithium-ion battery operation publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac8ee2 – volume: 82 year: 2024 ident: 10.1016/j.cej.2024.155015_b9 article-title: Optimal charging of lithium-ion batteries based on lithium precipitation suppression publication-title: J. Energy Storage doi: 10.1016/j.est.2024.110580 – volume: 441 year: 2022 ident: 10.1016/j.cej.2024.155015_b45 article-title: Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135643 – volume: 66 start-page: 7761 issue: 9 year: 2017 ident: 10.1016/j.cej.2024.155015_b16 article-title: Optimal charging of li-ion batteries with coupled electro-thermal-aging dynamics publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2676044 – volume: 104 issue: 1 year: 2021 ident: 10.1016/j.cej.2024.155015_b39 article-title: Physics-constrained, low-dimensional models for magnetohydrodynamics: First-principles and data-driven approaches publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.104.015206 – volume: 33 year: 2021 ident: 10.1016/j.cej.2024.155015_b8 article-title: Searching for the optimal current pattern based on grey wolf optimizer and equivalent circuit model of li-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101933 – volume: 16 start-page: 3417 issue: 5 year: 2019 ident: 10.1016/j.cej.2024.155015_b17 article-title: Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery publication-title: IEEE Trans. Ind. Informat. doi: 10.1109/TII.2019.2935326 – volume: 126 start-page: 8534 issue: 45 year: 2022 ident: 10.1016/j.cej.2024.155015_b44 article-title: Multiscale physics-informed neural networks for stiff chemical kinetics publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.2c06513 – year: 2022 ident: 10.1016/j.cej.2024.155015_b18 article-title: Model predictive control of lithium-ion batteries: Development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134768 – volume: 23 start-page: 947 issue: 2 year: 2018 ident: 10.1016/j.cej.2024.155015_b31 article-title: Model predictive control for lithium-ion battery optimal charging publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2018.2798930 – year: 2023 ident: 10.1016/j.cej.2024.155015_b7 article-title: Data-driven fast charging optimization for lithium-ion battery using Bayesian optimization with fast convergence publication-title: IEEE Trans. Transp. Electrif. – volume: 241 year: 2024 ident: 10.1016/j.cej.2024.155015_b48 article-title: A hybrid model for dynamic analysis of domino effects in chemical process industries publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109654 – volume: 278 year: 2021 ident: 10.1016/j.cej.2024.155015_b15 article-title: An improved single particle model for lithium-ion batteries based on main stress factor compensation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123456 – volume: 16 issue: 12 year: 2020 ident: 10.1016/j.cej.2024.155015_b42 article-title: Development of a hybrid model for a partially known intracellular signaling pathway through correction term estimation and neural network modeling publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008472 – volume: 175 year: 2023 ident: 10.1016/j.cej.2024.155015_b30 article-title: An adaptive data-driven approach for two-timescale dynamics prediction and remaining useful life estimation of li-ion batteries publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108275 – volume: 194 start-page: 461 year: 2023 ident: 10.1016/j.cej.2024.155015_b55 article-title: Exploring the potential of time-series transformers for process modeling and control in chemical systems: an inevitable paradigm shift? publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2023.04.028 – volume: 8 start-page: 169259 year: 2020 ident: 10.1016/j.cej.2024.155015_b37 article-title: A unified sparse optimization framework to learn parsimonious physics-informed models from data publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023625 – volume: 16 start-page: 3430 issue: 5 year: 2019 ident: 10.1016/j.cej.2024.155015_b5 article-title: Optimal charging control for lithium-ion battery packs: A distributed average tracking approach publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2951060 – volume: 69 issue: 2 year: 2023 ident: 10.1016/j.cej.2024.155015_b47 article-title: Multi-rate observer design and optimal control to maximize productivity of an industry-scale fermentation process publication-title: AIChE J. doi: 10.1002/aic.17946 – volume: 161 start-page: E3149 issue: 8 year: 2014 ident: 10.1016/j.cej.2024.155015_b14 article-title: Efficient simulation and reformulation of lithium-ion battery models for enabling electric transportation publication-title: J. Electrochem. Soc. doi: 10.1149/2.018408jes – volume: 10 start-page: 709 issue: 5 year: 2017 ident: 10.1016/j.cej.2024.155015_b4 article-title: Research on the optimal charging strategy for li-ion batteries based on multi-objective optimization publication-title: Energies doi: 10.3390/en10050709 – volume: 36 start-page: 2390 issue: 3 year: 2020 ident: 10.1016/j.cej.2024.155015_b38 article-title: Symbolic regression for data-driven dynamic model refinement in power systems publication-title: IEEE Trans. Power Syst. – volume: 179 start-page: 415 year: 2022 ident: 10.1016/j.cej.2024.155015_b46 article-title: Physics-informed neural networks for hybrid modeling of lab-scale batch fermentation for β-carotene production using saccharomyces cerevisiae publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2022.01.041 – volume: 307 year: 2022 ident: 10.1016/j.cej.2024.155015_b22 article-title: Fast charging design for lithium-ion batteries via Bayesian optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118244 – volume: 107 start-page: 114 year: 2021 ident: 10.1016/j.cej.2024.155015_b49 article-title: OASIS-P: Operable adaptive sparse identification of systems for fault prognosis of chemical processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.10.006 – volume: 49 start-page: 710 issue: 18 year: 2016 ident: 10.1016/j.cej.2024.155015_b32 article-title: Sparse identification of nonlinear dynamics with control (SINDYc). publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.10.249 – volume: 438 year: 2019 ident: 10.1016/j.cej.2024.155015_b58 article-title: Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227015 – volume: 62 start-page: 21278 issue: 49 year: 2023 ident: 10.1016/j.cej.2024.155015_b56 article-title: Introducing hybrid modeling with time-series-transformers: A comparative study of series and parallel approach in batch crystallization publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c02624 – volume: 8 start-page: 18 issue: 2 year: 2022 ident: 10.1016/j.cej.2024.155015_b24 article-title: A new charging algorithm for li-ion battery packs based on artificial neural networks publication-title: Batteries doi: 10.3390/batteries8020018 – volume: 177 year: 2023 ident: 10.1016/j.cej.2024.155015_b57 article-title: CrystalGPT: Enhancing system-to-system transferability in crystallization prediction and control using time-series-transformers publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108339 – volume: 12 start-page: 55 issue: 1 year: 1970 ident: 10.1016/j.cej.2024.155015_b34 article-title: Ridge regression: Biased estimation for nonorthogonal problems. publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.cej.2024.155015_b33 article-title: Regression shrinkage and selection via the lasso. publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 36 start-page: 3208 issue: 4 year: 2021 ident: 10.1016/j.cej.2024.155015_b21 article-title: Electrochemical model-based fast charging: Physical constraint-triggered PI control publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2021.3065983 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.cej.2024.155015_b51 article-title: Remaining useful life estimation for prognostics of lithium-ion batteries based on recurrent neural network publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3111009 – volume: 140 start-page: 1526 issue: 6 year: 1993 ident: 10.1016/j.cej.2024.155015_b11 article-title: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.2221597 – volume: 167 issue: 16 year: 2021 ident: 10.1016/j.cej.2024.155015_b20 article-title: Optimal fast charging method for a large-format lithium-ion battery based on nonlinear model predictive control and reduced order electrochemical model publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abd607 – volume: 93 year: 2024 ident: 10.1016/j.cej.2024.155015_b10 article-title: A digital twin for advancing battery fast charging based on a Bayesian optimization-based method publication-title: J. Energy Storage doi: 10.1016/j.est.2024.112365 – volume: 23 start-page: 4404 issue: 9 year: 2023 ident: 10.1016/j.cej.2024.155015_b25 article-title: Optimizing battery charging using neural networks in the presence of unknown states and parameters publication-title: Sensors doi: 10.3390/s23094404 – volume: 113 start-page: 3932 issue: 15 year: 2016 ident: 10.1016/j.cej.2024.155015_b26 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1517384113 – volume: 100 start-page: 44 year: 2017 ident: 10.1016/j.cej.2024.155015_b1 article-title: Li-ion dynamics and state of charge estimation publication-title: Renew. Energy doi: 10.1016/j.renene.2016.06.009 – volume: 217 start-page: 1830 year: 2023 ident: 10.1016/j.cej.2024.155015_b53 article-title: A remaining useful life prediction method for lithium-ion battery based on temporal transformer network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.12.383 – volume: 838 start-page: 42 year: 2018 ident: 10.1016/j.cej.2024.155015_b36 article-title: Constrained sparse Galerkin regression. publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.823 – volume: 230 year: 2023 ident: 10.1016/j.cej.2024.155015_b52 article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108920 – volume: 56 start-page: 62 year: 2023 ident: 10.1016/j.cej.2024.155015_b6 article-title: Machine learning-based fast charging of lithium-ion battery by perceiving and regulating internal microscopic states publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.12.034 – volume: 146 issue: 1 year: 2024 ident: 10.1016/j.cej.2024.155015_b28 article-title: Data-driven discovery of lithium-ion battery state of charge dynamics publication-title: J. Dyn. Syst. Meas. Control doi: 10.1115/1.4064026 – year: 2021 ident: 10.1016/j.cej.2024.155015_b50 article-title: Risk-based fault prediction of chemical processes using operable adaptive sparse identification of systems (OASIS) publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107378 – volume: 56 start-page: 50 year: 2023 ident: 10.1016/j.cej.2024.155015_b23 article-title: Machine learning-assisted multi-objective optimization of battery manufacturing from synthetic data generated by physics-based simulations publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.12.040 – year: 2020 ident: 10.1016/j.cej.2024.155015_b29 article-title: Operable adaptive sparse identification of systems (OASIS): application to chemical processes publication-title: AIChE J. doi: 10.1002/aic.16980 – volume: 56 start-page: 3764 issue: 2 year: 2023 ident: 10.1016/j.cej.2024.155015_b27 article-title: Sparse modeling of energy storage systems in presence of noise publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2023.10.1546 – volume: 17 start-page: 1318 issue: 2 year: 2020 ident: 10.1016/j.cej.2024.155015_b2 article-title: Real-time optimal lithium-ion battery charging based on explicit model predictive control publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.2983176 – volume: 186 start-page: 118 year: 2024 ident: 10.1016/j.cej.2024.155015_b13 article-title: Thermal behavior of LiFePO4 battery at faster C-rates and lower ambient temperatures publication-title: Process Safety Environ. Protect. doi: 10.1016/j.psep.2024.03.095 |
| SSID | ssj0006919 |
| Score | 2.4727654 |
| Snippet | Optimal charging of Li-ion batteries requires careful management of charge rates, as high rates can lead to accelerated degradation, while low rates... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 155015 |
| SubjectTerms | Battery degradation Charge optimization Charge time Li-ion battery Mixed-integer quadratic programming (MIQP) Remaining lifetime Sparse modeling |
| Title | Optimal charging of Li-ion batteries using sparse identification of nonlinear dynamics |
| URI | https://dx.doi.org/10.1016/j.cej.2024.155015 |
| Volume | 499 |
| WOSCitedRecordID | wos001340311200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006919 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKxwM8oPFLGzDkB56oUmWNE9uPAw0BQgOpA_UtchKbphrJlLZj8B_wX3MXO27oAAESL1EUxXbr-3I-n---I-SJSELG8sQEucx0wAw7DJBWLDAJfB5aK8F50Rab4CcnYjaT7waDb10uzMUZrypxeSnP_6uo4RkIG1Nn_0LcvlN4APcgdLiC2OH6R4J_C0rgE7J-IAeSi2l-UwYo5qwl04S98WjdughAmzRLPSoLFzLkzcfKEmioZlTYivXLvhHrSQb0hszQU1BgiRCFoT7WVTr9XK6-2oxi532QSc_78GyuiqZs1GLdAm2usMbzdpBQXX9BnbQ57YJ_1gYhTEvAcGOz61x5MRtCUNfVx3nd92hMmEvt8262K6k2rWaORBwIaek5O9XNbHGlK8uA9UgsxrlejHGEMW7EbNroFrv2FPvFbtGyicNEXiM7Ex5LMSQ7R6-OZ6_9sp7ItkqM_x3dEXkbLLg10M-NnJ7hcrpLbrkdBz2ySLlNBrq6Q272eCjvkg8OM7TDDK0NtZihHjO0xQy1mKE_Ygbf95ihHWbukfcvjk-fvwxcwY0gn0i-CsB4yyKRSDAxTZwVKjwskJxHhUrAsiBVFCuVJYWUKiuEMKxQOc-kMRPGI5OoSXSfDGEwvUeogY2oRo1v8Bw5N5nkysDyoWXBFVPxPgm7GUpzx0aPRVHO0i7scJHCpKY4qamd1H3y1Dc5t1Qsv3uZddOeOlvS2ogpYOTXzR78W7OH5MYGyI_IcNWs9QG5nl-symXz2CHpO74smWE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+charging+of+Li-ion+batteries+using+sparse+identification+of+nonlinear+dynamics&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Bhadriraju%2C+Bhavana&rft.au=Lee%2C+Jooyoung&rft.au=Pahari%2C+Silabrata&rft.au=Yu%2C+Choongho&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=499&rft_id=info:doi/10.1016%2Fj.cej.2024.155015&rft.externalDocID=S1385894724065069 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |