An improved differential evolution by hybridizing with estimation-of-distribution algorithm
To fully exploit the strong exploitation of differential evolution (DE) and the strong exploration of the estimation-of-distribution algorithm (EDA), an improved differential evolution by hybridizing the estimation-of-distribution algorithm named IDE-EDA is proposed in the study. Firstly, a novel co...
Uložené v:
| Vydané v: | Information sciences Ročník 619; s. 439 - 456 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.01.2023
|
| Predmet: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | To fully exploit the strong exploitation of differential evolution (DE) and the strong exploration of the estimation-of-distribution algorithm (EDA), an improved differential evolution by hybridizing the estimation-of-distribution algorithm named IDE-EDA is proposed in the study. Firstly, a novel cooperative evolutionary framework is proposed to hybridize LSHADE-RSP, a state-of-the-art DE variant incorporating DE-based effective improvement strategies, with EDA. Secondly, the dominant individuals generated by LSHADE-RSP are used to establish the probability distribution model for EDA to enhance its exploitation in each generation, and a new control parameter is introduced to balance exploitation and exploration. Then, the use of greed strategy works via EDA to fully retain high-quality solutions to the next generation to improve the convergence speed. Finally, the greedy strategy is used to shrink the external archive when its size decreases due to the reduction of the population size. A comparison of IDE-EDA with cutting-edge DE-based and EDA-based variants, including AAVS-EDA, EB-LSHADE, ELSHADE-SPACMA, jSO, LSHADE-RSP, RWGEDA, HSES, and APGSK-IMODE, was implemented to verify its efficiency. The statistical test results on the IEEE CEC 2018 and IEEE CEC 2021 test suites demonstrate that IDE-EDA is an excellent hybrid algorithm. The MATLAB source code of IDE-EDA can be downloaded from https://github.com/Yintong-Li/IDE-EDA. |
|---|---|
| AbstractList | To fully exploit the strong exploitation of differential evolution (DE) and the strong exploration of the estimation-of-distribution algorithm (EDA), an improved differential evolution by hybridizing the estimation-of-distribution algorithm named IDE-EDA is proposed in the study. Firstly, a novel cooperative evolutionary framework is proposed to hybridize LSHADE-RSP, a state-of-the-art DE variant incorporating DE-based effective improvement strategies, with EDA. Secondly, the dominant individuals generated by LSHADE-RSP are used to establish the probability distribution model for EDA to enhance its exploitation in each generation, and a new control parameter is introduced to balance exploitation and exploration. Then, the use of greed strategy works via EDA to fully retain high-quality solutions to the next generation to improve the convergence speed. Finally, the greedy strategy is used to shrink the external archive when its size decreases due to the reduction of the population size. A comparison of IDE-EDA with cutting-edge DE-based and EDA-based variants, including AAVS-EDA, EB-LSHADE, ELSHADE-SPACMA, jSO, LSHADE-RSP, RWGEDA, HSES, and APGSK-IMODE, was implemented to verify its efficiency. The statistical test results on the IEEE CEC 2018 and IEEE CEC 2021 test suites demonstrate that IDE-EDA is an excellent hybrid algorithm. The MATLAB source code of IDE-EDA can be downloaded from https://github.com/Yintong-Li/IDE-EDA. |
| Author | Li, Yintong Wang, Yuan Han, Tong Tang, Shangqin Huang, Changqiang Zhou, Huan |
| Author_xml | – sequence: 1 givenname: Yintong surname: Li fullname: Li, Yintong email: yintongli0007@163.com – sequence: 2 givenname: Tong surname: Han fullname: Han, Tong – sequence: 3 givenname: Shangqin surname: Tang fullname: Tang, Shangqin – sequence: 4 givenname: Changqiang surname: Huang fullname: Huang, Changqiang – sequence: 5 givenname: Huan surname: Zhou fullname: Zhou, Huan – sequence: 6 givenname: Yuan surname: Wang fullname: Wang, Yuan |
| BookMark | eNp9kD1PwzAQhi1UJNrCD2DLH0g4O40di6mq-JIqscDEYCX2pb0qTSrbFJVfT0qZGDrdcO9zuveZsFHXd8jYLYeMA5d3m4y6kAkQIuM8A6Ev2JiXSqRSaD5iYwABKYiiuGKTEDYAMFNSjtnHvEtou_P9Hl3iqGnQYxepahPc9-1npL5L6kOyPtSeHH1Tt0q-KK4TDJG21XGd9k3qKERP9SletaveD5ntNbtsqjbgzd-csvfHh7fFc7p8fXpZzJepFVrFtASrQSpUstA8z7mFssaZdAiSK3DIMQcLPK-gLnRZOCVntsp1pVGjVWWTT5k63bW-D8FjYyzF39-ir6g1HMzRkdmYwZE5OjKcm8HRQPJ_5M4PtfzhLHN_YnCotCf0JljCzqIjjzYa19MZ-gePgYOC |
| CitedBy_id | crossref_primary_10_3390_biomimetics9120727 crossref_primary_10_1016_j_eswa_2025_126403 crossref_primary_10_3390_biomimetics9090509 crossref_primary_10_1016_j_engappai_2023_107017 crossref_primary_10_1016_j_swevo_2023_101283 crossref_primary_10_3390_sym17020153 crossref_primary_10_1016_j_jhydrol_2025_133236 crossref_primary_10_1016_j_swevo_2024_101718 crossref_primary_10_1007_s13042_024_02198_0 crossref_primary_10_1109_TETCI_2024_3367809 crossref_primary_10_3390_sym17020223 crossref_primary_10_1007_s10586_025_05287_z crossref_primary_10_1007_s11227_023_05618_0 crossref_primary_10_1016_j_swevo_2023_101450 crossref_primary_10_1016_j_swevo_2023_101294 crossref_primary_10_1371_journal_pone_0302207 crossref_primary_10_1016_j_cma_2024_117251 crossref_primary_10_3390_biomimetics9110652 crossref_primary_10_26599_TST_2024_9010185 crossref_primary_10_3390_plants12040941 crossref_primary_10_1007_s40747_023_01186_1 crossref_primary_10_1016_j_eswa_2025_128158 crossref_primary_10_3390_app14219976 crossref_primary_10_1016_j_swevo_2024_101663 crossref_primary_10_1007_s10462_025_11125_w crossref_primary_10_1007_s10586_024_04915_4 crossref_primary_10_1016_j_advengsoft_2025_103983 crossref_primary_10_1016_j_eswa_2025_128403 crossref_primary_10_3390_drones7010055 crossref_primary_10_1007_s10586_025_05445_3 crossref_primary_10_1016_j_neucom_2023_126899 crossref_primary_10_1016_j_asoc_2024_112314 crossref_primary_10_1016_j_asoc_2025_112753 crossref_primary_10_1007_s10489_025_06609_9 crossref_primary_10_1016_j_engappai_2023_107760 crossref_primary_10_1016_j_energy_2025_136982 crossref_primary_10_1016_j_swevo_2023_101454 crossref_primary_10_1016_j_engappai_2023_107001 crossref_primary_10_1016_j_eswa_2024_125130 crossref_primary_10_1016_j_swevo_2025_101930 crossref_primary_10_1016_j_swevo_2024_101811 crossref_primary_10_1016_j_ins_2024_120548 crossref_primary_10_1007_s10586_024_04698_8 crossref_primary_10_1007_s10586_023_04173_w crossref_primary_10_1109_TEVC_2024_3354850 crossref_primary_10_1007_s11831_025_10307_7 crossref_primary_10_1016_j_swevo_2023_101351 crossref_primary_10_1007_s13042_024_02146_y crossref_primary_10_3390_math11153355 crossref_primary_10_1016_j_swevo_2024_101807 crossref_primary_10_1016_j_ins_2024_120110 crossref_primary_10_1007_s13042_023_02006_1 crossref_primary_10_1016_j_eswa_2025_129587 crossref_primary_10_1016_j_asoc_2024_112628 crossref_primary_10_1016_j_ins_2024_121009 crossref_primary_10_3390_biomimetics10080504 |
| Cites_doi | 10.1016/j.knosys.2018.02.001 10.1080/03610928008827904 10.1109/TEVC.2009.2014613 10.1016/j.ins.2022.07.043 10.1109/TCYB.2018.2869567 10.1007/s13042-017-0711-7 10.1109/TASE.2020.3019694 10.1109/CEC.2017.7969336 10.1109/CEC.2013.6557555 10.1109/CEC.2016.7744163 10.1007/s40815-019-00723-w 10.1109/CEC.2017.7969456 10.1109/ACCESS.2019.2946216 10.3390/axioms10030194 10.1109/CEC.2014.6900380 10.1109/TEVC.2006.872133 10.1109/CEC.2018.8477977 10.1109/CEC.2017.7969307 10.1007/s00521-021-06849-z 10.1007/978-1-4615-1539-5 10.1109/CEC.2016.7748322 10.1109/TEVC.2014.2387433 10.1016/j.enconman.2021.114030 10.1016/j.ins.2022.07.075 10.1109/ACCESS.2019.2908262 10.1007/978-3-030-58930-1_7 10.1007/s00500-005-0537-1 10.1109/TEVC.2021.3060811 10.1145/3377929.3389871 10.1109/CEC.2016.7743922 10.1016/j.ins.2021.07.082 10.1109/CEC45853.2021.9504959 10.1023/A:1008202821328 10.1016/j.swevo.2021.101010 10.1109/ACCESS.2021.3077242 10.1016/j.ins.2022.05.058 10.1109/CEC45853.2021.9504814 10.1016/j.swevo.2018.10.006 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2022.11.029 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 456 |
| ExternalDocumentID | 10_1016_j_ins_2022_11_029 S0020025522013184 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-80c9067e76591331c08be46de06170de1e30c013a0b5985d764ca39a9e9ec78f3 |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900806500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 18 21:47:42 EST 2025 Sat Nov 29 07:29:32 EST 2025 Fri Feb 23 02:40:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Differential evolution Estimation distribution algorithm Hybridization Artificial intelligence |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-80c9067e76591331c08be46de06170de1e30c013a0b5985d764ca39a9e9ec78f3 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2022_11_029 crossref_primary_10_1016_j_ins_2022_11_029 elsevier_sciencedirect_doi_10_1016_j_ins_2022_11_029 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | N.H. Awad, M.Z. Ali, J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization, 2013. Zhou, Sun, Zhang (b0180) 2015; 19 Zhang, Shi, Strategy, for Solving Single Objective Bound Constrained Problems, in (b0160) 2018; 2018 A.W. Mohamed, A.A. Hadi, A.K. Mohamed, P. Agrawal, A. Kumar, P.N. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2021 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization, 2020. P. Bujok, J. Tvrdik, R. Polakova, Evaluating the performance of SHADE with competing strategies on CEC 2014 single-parameter test suite, in: 2016 IEEE Congress on Evolutionary Computation, CEC 2016, IEEE, 2016: pp. 5002–5009. 10.1109/CEC.2016.7748322. J. Brest, M.S. Maučec, B. Bošković, IL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization, in: 2016 IEEE Congress on Evolutionary Computation, CEC 2016, 2016: pp. 1188–1195. 10.1109/CEC.2016.7743922. Ochoa, Castillo, Melin, Soria (b0085) 2021; 10 Cao, Wang, Fu, Jia, Tian (b0135) 2022; 608 Hollander, Wolfe, Chicken (b0215) 2015 Wang, Zhao, Han, Wei, Liang, Li (b0195) 2019; 7 Sallam, Hossain, Chakrabortty, Ryan (b0015) 2021; 237 Ochoa, Castillo, Soria (b0080) 2020; 22 N.H. Awad, M.Z. Ali, P.N. Suganthan, Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings, 2017: pp. 372–379. 10.1109/CEC.2017.7969336. V. Stanovov, S. Akhmedova, E. Semenkin, NL-SHADE-RSP Algorithm with Adaptive Archive and Selective Pressure for CEC 2021 Numerical Optimization, in: 2021 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2021: pp. 809–816. 10.1109/CEC45853.2021.9504959. R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in: 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2014: pp. 1658–1665. 10.1109/CEC.2014.6900380. Li, Han, Zhou, Tang, Zhao (b0220) 2022; 606 Liang, Ren, Yao, Feng, Chen, Guo (b0200) 2020; 50 A.W. Mohamed, A.A. Hadi, P. Agrawal, K.M. Sallam, A.K. Mohamed, Gaining-Sharing Knowledge Based Algorithm with Adaptive Parameters Hybrid with IMODE Algorithm for Solving CEC 2021 Benchmark Problems, in: 2021 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2021: pp. 841–848. 10.1109/CEC45853.2021.9504814. N.H. Awad, M.Z. Ali, J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on real-parameter optimization, 2016. Zhang, Sanderson (b0055) 2009; 13 J. Brest, M.S. Maucec, B. Boskovic, Single objective real-parameter optimization: Algorithm jSO, in: 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2017: pp. 1311–1318. 10.1109/CEC.2017.7969456. P. Larrañaga, J.A. Lozano, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, 2002. http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0792374665. Zeng, Hong, Zhang, Zhang, Chen (b0130) 2022; 609 Pang, Li, He, Shan, Wang (b0185) 2019; 7 Tang, Song, Liu, Liu (b0205) 2021; 18 A.A. Hadi, A.W. Mohamed, K.M. Jambi, Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm, in: Studies in Computational Intelligence, 2021: pp. 103–121. 10.1007/978-3-030-58930-1_7. Kumar, Biswas, Suganthan (b0125) 2022; 68 Mohamed, Mohamed (b0155) 2019; 10 Xia, Tong, Zhang, Xu, Yang, Gui, Li, Li (b0115) 2021; 579 N.H. Awad, M.Z. Ali, P.N. Suganthan, R.G. Reynolds, An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems, in: 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016: pp. 2958–2965. 10.1109/CEC.2016.7744163. Mohamed, Hadi, Jambi (b0110) 2019; 50 Davenport (b0225) 1980; 9 . Ren, Liang, Wang, Zhang, Pang, Li (b0190) 2018; 146 Wang, Ma, Chen, Hartmann (b0210) 2022 K. De Jong, Evolutionary computation, in: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, 2020: pp. 327–342. 10.1145/3377929.3389871. A.W. Mohamed, A.A. Hadi, A.M. Fattouh, K.M. Jambi, LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2017: pp. 145–152. 10.1109/CEC.2017.7969307. V. Stanovov, S. Akhmedova, E. Semenkin, LSHADE Algorithm with Rank-Based Selective Pressure Strategy for Solving CEC 2017 Benchmark Problems, in: 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, IEEE, 2018: pp. 1–8. 10.1109/CEC.2018.8477977. Mohamed, Hadi, Mohamed (b0010) 2021; 9 P.N.S.G.W. R. Mallipeddi, Problem definitions and evaluation criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization, 2010. Sun, Liu, Back, Xu (b0090) 2021; 25 Storn, Price (b0040) 1997; 11 F. Zhao, H. Bao, L. Wang, X. He, Jonrinaldi, A hybrid cooperative differential evolution assisted by CMA-ES with local search mechanism, Neural Computing and Applications. 34 (2022) 7173–7197. 10.1007/s00521-021-06849-z. Brest, Greiner, Bošković, Mernik, Zumer (b0050) 2006; 10 Teo (b0045) 2006; 10 R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for Differential Evolution, in: 2013 IEEE Congress on Evolutionary Computation, CEC 2013, 2013: pp. 71–78. 10.1109/CEC.2013.6557555. Li (10.1016/j.ins.2022.11.029_b0220) 2022; 606 Ochoa (10.1016/j.ins.2022.11.029_b0080) 2020; 22 Ren (10.1016/j.ins.2022.11.029_b0190) 2018; 146 Hollander (10.1016/j.ins.2022.11.029_b0215) 2015 Davenport (10.1016/j.ins.2022.11.029_b0225) 1980; 9 Wang (10.1016/j.ins.2022.11.029_b0210) 2022 Pang (10.1016/j.ins.2022.11.029_b0185) 2019; 7 Wang (10.1016/j.ins.2022.11.029_b0195) 2019; 7 10.1016/j.ins.2022.11.029_b0165 10.1016/j.ins.2022.11.029_b0100 Kumar (10.1016/j.ins.2022.11.029_b0125) 2022; 68 10.1016/j.ins.2022.11.029_b0145 Mohamed (10.1016/j.ins.2022.11.029_b0010) 2021; 9 10.1016/j.ins.2022.11.029_b0025 10.1016/j.ins.2022.11.029_b0140 10.1016/j.ins.2022.11.029_b0020 Sun (10.1016/j.ins.2022.11.029_b0090) 2021; 25 Teo (10.1016/j.ins.2022.11.029_b0045) 2006; 10 10.1016/j.ins.2022.11.029_b0065 10.1016/j.ins.2022.11.029_b0120 Sallam (10.1016/j.ins.2022.11.029_b0015) 2021; 237 Storn (10.1016/j.ins.2022.11.029_b0040) 1997; 11 10.1016/j.ins.2022.11.029_b0060 Tang (10.1016/j.ins.2022.11.029_b0205) 2021; 18 Mohamed (10.1016/j.ins.2022.11.029_b0155) 2019; 10 Zhang (10.1016/j.ins.2022.11.029_b0055) 2009; 13 Ochoa (10.1016/j.ins.2022.11.029_b0085) 2021; 10 Mohamed (10.1016/j.ins.2022.11.029_b0110) 2019; 50 Zhou (10.1016/j.ins.2022.11.029_b0180) 2015; 19 10.1016/j.ins.2022.11.029_b0005 Zeng (10.1016/j.ins.2022.11.029_b0130) 2022; 609 10.1016/j.ins.2022.11.029_b0105 Cao (10.1016/j.ins.2022.11.029_b0135) 2022; 608 Brest (10.1016/j.ins.2022.11.029_b0050) 2006; 10 Zhang (10.1016/j.ins.2022.11.029_b0160) 2018; 2018 10.1016/j.ins.2022.11.029_b0035 10.1016/j.ins.2022.11.029_b0095 10.1016/j.ins.2022.11.029_b0150 10.1016/j.ins.2022.11.029_b0030 10.1016/j.ins.2022.11.029_b0075 10.1016/j.ins.2022.11.029_b0175 10.1016/j.ins.2022.11.029_b0070 Xia (10.1016/j.ins.2022.11.029_b0115) 2021; 579 10.1016/j.ins.2022.11.029_b0170 Liang (10.1016/j.ins.2022.11.029_b0200) 2020; 50 |
| References_xml | – reference: P.N.S.G.W. R. Mallipeddi, Problem definitions and evaluation criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization, 2010. – volume: 19 start-page: 807 year: 2015 end-page: 822 ident: b0180 article-title: An estimation of distribution algorithm with cheap and expensive local search methods publication-title: IEEE Trans. Evol. Comput. – reference: A.W. Mohamed, A.A. Hadi, A.K. Mohamed, P. Agrawal, A. Kumar, P.N. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2021 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization, 2020. – volume: 18 start-page: 1478 year: 2021 end-page: 1491 ident: b0205 article-title: An estimation of distribution algorithm with filtering and learning publication-title: IEEE Trans. Automat. Sci. Eng. – volume: 2018 start-page: 1 year: 2018 end-page: 7 ident: b0160 article-title: IEEE Congress on Evolutionary Computation (CEC) publication-title: IEEE – volume: 609 start-page: 353 year: 2022 end-page: 375 ident: b0130 article-title: Improving differential evolution using a best discarded vector selection strategy publication-title: Inform. Sci. – reference: J. Brest, M.S. Maucec, B. Boskovic, Single objective real-parameter optimization: Algorithm jSO, in: 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2017: pp. 1311–1318. 10.1109/CEC.2017.7969456. – reference: P. Larrañaga, J.A. Lozano, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, 2002. http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0792374665. – reference: F. Zhao, H. Bao, L. Wang, X. He, Jonrinaldi, A hybrid cooperative differential evolution assisted by CMA-ES with local search mechanism, Neural Computing and Applications. 34 (2022) 7173–7197. 10.1007/s00521-021-06849-z. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0040 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optimiz. – volume: 608 start-page: 1416 year: 2022 end-page: 1440 ident: b0135 article-title: An adaptive differential evolution framework based on population feature information publication-title: Inform. Sci. – volume: 10 start-page: 673 year: 2006 end-page: 686 ident: b0045 article-title: Exploring dynamic self-adaptive populations in differential evolution publication-title: Soft Comput. – volume: 50 start-page: 140 year: 2020 end-page: 152 ident: b0200 article-title: Enhancing gaussian estimation of distribution algorithm by exploiting evolution direction with archive publication-title: IEEE Trans. Cybernet. – volume: 68 year: 2022 ident: b0125 article-title: Differential evolution with orthogonal array-based initialization and a novel selection strategy publication-title: Swarm Evol. Comput. – reference: N.H. Awad, M.Z. Ali, J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization, 2013. – reference: A.W. Mohamed, A.A. Hadi, P. Agrawal, K.M. Sallam, A.K. Mohamed, Gaining-Sharing Knowledge Based Algorithm with Adaptive Parameters Hybrid with IMODE Algorithm for Solving CEC 2021 Benchmark Problems, in: 2021 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2021: pp. 841–848. 10.1109/CEC45853.2021.9504814. – volume: 9 start-page: 68629 year: 2021 end-page: 68662 ident: b0010 article-title: Differential evolution mutations: taxonomy, comparison and convergence analysis publication-title: IEEE Access. – reference: V. Stanovov, S. Akhmedova, E. Semenkin, NL-SHADE-RSP Algorithm with Adaptive Archive and Selective Pressure for CEC 2021 Numerical Optimization, in: 2021 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2021: pp. 809–816. 10.1109/CEC45853.2021.9504959. – reference: R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in: 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2014: pp. 1658–1665. 10.1109/CEC.2014.6900380. – volume: 237 year: 2021 ident: b0015 article-title: An improved gaining-sharing knowledge algorithm for parameter extraction of photovoltaic models publication-title: Energy Convers. Manage. – volume: 146 start-page: 142 year: 2018 end-page: 151 ident: b0190 article-title: Anisotropic adaptive variance scaling for Gaussian estimation of distribution algorithm publication-title: Knowl. Based Syst. – volume: 7 start-page: 43298 year: 2019 end-page: 43317 ident: b0195 article-title: A gaussian estimation of distribution algorithm with random walk strategies and its application in optimal missile guidance handover for multi-UCAV in over-the-horizon air combat publication-title: IEEE Access. – volume: 606 start-page: 350 year: 2022 end-page: 367 ident: b0220 article-title: A novel adaptive L-SHADE algorithm and its application in UAV swarm resource configuration problem publication-title: Inform. Sci. – reference: N.H. Awad, M.Z. Ali, J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on real-parameter optimization, 2016. – year: 2015 ident: b0215 article-title: Nonparametric statistical methods publication-title: Wiley – volume: 25 start-page: 666 year: 2021 end-page: 680 ident: b0090 article-title: Learning adaptive differential evolution algorithm from optimization experiences by policy gradient publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2022 end-page: 15 ident: b0210 article-title: Using an estimation of distribution algorithm to achieve multitasking semantic web service composition publication-title: IEEE Trans. Evol. Comput. – reference: N.H. Awad, M.Z. Ali, P.N. Suganthan, Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings, 2017: pp. 372–379. 10.1109/CEC.2017.7969336. – reference: P. Bujok, J. Tvrdik, R. Polakova, Evaluating the performance of SHADE with competing strategies on CEC 2014 single-parameter test suite, in: 2016 IEEE Congress on Evolutionary Computation, CEC 2016, IEEE, 2016: pp. 5002–5009. 10.1109/CEC.2016.7748322. – reference: A.A. Hadi, A.W. Mohamed, K.M. Jambi, Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm, in: Studies in Computational Intelligence, 2021: pp. 103–121. 10.1007/978-3-030-58930-1_7. – volume: 579 start-page: 33 year: 2021 end-page: 54 ident: b0115 article-title: NFDDE: a novelty-hybrid-fitness driving differential evolution algorithm publication-title: Inform. Sci. – reference: N.H. Awad, M.Z. Ali, P.N. Suganthan, R.G. Reynolds, An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems, in: 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016: pp. 2958–2965. 10.1109/CEC.2016.7744163. – volume: 22 start-page: 414 year: 2020 end-page: 427 ident: b0080 article-title: High-speed interval type-2 fuzzy system for dynamic crossover parameter adaptation in differential evolution and its application to controller optimization publication-title: Int. J. Fuzzy Syst. – reference: . – reference: K. De Jong, Evolutionary computation, in: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, 2020: pp. 327–342. 10.1145/3377929.3389871. – volume: 50 year: 2019 ident: b0110 article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization publication-title: Swarm Evol. Comput. – reference: J. Brest, M.S. Maučec, B. Bošković, IL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization, in: 2016 IEEE Congress on Evolutionary Computation, CEC 2016, 2016: pp. 1188–1195. 10.1109/CEC.2016.7743922. – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: b0055 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. – reference: V. Stanovov, S. Akhmedova, E. Semenkin, LSHADE Algorithm with Rank-Based Selective Pressure Strategy for Solving CEC 2017 Benchmark Problems, in: 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, IEEE, 2018: pp. 1–8. 10.1109/CEC.2018.8477977. – volume: 10 start-page: 646 year: 2006 end-page: 657 ident: b0050 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Trans. Evol. Comput. – volume: 7 start-page: 146379 year: 2019 end-page: 146389 ident: b0185 article-title: An EDA-GA hybrid algorithm for multi-objective task scheduling in cloud computing publication-title: IEEE Access. – reference: R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for Differential Evolution, in: 2013 IEEE Congress on Evolutionary Computation, CEC 2013, 2013: pp. 71–78. 10.1109/CEC.2013.6557555. – volume: 9 start-page: 571 year: 1980 end-page: 595 ident: b0225 article-title: Approximations of the critical region of the friedman statistic publication-title: Commun. Statist. Theory Methods – volume: 10 start-page: 253 year: 2019 end-page: 277 ident: b0155 article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization publication-title: Int. J. Mach. Learn. Cybernet. – volume: 10 start-page: 194 year: 2021 ident: b0085 article-title: Differential evolution with shadowed and general type-2 fuzzy systems for dynamic parameter adaptation in optimal design of fuzzy controllers publication-title: Axioms – reference: A.W. Mohamed, A.A. Hadi, A.M. Fattouh, K.M. Jambi, LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2017: pp. 145–152. 10.1109/CEC.2017.7969307. – ident: 10.1016/j.ins.2022.11.029_b0025 – volume: 146 start-page: 142 year: 2018 ident: 10.1016/j.ins.2022.11.029_b0190 article-title: Anisotropic adaptive variance scaling for Gaussian estimation of distribution algorithm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.02.001 – volume: 9 start-page: 571 year: 1980 ident: 10.1016/j.ins.2022.11.029_b0225 article-title: Approximations of the critical region of the friedman statistic publication-title: Commun. Statist. Theory Methods doi: 10.1080/03610928008827904 – volume: 13 start-page: 945 year: 2009 ident: 10.1016/j.ins.2022.11.029_b0055 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – volume: 608 start-page: 1416 year: 2022 ident: 10.1016/j.ins.2022.11.029_b0135 article-title: An adaptive differential evolution framework based on population feature information publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.07.043 – volume: 50 start-page: 140 year: 2020 ident: 10.1016/j.ins.2022.11.029_b0200 article-title: Enhancing gaussian estimation of distribution algorithm by exploiting evolution direction with archive publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2018.2869567 – volume: 10 start-page: 253 year: 2019 ident: 10.1016/j.ins.2022.11.029_b0155 article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization publication-title: Int. J. Mach. Learn. Cybernet. doi: 10.1007/s13042-017-0711-7 – volume: 18 start-page: 1478 year: 2021 ident: 10.1016/j.ins.2022.11.029_b0205 article-title: An estimation of distribution algorithm with filtering and learning publication-title: IEEE Trans. Automat. Sci. Eng. doi: 10.1109/TASE.2020.3019694 – ident: 10.1016/j.ins.2022.11.029_b0140 doi: 10.1109/CEC.2017.7969336 – ident: 10.1016/j.ins.2022.11.029_b0060 doi: 10.1109/CEC.2013.6557555 – ident: 10.1016/j.ins.2022.11.029_b0075 doi: 10.1109/CEC.2016.7744163 – volume: 22 start-page: 414 year: 2020 ident: 10.1016/j.ins.2022.11.029_b0080 article-title: High-speed interval type-2 fuzzy system for dynamic crossover parameter adaptation in differential evolution and its application to controller optimization publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-019-00723-w – ident: 10.1016/j.ins.2022.11.029_b0100 doi: 10.1109/CEC.2017.7969456 – volume: 7 start-page: 146379 year: 2019 ident: 10.1016/j.ins.2022.11.029_b0185 article-title: An EDA-GA hybrid algorithm for multi-objective task scheduling in cloud computing publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2946216 – volume: 10 start-page: 194 year: 2021 ident: 10.1016/j.ins.2022.11.029_b0085 article-title: Differential evolution with shadowed and general type-2 fuzzy systems for dynamic parameter adaptation in optimal design of fuzzy controllers publication-title: Axioms doi: 10.3390/axioms10030194 – ident: 10.1016/j.ins.2022.11.029_b0065 doi: 10.1109/CEC.2014.6900380 – year: 2015 ident: 10.1016/j.ins.2022.11.029_b0215 article-title: Nonparametric statistical methods publication-title: Wiley – volume: 10 start-page: 646 year: 2006 ident: 10.1016/j.ins.2022.11.029_b0050 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.872133 – ident: 10.1016/j.ins.2022.11.029_b0105 doi: 10.1109/CEC.2018.8477977 – ident: 10.1016/j.ins.2022.11.029_b0145 doi: 10.1109/CEC.2017.7969307 – ident: 10.1016/j.ins.2022.11.029_b0170 doi: 10.1007/s00521-021-06849-z – ident: 10.1016/j.ins.2022.11.029_b0030 – ident: 10.1016/j.ins.2022.11.029_b0175 doi: 10.1007/978-1-4615-1539-5 – ident: 10.1016/j.ins.2022.11.029_b0095 doi: 10.1109/CEC.2016.7748322 – volume: 19 start-page: 807 year: 2015 ident: 10.1016/j.ins.2022.11.029_b0180 article-title: An estimation of distribution algorithm with cheap and expensive local search methods publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2387433 – volume: 237 year: 2021 ident: 10.1016/j.ins.2022.11.029_b0015 article-title: An improved gaining-sharing knowledge algorithm for parameter extraction of photovoltaic models publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2021.114030 – volume: 609 start-page: 353 year: 2022 ident: 10.1016/j.ins.2022.11.029_b0130 article-title: Improving differential evolution using a best discarded vector selection strategy publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.07.075 – volume: 7 start-page: 43298 year: 2019 ident: 10.1016/j.ins.2022.11.029_b0195 article-title: A gaussian estimation of distribution algorithm with random walk strategies and its application in optimal missile guidance handover for multi-UCAV in over-the-horizon air combat publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2908262 – ident: 10.1016/j.ins.2022.11.029_b0150 doi: 10.1007/978-3-030-58930-1_7 – volume: 10 start-page: 673 year: 2006 ident: 10.1016/j.ins.2022.11.029_b0045 article-title: Exploring dynamic self-adaptive populations in differential evolution publication-title: Soft Comput. doi: 10.1007/s00500-005-0537-1 – ident: 10.1016/j.ins.2022.11.029_b0020 – volume: 25 start-page: 666 year: 2021 ident: 10.1016/j.ins.2022.11.029_b0090 article-title: Learning adaptive differential evolution algorithm from optimization experiences by policy gradient publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3060811 – ident: 10.1016/j.ins.2022.11.029_b0005 doi: 10.1145/3377929.3389871 – ident: 10.1016/j.ins.2022.11.029_b0070 doi: 10.1109/CEC.2016.7743922 – ident: 10.1016/j.ins.2022.11.029_b0035 – volume: 579 start-page: 33 year: 2021 ident: 10.1016/j.ins.2022.11.029_b0115 article-title: NFDDE: a novelty-hybrid-fitness driving differential evolution algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.07.082 – ident: 10.1016/j.ins.2022.11.029_b0120 doi: 10.1109/CEC45853.2021.9504959 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.ins.2022.11.029_b0040 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optimiz. doi: 10.1023/A:1008202821328 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.ins.2022.11.029_b0160 article-title: IEEE Congress on Evolutionary Computation (CEC) publication-title: IEEE – volume: 68 year: 2022 ident: 10.1016/j.ins.2022.11.029_b0125 article-title: Differential evolution with orthogonal array-based initialization and a novel selection strategy publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.101010 – volume: 9 start-page: 68629 year: 2021 ident: 10.1016/j.ins.2022.11.029_b0010 article-title: Differential evolution mutations: taxonomy, comparison and convergence analysis publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3077242 – volume: 606 start-page: 350 year: 2022 ident: 10.1016/j.ins.2022.11.029_b0220 article-title: A novel adaptive L-SHADE algorithm and its application in UAV swarm resource configuration problem publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.05.058 – ident: 10.1016/j.ins.2022.11.029_b0165 doi: 10.1109/CEC45853.2021.9504814 – start-page: 1 year: 2022 ident: 10.1016/j.ins.2022.11.029_b0210 article-title: Using an estimation of distribution algorithm to achieve multitasking semantic web service composition publication-title: IEEE Trans. Evol. Comput. – volume: 50 year: 2019 ident: 10.1016/j.ins.2022.11.029_b0110 article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.10.006 |
| SSID | ssj0004766 |
| Score | 2.5927582 |
| Snippet | To fully exploit the strong exploitation of differential evolution (DE) and the strong exploration of the estimation-of-distribution algorithm (EDA), an... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 439 |
| SubjectTerms | Artificial intelligence Differential evolution Estimation distribution algorithm Hybridization |
| Title | An improved differential evolution by hybridizing with estimation-of-distribution algorithm |
| URI | https://dx.doi.org/10.1016/j.ins.2022.11.029 |
| Volume | 619 |
| WOSCitedRecordID | wos000900806500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFH4qHQc4IBhDDDbkA-IwlMlN3Ng-VtMmQNPEoUidOESO42ydSjpKqTb48zzXdmoGndiBS1Q5tpPmfXn-3ovfewCvBStr3TN5ktd5jQZK1U9UWclE4WpV5lQoVi-rlhzzkxMxGsmPnc7PEAuzmPCmEVdX8vK_ihrbUNg2dPYO4m4nxQb8jULHI4odj_8k-EFjQx9n0wVSyVD-ZG794mbhr2sp5_m1DdUa_2h9sTbbhgtjTKZ1Utl8ur4U1ls1OZvOsM-XmMn6OKZlB7-MtvT8eLlF4HRs6xOfrXScK4QcNQ2Ds9p6rb-OmxXG_IkDd0L5Id47kWaRdyJEC9DE2i2xxs29lnQ6k7lsRn75ZS7P-B-a3TkZLtAcsUnW03Tf5l71zpLfsmjfWN3aPYdhO9tFgVMUdgq0fgqc4h5spLwvRRc2Bu8PRx9WYbXcfeoOfyF8FF9uD7xxH3-nNRFVGT6GR97GIAOHjSfQMc0mPIwyT27Cro9XIW9IJEjiNf1T-DxoSEARiVFEWhSR8ppEKCIWRWQ9ikiLoi34dHQ4PHiX-DociU4lnyOJ0RJJjeF5X_ayrKepKA3LK2PpL61Mz2RUoymhaImPsV_xnGmVSSWNNJqLOnsG3WbamOdAMsFrmaa0TCvBBCoF649QJZPMZLw2dBtoeIyF9knqba2USbFWfNuw1w65dBlabuvMgmwK_2446lggztYPe3GXa7yEB6s3YQe689l3swv39WI-_jZ75UH2Cza9oCQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+differential+evolution+by+hybridizing+with+estimation-of-distribution+algorithm&rft.jtitle=Information+sciences&rft.au=Li%2C+Yintong&rft.au=Han%2C+Tong&rft.au=Tang%2C+Shangqin&rft.au=Huang%2C+Changqiang&rft.date=2023-01-01&rft.issn=0020-0255&rft.volume=619&rft.spage=439&rft.epage=456&rft_id=info:doi/10.1016%2Fj.ins.2022.11.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_11_029 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |