A Robust Pansharpening Algorithm Based on Convolutional Sparse Coding for Spatial Enhancement
Pansharpening (PS) is a prominent remote sensing image fusion technique. It yields high-resolution multispectral (HRMS) images, which are imperative for the applications, such as recognition and detection. The PS methods based on conventional sparse representation induce blurring effects and are una...
Uložené v:
| Vydané v: | IEEE journal of selected topics in applied earth observations and remote sensing Ročník 12; číslo 10; s. 4024 - 4037 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1939-1404, 2151-1535 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Pansharpening (PS) is a prominent remote sensing image fusion technique. It yields high-resolution multispectral (HRMS) images, which are imperative for the applications, such as recognition and detection. The PS methods based on conventional sparse representation induce blurring effects and are unable to preserve the essential spatial details in the fused outcome. In this article, to overcome these drawbacks, a robust fusion scheme is proposed based on convolutional sparse coding (CSC). The source images are decomposed into its constituent texture and cartoon components. The sparse coefficient maps are acquired from texture components by adapting CSC. Texture components are fused using activity level measurement, whereas averaging mechanism is used to fuse the cartoon components. The HRMS image is reconstructed by combining the fused components in proportion to the gradient information. Impact of number of filters on quality metrics estimation is analyzed. Comprehensive experiments are performed on the images acquired from distinct sensors. The proposed method is evaluated in terms of visual analysis and the quantitative metrics with reduced-scale and full-scale experiments. Extensive evaluations manifest the capability of the proposed method of maintaining the balanced tradeoff and retaining the desired spatial and spectral details. |
|---|---|
| AbstractList | Pansharpening (PS) is a prominent remote sensing image fusion technique. It yields high-resolution multispectral (HRMS) images, which are imperative for the applications, such as recognition and detection. The PS methods based on conventional sparse representation induce blurring effects and are unable to preserve the essential spatial details in the fused outcome. In this article, to overcome these drawbacks, a robust fusion scheme is proposed based on convolutional sparse coding (CSC). The source images are decomposed into its constituent texture and cartoon components. The sparse coefficient maps are acquired from texture components by adapting CSC. Texture components are fused using activity level measurement, whereas averaging mechanism is used to fuse the cartoon components. The HRMS image is reconstructed by combining the fused components in proportion to the gradient information. Impact of number of filters on quality metrics estimation is analyzed. Comprehensive experiments are performed on the images acquired from distinct sensors. The proposed method is evaluated in terms of visual analysis and the quantitative metrics with reduced-scale and full-scale experiments. Extensive evaluations manifest the capability of the proposed method of maintaining the balanced tradeoff and retaining the desired spatial and spectral details. |
| Author | Gogineni, Rajesh Chaturvedi, Ashvini |
| Author_xml | – sequence: 1 givenname: Rajesh orcidid: 0000-0001-5812-0038 surname: Gogineni fullname: Gogineni, Rajesh email: rgogineni9@gmail.com organization: Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, India – sequence: 2 givenname: Ashvini surname: Chaturvedi fullname: Chaturvedi, Ashvini email: ashvini@nitk.ac.in organization: Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, India |
| BookMark | eNqFkE1Lw0AQhhepYK3-Ai8Bz6n7kY-dYy1-UlBaPUrYJLNtSrpbdzeC_96EFg9ePAwD77zPMPOek5GxBgm5YnTKGIWb59XbbLmacspgyiFJJUtPyJizlMUsFemIjBkIiFlCkzNy7v2W0oznIMbkYxYtbdn5EL0q4zfK7dE0Zh3N2rV1TdjsolvlsY6siebWfNm2C401qo1We-U89mI92LV1gxKafnJnNspUuEMTLsipVq3Hy2OfkPf7u7f5Y7x4eXiazxZxxSEPsaQV5qWosKSqTirgKHImcw0aMAGRCyl1QjOoh2K61jLLK9BlxiQgK0FMyPVh797Zzw59KLa2c_2ZvuCCc5lBImXvgoOrctZ7h7qomqCGf4JTTVswWgxpFoc0iyHN4phmz4o_7N41O-W-_6GuDlSDiL-ElBIAuPgBW1KD9g |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1080_01431161_2023_2234095 crossref_primary_10_1109_TGRS_2023_3288073 crossref_primary_10_1080_19479832_2023_2283521 crossref_primary_10_1109_TGRS_2023_3329736 crossref_primary_10_1109_TGRS_2021_3131228 crossref_primary_10_1109_LGRS_2021_3059777 crossref_primary_10_1007_s12524_021_01440_4 crossref_primary_10_1007_s12524_024_01876_4 crossref_primary_10_1007_s12524_024_02006_w crossref_primary_10_1080_01431161_2020_1811913 crossref_primary_10_1007_s11600_022_00742_6 crossref_primary_10_1109_TGRS_2021_3089868 |
| Cites_doi | 10.1109/TIP.2010.2046605 10.1109/JSTARS.2018.2835573 10.1109/TGRS.2015.2504261 10.1109/JSTARS.2015.2507859 10.1016/S0924-2716(03)00013-3 10.1109/JSTARS.2014.2306332 10.1109/JSTARS.2017.2697445 10.1137/S1540345902416247 10.1109/JSTARS.2014.2310781 10.14358/PERS.72.5.591 10.1109/36.763274 10.1109/TGRS.2008.916211 10.1109/JSTARS.2015.2475754 10.1109/TIT.2011.2146090 10.1002/cpa.20124 10.1109/JPROC.2009.2037655 10.14358/PERS.74.2.193 10.1109/TGRS.2014.2361734 10.1109/JSTARS.2018.2849011 10.1016/j.inffus.2016.03.003 10.1109/TGRS.2012.2213604 10.1080/2150704X.2017.1415470 10.1109/LGRS.2014.2331291 10.1109/LGRS.2004.834804 10.1109/JSTARS.2014.2347072 10.1109/LGRS.2011.2177063 10.1109/TIP.2015.2495260 10.1109/ACCESS.2017.2735865 10.1016/j.ins.2017.09.010 10.1109/TGRS.2005.856106 10.1109/TGRS.2010.2067219 10.1109/LGRS.2005.845313 10.1109/CVPR.2013.57 10.1007/s10851-006-7801-6 10.1109/TSP.2006.881199 10.1109/TGRS.2012.2230332 10.1109/JSTARS.2013.2283236 10.1201/b18189 10.1109/TIM.2009.2026612 10.1109/LSP.2016.2618776 10.1109/JSTARS.2016.2546061 10.1109/LGRS.2013.2256875 10.1109/TGRS.2015.2497309 10.1109/TGRS.2006.881758 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/JSTARS.2019.2945815 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 4037 |
| ExternalDocumentID | 10_1109_JSTARS_2019_2945815 8889992 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG |
| ID | FETCH-LOGICAL-c297t-80ce7b3ceb0ad4c92e37187f9f9e4937388f4069d069d1fdf867c9fb6189e1b93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503182000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Jul 25 10:42:05 EDT 2025 Sat Nov 29 04:51:03 EST 2025 Tue Nov 18 21:29:46 EST 2025 Wed Aug 27 02:50:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-80ce7b3ceb0ad4c92e37187f9f9e4937388f4069d069d1fdf867c9fb6189e1b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5812-0038 |
| PQID | 2322869488 |
| PQPubID | 75722 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_8889992 crossref_citationtrail_10_1109_JSTARS_2019_2945815 proquest_journals_2322869488 crossref_primary_10_1109_JSTARS_2019_2945815 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 wald (ref46) 1997; 63 ref17 ref16 ref19 ref18 meyer (ref39) 2001; 22 wohlberg (ref49) 2016 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 carper (ref3) 1990; 56 ref9 ref4 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 laben (ref6) 2000 ref29 |
| References_xml | – ident: ref34 doi: 10.1109/TIP.2010.2046605 – ident: ref32 doi: 10.1109/JSTARS.2018.2835573 – volume: 22 year: 2001 ident: ref39 publication-title: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations The Fifteenth Dean Jacqueline B Lewis Memorial Lectures – ident: ref23 doi: 10.1109/TGRS.2015.2504261 – ident: ref30 doi: 10.1109/JSTARS.2015.2507859 – volume: 63 start-page: 691 year: 1997 ident: ref46 article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images publication-title: Photogramm Eng Remote Sens – ident: ref7 doi: 10.1016/S0924-2716(03)00013-3 – ident: ref12 doi: 10.1109/JSTARS.2014.2306332 – ident: ref15 doi: 10.1109/JSTARS.2017.2697445 – ident: ref41 doi: 10.1137/S1540345902416247 – year: 2000 ident: ref6 article-title: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening – ident: ref26 doi: 10.1109/JSTARS.2014.2310781 – ident: ref13 doi: 10.14358/PERS.72.5.591 – ident: ref9 doi: 10.1109/36.763274 – ident: ref5 doi: 10.1109/TGRS.2008.916211 – ident: ref31 doi: 10.1109/JSTARS.2015.2475754 – ident: ref36 doi: 10.1109/TIT.2011.2146090 – ident: ref16 doi: 10.1002/cpa.20124 – ident: ref17 doi: 10.1109/JPROC.2009.2037655 – ident: ref47 doi: 10.14358/PERS.74.2.193 – ident: ref1 doi: 10.1109/TGRS.2014.2361734 – ident: ref29 doi: 10.1109/JSTARS.2018.2849011 – ident: ref2 doi: 10.1016/j.inffus.2016.03.003 – ident: ref22 doi: 10.1109/TGRS.2012.2213604 – ident: ref35 doi: 10.1080/2150704X.2017.1415470 – ident: ref28 doi: 10.1109/LGRS.2014.2331291 – ident: ref4 doi: 10.1109/LGRS.2004.834804 – ident: ref24 doi: 10.1109/JSTARS.2014.2347072 – ident: ref19 doi: 10.1109/LGRS.2011.2177063 – volume: 56 start-page: 457 year: 1990 ident: ref3 article-title: The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multi-spectral image data publication-title: Photogramm Eng Remote Sens – ident: ref33 doi: 10.1109/TIP.2015.2495260 – ident: ref42 doi: 10.1109/ACCESS.2017.2735865 – ident: ref45 doi: 10.1016/j.ins.2017.09.010 – ident: ref10 doi: 10.1109/TGRS.2005.856106 – ident: ref18 doi: 10.1109/TGRS.2010.2067219 – ident: ref11 doi: 10.1109/LGRS.2005.845313 – ident: ref37 doi: 10.1109/CVPR.2013.57 – ident: ref40 doi: 10.1007/s10851-006-7801-6 – ident: ref48 doi: 10.1109/TSP.2006.881199 – ident: ref20 doi: 10.1109/TGRS.2012.2230332 – ident: ref25 doi: 10.1109/JSTARS.2013.2283236 – ident: ref43 doi: 10.1201/b18189 – ident: ref44 doi: 10.1109/TIM.2009.2026612 – ident: ref38 doi: 10.1109/LSP.2016.2618776 – ident: ref14 doi: 10.1109/JSTARS.2016.2546061 – ident: ref21 doi: 10.1109/LGRS.2013.2256875 – ident: ref27 doi: 10.1109/TGRS.2015.2497309 – ident: ref8 doi: 10.1109/TGRS.2006.881758 – year: 2016 ident: ref49 article-title: Sparse optimization research code (SPORCO) |
| SSID | ssj0062793 |
| Score | 2.3065574 |
| Snippet | Pansharpening (PS) is a prominent remote sensing image fusion technique. It yields high-resolution multispectral (HRMS) images, which are imperative for the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4024 |
| SubjectTerms | Algorithms Blurring Cartoon plus texture (CPT) decomposition Components Computer vision Convolutional codes convolutional sparse coding (CSC) Dictionaries Distortion Evaluation fusion models gradient strength Image acquisition Image coding Image detection Image enhancement Image processing Image reconstruction Image resolution Object recognition Pansharpening pansharpening (PS) Remote sensing sparse representation (SR) Texture |
| Title | A Robust Pansharpening Algorithm Based on Convolutional Sparse Coding for Spatial Enhancement |
| URI | https://ieeexplore.ieee.org/document/8889992 https://www.proquest.com/docview/2322869488 |
| Volume | 12 |
| WOSCitedRecordID | wos000503182000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qCl58i-uLHDxa3aS1yRxX8XES8QFepNhk6gprK7tdwX_vTNpdBEXwUCh5lJCZzjdfHjNCHBTKeCSCE6HSRFAwsVGexipSgKC9z5WxLiSbMNfX9vERbmbE4fQuDCKGw2d4xK9hL99XbsxLZcfE1sifIYM7a0za3NWaWN1UmxBgl_wRiDhkTBthSHXhmFS8d3vHx7jgSENyYjkH7jcUCmlVftjiADAXy_8b2opYah1J2WskvypmsFwTC5chUe_nunjqydsqH49qeUNg1OddFl4Bkb3BSzV8rftv8pTwy8uqlGdV-dEqIH3w7p2oLlIhg5okl5ZLyAwM5HnZZxXhgWyIh4vz-7OrqE2lEDkNpiYccmjy2GHeffaJA40xgZIpoABMgKMb2YLvwHp-VOELmxoHRZ4qC6hyiDfFXFmVuCWk9TnVKhd3kdHfWa08kcRnWxC1wyTuCD2Z2sy1ccY53cUgC3yjC1kjj4zlkbXy6IjDaaf3JszG383XWQTTpu3sd8TuRIZZ-yuOMnIZtU2BDNX27712xGJzCITXVXbFXD0c456Ydx_162i4H7TsC0EBzto |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_EttSX2taWXmvtPvTR6O0mJjuPp_iF9hC14EsJZnfSE66J3OWE_ved2ds7hEqhD4Gw2U2Wncn8ZvZjfgBfa1144gAnIW04QKHMJlWe6kQjofG-0oV1gWyiGA7tzQ1erMD28iwMEYXNZ7Qjt2Et37duJlNluxytsT_DBveZMGfF01oLu5ubIqTYZY8EE0kaE3MM6T7uspIPLq9kIxfuGMz2rLDgPsKhQKzylzUOEHO0_n-dew2voiupBnPZv4EVat7Ci-NA1ft7A34M1GVbzaadumA4Gsk6i8yBqMH4Zzu560a_1D4jmFdtow7a5iGqIL_w6p6DXeJCgTXFTq2UsCEYq8NmJEoiHXkH348Orw9OkkimkDiDRcdI5KioUkdV_9ZnDg2lDEtFjTVShpLfyNZyCtbLpWtf27xwWFe5tki6wvQ9rDZtQx9AWV_xU-3SPgn-O2u05zDx1tYc3FGW9sAshrZ0MdO4EF6MyxBx9LGcy6MUeZRRHj3YXja6nyfa-Hf1DRHBsmoc_R5sLmRYxp9xWrLTaGyObKo-Pt3qC7w8uf52Xp6fDs8-wZp8Z75fbxNWu8mMPsNz99DdTSdbQeP-ADIx0iU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Pansharpening+Algorithm+Based+on+Convolutional+Sparse+Coding+for+Spatial+Enhancement&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Gogineni%2C+Rajesh&rft.au=Chaturvedi%2C+Ashvini&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=12&rft.issue=10&rft.spage=4024&rft.epage=4037&rft_id=info:doi/10.1109%2FJSTARS.2019.2945815&rft.externalDocID=8889992 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |