An improved differential evolution by hybridizing with estimation-of-distribution algorithm

To fully exploit the strong exploitation of differential evolution (DE) and the strong exploration of the estimation-of-distribution algorithm (EDA), an improved differential evolution by hybridizing the estimation-of-distribution algorithm named IDE-EDA is proposed in the study. Firstly, a novel co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 619; s. 439 - 456
Hlavní autori: Li, Yintong, Han, Tong, Tang, Shangqin, Huang, Changqiang, Zhou, Huan, Wang, Yuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.01.2023
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To fully exploit the strong exploitation of differential evolution (DE) and the strong exploration of the estimation-of-distribution algorithm (EDA), an improved differential evolution by hybridizing the estimation-of-distribution algorithm named IDE-EDA is proposed in the study. Firstly, a novel cooperative evolutionary framework is proposed to hybridize LSHADE-RSP, a state-of-the-art DE variant incorporating DE-based effective improvement strategies, with EDA. Secondly, the dominant individuals generated by LSHADE-RSP are used to establish the probability distribution model for EDA to enhance its exploitation in each generation, and a new control parameter is introduced to balance exploitation and exploration. Then, the use of greed strategy works via EDA to fully retain high-quality solutions to the next generation to improve the convergence speed. Finally, the greedy strategy is used to shrink the external archive when its size decreases due to the reduction of the population size. A comparison of IDE-EDA with cutting-edge DE-based and EDA-based variants, including AAVS-EDA, EB-LSHADE, ELSHADE-SPACMA, jSO, LSHADE-RSP, RWGEDA, HSES, and APGSK-IMODE, was implemented to verify its efficiency. The statistical test results on the IEEE CEC 2018 and IEEE CEC 2021 test suites demonstrate that IDE-EDA is an excellent hybrid algorithm. The MATLAB source code of IDE-EDA can be downloaded from https://github.com/Yintong-Li/IDE-EDA.
AbstractList To fully exploit the strong exploitation of differential evolution (DE) and the strong exploration of the estimation-of-distribution algorithm (EDA), an improved differential evolution by hybridizing the estimation-of-distribution algorithm named IDE-EDA is proposed in the study. Firstly, a novel cooperative evolutionary framework is proposed to hybridize LSHADE-RSP, a state-of-the-art DE variant incorporating DE-based effective improvement strategies, with EDA. Secondly, the dominant individuals generated by LSHADE-RSP are used to establish the probability distribution model for EDA to enhance its exploitation in each generation, and a new control parameter is introduced to balance exploitation and exploration. Then, the use of greed strategy works via EDA to fully retain high-quality solutions to the next generation to improve the convergence speed. Finally, the greedy strategy is used to shrink the external archive when its size decreases due to the reduction of the population size. A comparison of IDE-EDA with cutting-edge DE-based and EDA-based variants, including AAVS-EDA, EB-LSHADE, ELSHADE-SPACMA, jSO, LSHADE-RSP, RWGEDA, HSES, and APGSK-IMODE, was implemented to verify its efficiency. The statistical test results on the IEEE CEC 2018 and IEEE CEC 2021 test suites demonstrate that IDE-EDA is an excellent hybrid algorithm. The MATLAB source code of IDE-EDA can be downloaded from https://github.com/Yintong-Li/IDE-EDA.
Author Li, Yintong
Wang, Yuan
Han, Tong
Tang, Shangqin
Huang, Changqiang
Zhou, Huan
Author_xml – sequence: 1
  givenname: Yintong
  surname: Li
  fullname: Li, Yintong
  email: yintongli0007@163.com
– sequence: 2
  givenname: Tong
  surname: Han
  fullname: Han, Tong
– sequence: 3
  givenname: Shangqin
  surname: Tang
  fullname: Tang, Shangqin
– sequence: 4
  givenname: Changqiang
  surname: Huang
  fullname: Huang, Changqiang
– sequence: 5
  givenname: Huan
  surname: Zhou
  fullname: Zhou, Huan
– sequence: 6
  givenname: Yuan
  surname: Wang
  fullname: Wang, Yuan
BookMark eNp9kD1PwzAQhi1UJNrCD2DLH0g4O40di6mq-JIqscDEYCX2pb0qTSrbFJVfT0qZGDrdcO9zuveZsFHXd8jYLYeMA5d3m4y6kAkQIuM8A6Ev2JiXSqRSaD5iYwABKYiiuGKTEDYAMFNSjtnHvEtou_P9Hl3iqGnQYxepahPc9-1npL5L6kOyPtSeHH1Tt0q-KK4TDJG21XGd9k3qKERP9SletaveD5ntNbtsqjbgzd-csvfHh7fFc7p8fXpZzJepFVrFtASrQSpUstA8z7mFssaZdAiSK3DIMQcLPK-gLnRZOCVntsp1pVGjVWWTT5k63bW-D8FjYyzF39-ir6g1HMzRkdmYwZE5OjKcm8HRQPJ_5M4PtfzhLHN_YnCotCf0JljCzqIjjzYa19MZ-gePgYOC
CitedBy_id crossref_primary_10_3390_biomimetics9120727
crossref_primary_10_1016_j_eswa_2025_126403
crossref_primary_10_3390_biomimetics9090509
crossref_primary_10_1016_j_engappai_2023_107017
crossref_primary_10_1016_j_swevo_2023_101283
crossref_primary_10_3390_sym17020153
crossref_primary_10_1016_j_jhydrol_2025_133236
crossref_primary_10_1016_j_swevo_2024_101718
crossref_primary_10_1007_s13042_024_02198_0
crossref_primary_10_1109_TETCI_2024_3367809
crossref_primary_10_3390_sym17020223
crossref_primary_10_1007_s10586_025_05287_z
crossref_primary_10_1007_s11227_023_05618_0
crossref_primary_10_1016_j_swevo_2023_101450
crossref_primary_10_1016_j_swevo_2023_101294
crossref_primary_10_1371_journal_pone_0302207
crossref_primary_10_1016_j_cma_2024_117251
crossref_primary_10_3390_biomimetics9110652
crossref_primary_10_26599_TST_2024_9010185
crossref_primary_10_3390_plants12040941
crossref_primary_10_1007_s40747_023_01186_1
crossref_primary_10_1016_j_eswa_2025_128158
crossref_primary_10_3390_app14219976
crossref_primary_10_1016_j_swevo_2024_101663
crossref_primary_10_1007_s10462_025_11125_w
crossref_primary_10_1007_s10586_024_04915_4
crossref_primary_10_1016_j_advengsoft_2025_103983
crossref_primary_10_1016_j_eswa_2025_128403
crossref_primary_10_3390_drones7010055
crossref_primary_10_1007_s10586_025_05445_3
crossref_primary_10_1016_j_neucom_2023_126899
crossref_primary_10_1016_j_asoc_2024_112314
crossref_primary_10_1016_j_asoc_2025_112753
crossref_primary_10_1007_s10489_025_06609_9
crossref_primary_10_1016_j_engappai_2023_107760
crossref_primary_10_1016_j_energy_2025_136982
crossref_primary_10_1016_j_swevo_2023_101454
crossref_primary_10_1016_j_engappai_2023_107001
crossref_primary_10_1016_j_eswa_2024_125130
crossref_primary_10_1016_j_swevo_2025_101930
crossref_primary_10_1016_j_swevo_2024_101811
crossref_primary_10_1016_j_ins_2024_120548
crossref_primary_10_1007_s10586_024_04698_8
crossref_primary_10_1007_s10586_023_04173_w
crossref_primary_10_1109_TEVC_2024_3354850
crossref_primary_10_1007_s11831_025_10307_7
crossref_primary_10_1016_j_swevo_2023_101351
crossref_primary_10_1007_s13042_024_02146_y
crossref_primary_10_3390_math11153355
crossref_primary_10_1016_j_swevo_2024_101807
crossref_primary_10_1016_j_ins_2024_120110
crossref_primary_10_1007_s13042_023_02006_1
crossref_primary_10_1016_j_eswa_2025_129587
crossref_primary_10_1016_j_asoc_2024_112628
crossref_primary_10_1016_j_ins_2024_121009
crossref_primary_10_3390_biomimetics10080504
Cites_doi 10.1016/j.knosys.2018.02.001
10.1080/03610928008827904
10.1109/TEVC.2009.2014613
10.1016/j.ins.2022.07.043
10.1109/TCYB.2018.2869567
10.1007/s13042-017-0711-7
10.1109/TASE.2020.3019694
10.1109/CEC.2017.7969336
10.1109/CEC.2013.6557555
10.1109/CEC.2016.7744163
10.1007/s40815-019-00723-w
10.1109/CEC.2017.7969456
10.1109/ACCESS.2019.2946216
10.3390/axioms10030194
10.1109/CEC.2014.6900380
10.1109/TEVC.2006.872133
10.1109/CEC.2018.8477977
10.1109/CEC.2017.7969307
10.1007/s00521-021-06849-z
10.1007/978-1-4615-1539-5
10.1109/CEC.2016.7748322
10.1109/TEVC.2014.2387433
10.1016/j.enconman.2021.114030
10.1016/j.ins.2022.07.075
10.1109/ACCESS.2019.2908262
10.1007/978-3-030-58930-1_7
10.1007/s00500-005-0537-1
10.1109/TEVC.2021.3060811
10.1145/3377929.3389871
10.1109/CEC.2016.7743922
10.1016/j.ins.2021.07.082
10.1109/CEC45853.2021.9504959
10.1023/A:1008202821328
10.1016/j.swevo.2021.101010
10.1109/ACCESS.2021.3077242
10.1016/j.ins.2022.05.058
10.1109/CEC45853.2021.9504814
10.1016/j.swevo.2018.10.006
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.11.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 456
ExternalDocumentID 10_1016_j_ins_2022_11_029
S0020025522013184
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-80c9067e76591331c08be46de06170de1e30c013a0b5985d764ca39a9e9ec78f3
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900806500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:47:42 EST 2025
Sat Nov 29 07:29:32 EST 2025
Fri Feb 23 02:40:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Estimation distribution algorithm
Hybridization
Artificial intelligence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-80c9067e76591331c08be46de06170de1e30c013a0b5985d764ca39a9e9ec78f3
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2022_11_029
crossref_primary_10_1016_j_ins_2022_11_029
elsevier_sciencedirect_doi_10_1016_j_ins_2022_11_029
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References N.H. Awad, M.Z. Ali, J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization, 2013.
Zhou, Sun, Zhang (b0180) 2015; 19
Zhang, Shi, Strategy, for Solving Single Objective Bound Constrained Problems, in (b0160) 2018; 2018
A.W. Mohamed, A.A. Hadi, A.K. Mohamed, P. Agrawal, A. Kumar, P.N. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2021 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization, 2020.
P. Bujok, J. Tvrdik, R. Polakova, Evaluating the performance of SHADE with competing strategies on CEC 2014 single-parameter test suite, in: 2016 IEEE Congress on Evolutionary Computation, CEC 2016, IEEE, 2016: pp. 5002–5009. 10.1109/CEC.2016.7748322.
J. Brest, M.S. Maučec, B. Bošković, IL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization, in: 2016 IEEE Congress on Evolutionary Computation, CEC 2016, 2016: pp. 1188–1195. 10.1109/CEC.2016.7743922.
Ochoa, Castillo, Melin, Soria (b0085) 2021; 10
Cao, Wang, Fu, Jia, Tian (b0135) 2022; 608
Hollander, Wolfe, Chicken (b0215) 2015
Wang, Zhao, Han, Wei, Liang, Li (b0195) 2019; 7
Sallam, Hossain, Chakrabortty, Ryan (b0015) 2021; 237
Ochoa, Castillo, Soria (b0080) 2020; 22
N.H. Awad, M.Z. Ali, P.N. Suganthan, Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings, 2017: pp. 372–379. 10.1109/CEC.2017.7969336.
V. Stanovov, S. Akhmedova, E. Semenkin, NL-SHADE-RSP Algorithm with Adaptive Archive and Selective Pressure for CEC 2021 Numerical Optimization, in: 2021 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2021: pp. 809–816. 10.1109/CEC45853.2021.9504959.
R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in: 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2014: pp. 1658–1665. 10.1109/CEC.2014.6900380.
Li, Han, Zhou, Tang, Zhao (b0220) 2022; 606
Liang, Ren, Yao, Feng, Chen, Guo (b0200) 2020; 50
A.W. Mohamed, A.A. Hadi, P. Agrawal, K.M. Sallam, A.K. Mohamed, Gaining-Sharing Knowledge Based Algorithm with Adaptive Parameters Hybrid with IMODE Algorithm for Solving CEC 2021 Benchmark Problems, in: 2021 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2021: pp. 841–848. 10.1109/CEC45853.2021.9504814.
N.H. Awad, M.Z. Ali, J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on real-parameter optimization, 2016.
Zhang, Sanderson (b0055) 2009; 13
J. Brest, M.S. Maucec, B. Boskovic, Single objective real-parameter optimization: Algorithm jSO, in: 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2017: pp. 1311–1318. 10.1109/CEC.2017.7969456.
P. Larrañaga, J.A. Lozano, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, 2002. http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0792374665.
Zeng, Hong, Zhang, Zhang, Chen (b0130) 2022; 609
Pang, Li, He, Shan, Wang (b0185) 2019; 7
Tang, Song, Liu, Liu (b0205) 2021; 18
A.A. Hadi, A.W. Mohamed, K.M. Jambi, Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm, in: Studies in Computational Intelligence, 2021: pp. 103–121. 10.1007/978-3-030-58930-1_7.
Kumar, Biswas, Suganthan (b0125) 2022; 68
Mohamed, Mohamed (b0155) 2019; 10
Xia, Tong, Zhang, Xu, Yang, Gui, Li, Li (b0115) 2021; 579
N.H. Awad, M.Z. Ali, P.N. Suganthan, R.G. Reynolds, An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems, in: 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016: pp. 2958–2965. 10.1109/CEC.2016.7744163.
Mohamed, Hadi, Jambi (b0110) 2019; 50
Davenport (b0225) 1980; 9
.
Ren, Liang, Wang, Zhang, Pang, Li (b0190) 2018; 146
Wang, Ma, Chen, Hartmann (b0210) 2022
K. De Jong, Evolutionary computation, in: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, 2020: pp. 327–342. 10.1145/3377929.3389871.
A.W. Mohamed, A.A. Hadi, A.M. Fattouh, K.M. Jambi, LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2017: pp. 145–152. 10.1109/CEC.2017.7969307.
V. Stanovov, S. Akhmedova, E. Semenkin, LSHADE Algorithm with Rank-Based Selective Pressure Strategy for Solving CEC 2017 Benchmark Problems, in: 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, IEEE, 2018: pp. 1–8. 10.1109/CEC.2018.8477977.
Mohamed, Hadi, Mohamed (b0010) 2021; 9
P.N.S.G.W. R. Mallipeddi, Problem definitions and evaluation criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization, 2010.
Sun, Liu, Back, Xu (b0090) 2021; 25
Storn, Price (b0040) 1997; 11
F. Zhao, H. Bao, L. Wang, X. He, Jonrinaldi, A hybrid cooperative differential evolution assisted by CMA-ES with local search mechanism, Neural Computing and Applications. 34 (2022) 7173–7197. 10.1007/s00521-021-06849-z.
Brest, Greiner, Bošković, Mernik, Zumer (b0050) 2006; 10
Teo (b0045) 2006; 10
R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for Differential Evolution, in: 2013 IEEE Congress on Evolutionary Computation, CEC 2013, 2013: pp. 71–78. 10.1109/CEC.2013.6557555.
Li (10.1016/j.ins.2022.11.029_b0220) 2022; 606
Ochoa (10.1016/j.ins.2022.11.029_b0080) 2020; 22
Ren (10.1016/j.ins.2022.11.029_b0190) 2018; 146
Hollander (10.1016/j.ins.2022.11.029_b0215) 2015
Davenport (10.1016/j.ins.2022.11.029_b0225) 1980; 9
Wang (10.1016/j.ins.2022.11.029_b0210) 2022
Pang (10.1016/j.ins.2022.11.029_b0185) 2019; 7
Wang (10.1016/j.ins.2022.11.029_b0195) 2019; 7
10.1016/j.ins.2022.11.029_b0165
10.1016/j.ins.2022.11.029_b0100
Kumar (10.1016/j.ins.2022.11.029_b0125) 2022; 68
10.1016/j.ins.2022.11.029_b0145
Mohamed (10.1016/j.ins.2022.11.029_b0010) 2021; 9
10.1016/j.ins.2022.11.029_b0025
10.1016/j.ins.2022.11.029_b0140
10.1016/j.ins.2022.11.029_b0020
Sun (10.1016/j.ins.2022.11.029_b0090) 2021; 25
Teo (10.1016/j.ins.2022.11.029_b0045) 2006; 10
10.1016/j.ins.2022.11.029_b0065
10.1016/j.ins.2022.11.029_b0120
Sallam (10.1016/j.ins.2022.11.029_b0015) 2021; 237
Storn (10.1016/j.ins.2022.11.029_b0040) 1997; 11
10.1016/j.ins.2022.11.029_b0060
Tang (10.1016/j.ins.2022.11.029_b0205) 2021; 18
Mohamed (10.1016/j.ins.2022.11.029_b0155) 2019; 10
Zhang (10.1016/j.ins.2022.11.029_b0055) 2009; 13
Ochoa (10.1016/j.ins.2022.11.029_b0085) 2021; 10
Mohamed (10.1016/j.ins.2022.11.029_b0110) 2019; 50
Zhou (10.1016/j.ins.2022.11.029_b0180) 2015; 19
10.1016/j.ins.2022.11.029_b0005
Zeng (10.1016/j.ins.2022.11.029_b0130) 2022; 609
10.1016/j.ins.2022.11.029_b0105
Cao (10.1016/j.ins.2022.11.029_b0135) 2022; 608
Brest (10.1016/j.ins.2022.11.029_b0050) 2006; 10
Zhang (10.1016/j.ins.2022.11.029_b0160) 2018; 2018
10.1016/j.ins.2022.11.029_b0035
10.1016/j.ins.2022.11.029_b0095
10.1016/j.ins.2022.11.029_b0150
10.1016/j.ins.2022.11.029_b0030
10.1016/j.ins.2022.11.029_b0075
10.1016/j.ins.2022.11.029_b0175
10.1016/j.ins.2022.11.029_b0070
Xia (10.1016/j.ins.2022.11.029_b0115) 2021; 579
10.1016/j.ins.2022.11.029_b0170
Liang (10.1016/j.ins.2022.11.029_b0200) 2020; 50
References_xml – reference: P.N.S.G.W. R. Mallipeddi, Problem definitions and evaluation criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization, 2010.
– volume: 19
  start-page: 807
  year: 2015
  end-page: 822
  ident: b0180
  article-title: An estimation of distribution algorithm with cheap and expensive local search methods
  publication-title: IEEE Trans. Evol. Comput.
– reference: A.W. Mohamed, A.A. Hadi, A.K. Mohamed, P. Agrawal, A. Kumar, P.N. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2021 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization, 2020.
– volume: 18
  start-page: 1478
  year: 2021
  end-page: 1491
  ident: b0205
  article-title: An estimation of distribution algorithm with filtering and learning
  publication-title: IEEE Trans. Automat. Sci. Eng.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 7
  ident: b0160
  article-title: IEEE Congress on Evolutionary Computation (CEC)
  publication-title: IEEE
– volume: 609
  start-page: 353
  year: 2022
  end-page: 375
  ident: b0130
  article-title: Improving differential evolution using a best discarded vector selection strategy
  publication-title: Inform. Sci.
– reference: J. Brest, M.S. Maucec, B. Boskovic, Single objective real-parameter optimization: Algorithm jSO, in: 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2017: pp. 1311–1318. 10.1109/CEC.2017.7969456.
– reference: P. Larrañaga, J.A. Lozano, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, 2002. http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0792374665.
– reference: F. Zhao, H. Bao, L. Wang, X. He, Jonrinaldi, A hybrid cooperative differential evolution assisted by CMA-ES with local search mechanism, Neural Computing and Applications. 34 (2022) 7173–7197. 10.1007/s00521-021-06849-z.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0040
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optimiz.
– volume: 608
  start-page: 1416
  year: 2022
  end-page: 1440
  ident: b0135
  article-title: An adaptive differential evolution framework based on population feature information
  publication-title: Inform. Sci.
– volume: 10
  start-page: 673
  year: 2006
  end-page: 686
  ident: b0045
  article-title: Exploring dynamic self-adaptive populations in differential evolution
  publication-title: Soft Comput.
– volume: 50
  start-page: 140
  year: 2020
  end-page: 152
  ident: b0200
  article-title: Enhancing gaussian estimation of distribution algorithm by exploiting evolution direction with archive
  publication-title: IEEE Trans. Cybernet.
– volume: 68
  year: 2022
  ident: b0125
  article-title: Differential evolution with orthogonal array-based initialization and a novel selection strategy
  publication-title: Swarm Evol. Comput.
– reference: N.H. Awad, M.Z. Ali, J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization, 2013.
– reference: A.W. Mohamed, A.A. Hadi, P. Agrawal, K.M. Sallam, A.K. Mohamed, Gaining-Sharing Knowledge Based Algorithm with Adaptive Parameters Hybrid with IMODE Algorithm for Solving CEC 2021 Benchmark Problems, in: 2021 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2021: pp. 841–848. 10.1109/CEC45853.2021.9504814.
– volume: 9
  start-page: 68629
  year: 2021
  end-page: 68662
  ident: b0010
  article-title: Differential evolution mutations: taxonomy, comparison and convergence analysis
  publication-title: IEEE Access.
– reference: V. Stanovov, S. Akhmedova, E. Semenkin, NL-SHADE-RSP Algorithm with Adaptive Archive and Selective Pressure for CEC 2021 Numerical Optimization, in: 2021 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2021: pp. 809–816. 10.1109/CEC45853.2021.9504959.
– reference: R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in: 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2014: pp. 1658–1665. 10.1109/CEC.2014.6900380.
– volume: 237
  year: 2021
  ident: b0015
  article-title: An improved gaining-sharing knowledge algorithm for parameter extraction of photovoltaic models
  publication-title: Energy Convers. Manage.
– volume: 146
  start-page: 142
  year: 2018
  end-page: 151
  ident: b0190
  article-title: Anisotropic adaptive variance scaling for Gaussian estimation of distribution algorithm
  publication-title: Knowl. Based Syst.
– volume: 7
  start-page: 43298
  year: 2019
  end-page: 43317
  ident: b0195
  article-title: A gaussian estimation of distribution algorithm with random walk strategies and its application in optimal missile guidance handover for multi-UCAV in over-the-horizon air combat
  publication-title: IEEE Access.
– volume: 606
  start-page: 350
  year: 2022
  end-page: 367
  ident: b0220
  article-title: A novel adaptive L-SHADE algorithm and its application in UAV swarm resource configuration problem
  publication-title: Inform. Sci.
– reference: N.H. Awad, M.Z. Ali, J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on real-parameter optimization, 2016.
– year: 2015
  ident: b0215
  article-title: Nonparametric statistical methods
  publication-title: Wiley
– volume: 25
  start-page: 666
  year: 2021
  end-page: 680
  ident: b0090
  article-title: Learning adaptive differential evolution algorithm from optimization experiences by policy gradient
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2022
  end-page: 15
  ident: b0210
  article-title: Using an estimation of distribution algorithm to achieve multitasking semantic web service composition
  publication-title: IEEE Trans. Evol. Comput.
– reference: N.H. Awad, M.Z. Ali, P.N. Suganthan, Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings, 2017: pp. 372–379. 10.1109/CEC.2017.7969336.
– reference: P. Bujok, J. Tvrdik, R. Polakova, Evaluating the performance of SHADE with competing strategies on CEC 2014 single-parameter test suite, in: 2016 IEEE Congress on Evolutionary Computation, CEC 2016, IEEE, 2016: pp. 5002–5009. 10.1109/CEC.2016.7748322.
– reference: A.A. Hadi, A.W. Mohamed, K.M. Jambi, Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm, in: Studies in Computational Intelligence, 2021: pp. 103–121. 10.1007/978-3-030-58930-1_7.
– volume: 579
  start-page: 33
  year: 2021
  end-page: 54
  ident: b0115
  article-title: NFDDE: a novelty-hybrid-fitness driving differential evolution algorithm
  publication-title: Inform. Sci.
– reference: N.H. Awad, M.Z. Ali, P.N. Suganthan, R.G. Reynolds, An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems, in: 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016: pp. 2958–2965. 10.1109/CEC.2016.7744163.
– volume: 22
  start-page: 414
  year: 2020
  end-page: 427
  ident: b0080
  article-title: High-speed interval type-2 fuzzy system for dynamic crossover parameter adaptation in differential evolution and its application to controller optimization
  publication-title: Int. J. Fuzzy Syst.
– reference: .
– reference: K. De Jong, Evolutionary computation, in: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, 2020: pp. 327–342. 10.1145/3377929.3389871.
– volume: 50
  year: 2019
  ident: b0110
  article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization
  publication-title: Swarm Evol. Comput.
– reference: J. Brest, M.S. Maučec, B. Bošković, IL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization, in: 2016 IEEE Congress on Evolutionary Computation, CEC 2016, 2016: pp. 1188–1195. 10.1109/CEC.2016.7743922.
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: b0055
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– reference: V. Stanovov, S. Akhmedova, E. Semenkin, LSHADE Algorithm with Rank-Based Selective Pressure Strategy for Solving CEC 2017 Benchmark Problems, in: 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, IEEE, 2018: pp. 1–8. 10.1109/CEC.2018.8477977.
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: b0050
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 7
  start-page: 146379
  year: 2019
  end-page: 146389
  ident: b0185
  article-title: An EDA-GA hybrid algorithm for multi-objective task scheduling in cloud computing
  publication-title: IEEE Access.
– reference: R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for Differential Evolution, in: 2013 IEEE Congress on Evolutionary Computation, CEC 2013, 2013: pp. 71–78. 10.1109/CEC.2013.6557555.
– volume: 9
  start-page: 571
  year: 1980
  end-page: 595
  ident: b0225
  article-title: Approximations of the critical region of the friedman statistic
  publication-title: Commun. Statist. Theory Methods
– volume: 10
  start-page: 253
  year: 2019
  end-page: 277
  ident: b0155
  article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization
  publication-title: Int. J. Mach. Learn. Cybernet.
– volume: 10
  start-page: 194
  year: 2021
  ident: b0085
  article-title: Differential evolution with shadowed and general type-2 fuzzy systems for dynamic parameter adaptation in optimal design of fuzzy controllers
  publication-title: Axioms
– reference: A.W. Mohamed, A.A. Hadi, A.M. Fattouh, K.M. Jambi, LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2017: pp. 145–152. 10.1109/CEC.2017.7969307.
– ident: 10.1016/j.ins.2022.11.029_b0025
– volume: 146
  start-page: 142
  year: 2018
  ident: 10.1016/j.ins.2022.11.029_b0190
  article-title: Anisotropic adaptive variance scaling for Gaussian estimation of distribution algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.02.001
– volume: 9
  start-page: 571
  year: 1980
  ident: 10.1016/j.ins.2022.11.029_b0225
  article-title: Approximations of the critical region of the friedman statistic
  publication-title: Commun. Statist. Theory Methods
  doi: 10.1080/03610928008827904
– volume: 13
  start-page: 945
  year: 2009
  ident: 10.1016/j.ins.2022.11.029_b0055
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– volume: 608
  start-page: 1416
  year: 2022
  ident: 10.1016/j.ins.2022.11.029_b0135
  article-title: An adaptive differential evolution framework based on population feature information
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.07.043
– volume: 50
  start-page: 140
  year: 2020
  ident: 10.1016/j.ins.2022.11.029_b0200
  article-title: Enhancing gaussian estimation of distribution algorithm by exploiting evolution direction with archive
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2018.2869567
– volume: 10
  start-page: 253
  year: 2019
  ident: 10.1016/j.ins.2022.11.029_b0155
  article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization
  publication-title: Int. J. Mach. Learn. Cybernet.
  doi: 10.1007/s13042-017-0711-7
– volume: 18
  start-page: 1478
  year: 2021
  ident: 10.1016/j.ins.2022.11.029_b0205
  article-title: An estimation of distribution algorithm with filtering and learning
  publication-title: IEEE Trans. Automat. Sci. Eng.
  doi: 10.1109/TASE.2020.3019694
– ident: 10.1016/j.ins.2022.11.029_b0140
  doi: 10.1109/CEC.2017.7969336
– ident: 10.1016/j.ins.2022.11.029_b0060
  doi: 10.1109/CEC.2013.6557555
– ident: 10.1016/j.ins.2022.11.029_b0075
  doi: 10.1109/CEC.2016.7744163
– volume: 22
  start-page: 414
  year: 2020
  ident: 10.1016/j.ins.2022.11.029_b0080
  article-title: High-speed interval type-2 fuzzy system for dynamic crossover parameter adaptation in differential evolution and its application to controller optimization
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-019-00723-w
– ident: 10.1016/j.ins.2022.11.029_b0100
  doi: 10.1109/CEC.2017.7969456
– volume: 7
  start-page: 146379
  year: 2019
  ident: 10.1016/j.ins.2022.11.029_b0185
  article-title: An EDA-GA hybrid algorithm for multi-objective task scheduling in cloud computing
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2946216
– volume: 10
  start-page: 194
  year: 2021
  ident: 10.1016/j.ins.2022.11.029_b0085
  article-title: Differential evolution with shadowed and general type-2 fuzzy systems for dynamic parameter adaptation in optimal design of fuzzy controllers
  publication-title: Axioms
  doi: 10.3390/axioms10030194
– ident: 10.1016/j.ins.2022.11.029_b0065
  doi: 10.1109/CEC.2014.6900380
– year: 2015
  ident: 10.1016/j.ins.2022.11.029_b0215
  article-title: Nonparametric statistical methods
  publication-title: Wiley
– volume: 10
  start-page: 646
  year: 2006
  ident: 10.1016/j.ins.2022.11.029_b0050
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– ident: 10.1016/j.ins.2022.11.029_b0105
  doi: 10.1109/CEC.2018.8477977
– ident: 10.1016/j.ins.2022.11.029_b0145
  doi: 10.1109/CEC.2017.7969307
– ident: 10.1016/j.ins.2022.11.029_b0170
  doi: 10.1007/s00521-021-06849-z
– ident: 10.1016/j.ins.2022.11.029_b0030
– ident: 10.1016/j.ins.2022.11.029_b0175
  doi: 10.1007/978-1-4615-1539-5
– ident: 10.1016/j.ins.2022.11.029_b0095
  doi: 10.1109/CEC.2016.7748322
– volume: 19
  start-page: 807
  year: 2015
  ident: 10.1016/j.ins.2022.11.029_b0180
  article-title: An estimation of distribution algorithm with cheap and expensive local search methods
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2387433
– volume: 237
  year: 2021
  ident: 10.1016/j.ins.2022.11.029_b0015
  article-title: An improved gaining-sharing knowledge algorithm for parameter extraction of photovoltaic models
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.114030
– volume: 609
  start-page: 353
  year: 2022
  ident: 10.1016/j.ins.2022.11.029_b0130
  article-title: Improving differential evolution using a best discarded vector selection strategy
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.07.075
– volume: 7
  start-page: 43298
  year: 2019
  ident: 10.1016/j.ins.2022.11.029_b0195
  article-title: A gaussian estimation of distribution algorithm with random walk strategies and its application in optimal missile guidance handover for multi-UCAV in over-the-horizon air combat
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2908262
– ident: 10.1016/j.ins.2022.11.029_b0150
  doi: 10.1007/978-3-030-58930-1_7
– volume: 10
  start-page: 673
  year: 2006
  ident: 10.1016/j.ins.2022.11.029_b0045
  article-title: Exploring dynamic self-adaptive populations in differential evolution
  publication-title: Soft Comput.
  doi: 10.1007/s00500-005-0537-1
– ident: 10.1016/j.ins.2022.11.029_b0020
– volume: 25
  start-page: 666
  year: 2021
  ident: 10.1016/j.ins.2022.11.029_b0090
  article-title: Learning adaptive differential evolution algorithm from optimization experiences by policy gradient
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3060811
– ident: 10.1016/j.ins.2022.11.029_b0005
  doi: 10.1145/3377929.3389871
– ident: 10.1016/j.ins.2022.11.029_b0070
  doi: 10.1109/CEC.2016.7743922
– ident: 10.1016/j.ins.2022.11.029_b0035
– volume: 579
  start-page: 33
  year: 2021
  ident: 10.1016/j.ins.2022.11.029_b0115
  article-title: NFDDE: a novelty-hybrid-fitness driving differential evolution algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.07.082
– ident: 10.1016/j.ins.2022.11.029_b0120
  doi: 10.1109/CEC45853.2021.9504959
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.ins.2022.11.029_b0040
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optimiz.
  doi: 10.1023/A:1008202821328
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.ins.2022.11.029_b0160
  article-title: IEEE Congress on Evolutionary Computation (CEC)
  publication-title: IEEE
– volume: 68
  year: 2022
  ident: 10.1016/j.ins.2022.11.029_b0125
  article-title: Differential evolution with orthogonal array-based initialization and a novel selection strategy
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.101010
– volume: 9
  start-page: 68629
  year: 2021
  ident: 10.1016/j.ins.2022.11.029_b0010
  article-title: Differential evolution mutations: taxonomy, comparison and convergence analysis
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3077242
– volume: 606
  start-page: 350
  year: 2022
  ident: 10.1016/j.ins.2022.11.029_b0220
  article-title: A novel adaptive L-SHADE algorithm and its application in UAV swarm resource configuration problem
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.05.058
– ident: 10.1016/j.ins.2022.11.029_b0165
  doi: 10.1109/CEC45853.2021.9504814
– start-page: 1
  year: 2022
  ident: 10.1016/j.ins.2022.11.029_b0210
  article-title: Using an estimation of distribution algorithm to achieve multitasking semantic web service composition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 50
  year: 2019
  ident: 10.1016/j.ins.2022.11.029_b0110
  article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.10.006
SSID ssj0004766
Score 2.5927582
Snippet To fully exploit the strong exploitation of differential evolution (DE) and the strong exploration of the estimation-of-distribution algorithm (EDA), an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 439
SubjectTerms Artificial intelligence
Differential evolution
Estimation distribution algorithm
Hybridization
Title An improved differential evolution by hybridizing with estimation-of-distribution algorithm
URI https://dx.doi.org/10.1016/j.ins.2022.11.029
Volume 619
WOSCitedRecordID wos000900806500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFH4qHQc4IBhDDDbkA-IwlMlN3Ng-VtMmQNPEoUidOESO42ydSjpKqTb48zzXdmoGndiBS1Q5tpPmfXn-3ovfewCvBStr3TN5ktd5jQZK1U9UWclE4WpV5lQoVi-rlhzzkxMxGsmPnc7PEAuzmPCmEVdX8vK_ihrbUNg2dPYO4m4nxQb8jULHI4odj_8k-EFjQx9n0wVSyVD-ZG794mbhr2sp5_m1DdUa_2h9sTbbhgtjTKZ1Utl8ur4U1ls1OZvOsM-XmMn6OKZlB7-MtvT8eLlF4HRs6xOfrXScK4QcNQ2Ds9p6rb-OmxXG_IkDd0L5Id47kWaRdyJEC9DE2i2xxs29lnQ6k7lsRn75ZS7P-B-a3TkZLtAcsUnW03Tf5l71zpLfsmjfWN3aPYdhO9tFgVMUdgq0fgqc4h5spLwvRRc2Bu8PRx9WYbXcfeoOfyF8FF9uD7xxH3-nNRFVGT6GR97GIAOHjSfQMc0mPIwyT27Cro9XIW9IJEjiNf1T-DxoSEARiVFEWhSR8ppEKCIWRWQ9ikiLoi34dHQ4PHiX-DociU4lnyOJ0RJJjeF5X_ayrKepKA3LK2PpL61Mz2RUoymhaImPsV_xnGmVSSWNNJqLOnsG3WbamOdAMsFrmaa0TCvBBCoF649QJZPMZLw2dBtoeIyF9knqba2USbFWfNuw1w65dBlabuvMgmwK_2446lggztYPe3GXa7yEB6s3YQe689l3swv39WI-_jZ75UH2Cza9oCQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+differential+evolution+by+hybridizing+with+estimation-of-distribution+algorithm&rft.jtitle=Information+sciences&rft.au=Li%2C+Yintong&rft.au=Han%2C+Tong&rft.au=Tang%2C+Shangqin&rft.au=Huang%2C+Changqiang&rft.date=2023-01-01&rft.issn=0020-0255&rft.volume=619&rft.spage=439&rft.epage=456&rft_id=info:doi/10.1016%2Fj.ins.2022.11.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_11_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon