A Robust Pansharpening Algorithm Based on Convolutional Sparse Coding for Spatial Enhancement

Pansharpening (PS) is a prominent remote sensing image fusion technique. It yields high-resolution multispectral (HRMS) images, which are imperative for the applications, such as recognition and detection. The PS methods based on conventional sparse representation induce blurring effects and are una...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 12; číslo 10; s. 4024 - 4037
Hlavní autori: Gogineni, Rajesh, Chaturvedi, Ashvini
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1939-1404, 2151-1535
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Pansharpening (PS) is a prominent remote sensing image fusion technique. It yields high-resolution multispectral (HRMS) images, which are imperative for the applications, such as recognition and detection. The PS methods based on conventional sparse representation induce blurring effects and are unable to preserve the essential spatial details in the fused outcome. In this article, to overcome these drawbacks, a robust fusion scheme is proposed based on convolutional sparse coding (CSC). The source images are decomposed into its constituent texture and cartoon components. The sparse coefficient maps are acquired from texture components by adapting CSC. Texture components are fused using activity level measurement, whereas averaging mechanism is used to fuse the cartoon components. The HRMS image is reconstructed by combining the fused components in proportion to the gradient information. Impact of number of filters on quality metrics estimation is analyzed. Comprehensive experiments are performed on the images acquired from distinct sensors. The proposed method is evaluated in terms of visual analysis and the quantitative metrics with reduced-scale and full-scale experiments. Extensive evaluations manifest the capability of the proposed method of maintaining the balanced tradeoff and retaining the desired spatial and spectral details.
AbstractList Pansharpening (PS) is a prominent remote sensing image fusion technique. It yields high-resolution multispectral (HRMS) images, which are imperative for the applications, such as recognition and detection. The PS methods based on conventional sparse representation induce blurring effects and are unable to preserve the essential spatial details in the fused outcome. In this article, to overcome these drawbacks, a robust fusion scheme is proposed based on convolutional sparse coding (CSC). The source images are decomposed into its constituent texture and cartoon components. The sparse coefficient maps are acquired from texture components by adapting CSC. Texture components are fused using activity level measurement, whereas averaging mechanism is used to fuse the cartoon components. The HRMS image is reconstructed by combining the fused components in proportion to the gradient information. Impact of number of filters on quality metrics estimation is analyzed. Comprehensive experiments are performed on the images acquired from distinct sensors. The proposed method is evaluated in terms of visual analysis and the quantitative metrics with reduced-scale and full-scale experiments. Extensive evaluations manifest the capability of the proposed method of maintaining the balanced tradeoff and retaining the desired spatial and spectral details.
Author Gogineni, Rajesh
Chaturvedi, Ashvini
Author_xml – sequence: 1
  givenname: Rajesh
  orcidid: 0000-0001-5812-0038
  surname: Gogineni
  fullname: Gogineni, Rajesh
  email: rgogineni9@gmail.com
  organization: Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, India
– sequence: 2
  givenname: Ashvini
  surname: Chaturvedi
  fullname: Chaturvedi, Ashvini
  email: ashvini@nitk.ac.in
  organization: Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, India
BookMark eNqFkE1Lw0AQhhepYK3-Ai8Bz6n7kY-dYy1-UlBaPUrYJLNtSrpbdzeC_96EFg9ePAwD77zPMPOek5GxBgm5YnTKGIWb59XbbLmacspgyiFJJUtPyJizlMUsFemIjBkIiFlCkzNy7v2W0oznIMbkYxYtbdn5EL0q4zfK7dE0Zh3N2rV1TdjsolvlsY6siebWfNm2C401qo1We-U89mI92LV1gxKafnJnNspUuEMTLsipVq3Hy2OfkPf7u7f5Y7x4eXiazxZxxSEPsaQV5qWosKSqTirgKHImcw0aMAGRCyl1QjOoh2K61jLLK9BlxiQgK0FMyPVh797Zzw59KLa2c_2ZvuCCc5lBImXvgoOrctZ7h7qomqCGf4JTTVswWgxpFoc0iyHN4phmz4o_7N41O-W-_6GuDlSDiL-ElBIAuPgBW1KD9g
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1080_01431161_2023_2234095
crossref_primary_10_1109_TGRS_2023_3288073
crossref_primary_10_1080_19479832_2023_2283521
crossref_primary_10_1109_TGRS_2023_3329736
crossref_primary_10_1109_TGRS_2021_3131228
crossref_primary_10_1109_LGRS_2021_3059777
crossref_primary_10_1007_s12524_021_01440_4
crossref_primary_10_1007_s12524_024_01876_4
crossref_primary_10_1007_s12524_024_02006_w
crossref_primary_10_1080_01431161_2020_1811913
crossref_primary_10_1007_s11600_022_00742_6
crossref_primary_10_1109_TGRS_2021_3089868
Cites_doi 10.1109/TIP.2010.2046605
10.1109/JSTARS.2018.2835573
10.1109/TGRS.2015.2504261
10.1109/JSTARS.2015.2507859
10.1016/S0924-2716(03)00013-3
10.1109/JSTARS.2014.2306332
10.1109/JSTARS.2017.2697445
10.1137/S1540345902416247
10.1109/JSTARS.2014.2310781
10.14358/PERS.72.5.591
10.1109/36.763274
10.1109/TGRS.2008.916211
10.1109/JSTARS.2015.2475754
10.1109/TIT.2011.2146090
10.1002/cpa.20124
10.1109/JPROC.2009.2037655
10.14358/PERS.74.2.193
10.1109/TGRS.2014.2361734
10.1109/JSTARS.2018.2849011
10.1016/j.inffus.2016.03.003
10.1109/TGRS.2012.2213604
10.1080/2150704X.2017.1415470
10.1109/LGRS.2014.2331291
10.1109/LGRS.2004.834804
10.1109/JSTARS.2014.2347072
10.1109/LGRS.2011.2177063
10.1109/TIP.2015.2495260
10.1109/ACCESS.2017.2735865
10.1016/j.ins.2017.09.010
10.1109/TGRS.2005.856106
10.1109/TGRS.2010.2067219
10.1109/LGRS.2005.845313
10.1109/CVPR.2013.57
10.1007/s10851-006-7801-6
10.1109/TSP.2006.881199
10.1109/TGRS.2012.2230332
10.1109/JSTARS.2013.2283236
10.1201/b18189
10.1109/TIM.2009.2026612
10.1109/LSP.2016.2618776
10.1109/JSTARS.2016.2546061
10.1109/LGRS.2013.2256875
10.1109/TGRS.2015.2497309
10.1109/TGRS.2006.881758
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/JSTARS.2019.2945815
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 4037
ExternalDocumentID 10_1109_JSTARS_2019_2945815
8889992
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c297t-80ce7b3ceb0ad4c92e37187f9f9e4937388f4069d069d1fdf867c9fb6189e1b93
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503182000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Jul 25 10:42:05 EDT 2025
Sat Nov 29 04:51:03 EST 2025
Tue Nov 18 21:29:46 EST 2025
Wed Aug 27 02:50:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-80ce7b3ceb0ad4c92e37187f9f9e4937388f4069d069d1fdf867c9fb6189e1b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5812-0038
PQID 2322869488
PQPubID 75722
PageCount 14
ParticipantIDs ieee_primary_8889992
crossref_citationtrail_10_1109_JSTARS_2019_2945815
proquest_journals_2322869488
crossref_primary_10_1109_JSTARS_2019_2945815
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
wald (ref46) 1997; 63
ref17
ref16
ref19
ref18
meyer (ref39) 2001; 22
wohlberg (ref49) 2016
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
carper (ref3) 1990; 56
ref9
ref4
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
laben (ref6) 2000
ref29
References_xml – ident: ref34
  doi: 10.1109/TIP.2010.2046605
– ident: ref32
  doi: 10.1109/JSTARS.2018.2835573
– volume: 22
  year: 2001
  ident: ref39
  publication-title: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations The Fifteenth Dean Jacqueline B Lewis Memorial Lectures
– ident: ref23
  doi: 10.1109/TGRS.2015.2504261
– ident: ref30
  doi: 10.1109/JSTARS.2015.2507859
– volume: 63
  start-page: 691
  year: 1997
  ident: ref46
  article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images
  publication-title: Photogramm Eng Remote Sens
– ident: ref7
  doi: 10.1016/S0924-2716(03)00013-3
– ident: ref12
  doi: 10.1109/JSTARS.2014.2306332
– ident: ref15
  doi: 10.1109/JSTARS.2017.2697445
– ident: ref41
  doi: 10.1137/S1540345902416247
– year: 2000
  ident: ref6
  article-title: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening
– ident: ref26
  doi: 10.1109/JSTARS.2014.2310781
– ident: ref13
  doi: 10.14358/PERS.72.5.591
– ident: ref9
  doi: 10.1109/36.763274
– ident: ref5
  doi: 10.1109/TGRS.2008.916211
– ident: ref31
  doi: 10.1109/JSTARS.2015.2475754
– ident: ref36
  doi: 10.1109/TIT.2011.2146090
– ident: ref16
  doi: 10.1002/cpa.20124
– ident: ref17
  doi: 10.1109/JPROC.2009.2037655
– ident: ref47
  doi: 10.14358/PERS.74.2.193
– ident: ref1
  doi: 10.1109/TGRS.2014.2361734
– ident: ref29
  doi: 10.1109/JSTARS.2018.2849011
– ident: ref2
  doi: 10.1016/j.inffus.2016.03.003
– ident: ref22
  doi: 10.1109/TGRS.2012.2213604
– ident: ref35
  doi: 10.1080/2150704X.2017.1415470
– ident: ref28
  doi: 10.1109/LGRS.2014.2331291
– ident: ref4
  doi: 10.1109/LGRS.2004.834804
– ident: ref24
  doi: 10.1109/JSTARS.2014.2347072
– ident: ref19
  doi: 10.1109/LGRS.2011.2177063
– volume: 56
  start-page: 457
  year: 1990
  ident: ref3
  article-title: The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multi-spectral image data
  publication-title: Photogramm Eng Remote Sens
– ident: ref33
  doi: 10.1109/TIP.2015.2495260
– ident: ref42
  doi: 10.1109/ACCESS.2017.2735865
– ident: ref45
  doi: 10.1016/j.ins.2017.09.010
– ident: ref10
  doi: 10.1109/TGRS.2005.856106
– ident: ref18
  doi: 10.1109/TGRS.2010.2067219
– ident: ref11
  doi: 10.1109/LGRS.2005.845313
– ident: ref37
  doi: 10.1109/CVPR.2013.57
– ident: ref40
  doi: 10.1007/s10851-006-7801-6
– ident: ref48
  doi: 10.1109/TSP.2006.881199
– ident: ref20
  doi: 10.1109/TGRS.2012.2230332
– ident: ref25
  doi: 10.1109/JSTARS.2013.2283236
– ident: ref43
  doi: 10.1201/b18189
– ident: ref44
  doi: 10.1109/TIM.2009.2026612
– ident: ref38
  doi: 10.1109/LSP.2016.2618776
– ident: ref14
  doi: 10.1109/JSTARS.2016.2546061
– ident: ref21
  doi: 10.1109/LGRS.2013.2256875
– ident: ref27
  doi: 10.1109/TGRS.2015.2497309
– ident: ref8
  doi: 10.1109/TGRS.2006.881758
– year: 2016
  ident: ref49
  article-title: Sparse optimization research code (SPORCO)
SSID ssj0062793
Score 2.3065574
Snippet Pansharpening (PS) is a prominent remote sensing image fusion technique. It yields high-resolution multispectral (HRMS) images, which are imperative for the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4024
SubjectTerms Algorithms
Blurring
Cartoon plus texture (CPT) decomposition
Components
Computer vision
Convolutional codes
convolutional sparse coding (CSC)
Dictionaries
Distortion
Evaluation
fusion models
gradient strength
Image acquisition
Image coding
Image detection
Image enhancement
Image processing
Image reconstruction
Image resolution
Object recognition
Pansharpening
pansharpening (PS)
Remote sensing
sparse representation (SR)
Texture
Title A Robust Pansharpening Algorithm Based on Convolutional Sparse Coding for Spatial Enhancement
URI https://ieeexplore.ieee.org/document/8889992
https://www.proquest.com/docview/2322869488
Volume 12
WOSCitedRecordID wos000503182000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qCl58i-uLHDxa3aS1yRxX8XES8QFepNhk6gprK7tdwX_vTNpdBEXwUCh5lJCZzjdfHjNCHBTKeCSCE6HSRFAwsVGexipSgKC9z5WxLiSbMNfX9vERbmbE4fQuDCKGw2d4xK9hL99XbsxLZcfE1sifIYM7a0za3NWaWN1UmxBgl_wRiDhkTBthSHXhmFS8d3vHx7jgSENyYjkH7jcUCmlVftjiADAXy_8b2opYah1J2WskvypmsFwTC5chUe_nunjqydsqH49qeUNg1OddFl4Bkb3BSzV8rftv8pTwy8uqlGdV-dEqIH3w7p2oLlIhg5okl5ZLyAwM5HnZZxXhgWyIh4vz-7OrqE2lEDkNpiYccmjy2GHeffaJA40xgZIpoABMgKMb2YLvwHp-VOELmxoHRZ4qC6hyiDfFXFmVuCWk9TnVKhd3kdHfWa08kcRnWxC1wyTuCD2Z2sy1ccY53cUgC3yjC1kjj4zlkbXy6IjDaaf3JszG383XWQTTpu3sd8TuRIZZ-yuOMnIZtU2BDNX27712xGJzCITXVXbFXD0c456Ydx_162i4H7TsC0EBzto
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_EttSX2taWXmvtPvTR6O0mJjuPp_iF9hC14EsJZnfSE66J3OWE_ved2ds7hEqhD4Gw2U2Wncn8ZvZjfgBfa1144gAnIW04QKHMJlWe6kQjofG-0oV1gWyiGA7tzQ1erMD28iwMEYXNZ7Qjt2Et37duJlNluxytsT_DBveZMGfF01oLu5ubIqTYZY8EE0kaE3MM6T7uspIPLq9kIxfuGMz2rLDgPsKhQKzylzUOEHO0_n-dew2voiupBnPZv4EVat7Ci-NA1ft7A34M1GVbzaadumA4Gsk6i8yBqMH4Zzu560a_1D4jmFdtow7a5iGqIL_w6p6DXeJCgTXFTq2UsCEYq8NmJEoiHXkH348Orw9OkkimkDiDRcdI5KioUkdV_9ZnDg2lDEtFjTVShpLfyNZyCtbLpWtf27xwWFe5tki6wvQ9rDZtQx9AWV_xU-3SPgn-O2u05zDx1tYc3FGW9sAshrZ0MdO4EF6MyxBx9LGcy6MUeZRRHj3YXja6nyfa-Hf1DRHBsmoc_R5sLmRYxp9xWrLTaGyObKo-Pt3qC7w8uf52Xp6fDs8-wZp8Z75fbxNWu8mMPsNz99DdTSdbQeP-ADIx0iU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Pansharpening+Algorithm+Based+on+Convolutional+Sparse+Coding+for+Spatial+Enhancement&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Gogineni%2C+Rajesh&rft.au=Chaturvedi%2C+Ashvini&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=12&rft.issue=10&rft.spage=4024&rft.epage=4037&rft_id=info:doi/10.1109%2FJSTARS.2019.2945815&rft.externalDocID=8889992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon