Joint optimization of demand-side operational utility and manufacture-side energy consumption in a distributed parallel machine environment

•Energy-efficient scheduling model with demand-side operational utility is studied.•An optimal speed adjustment strategy is designed to improve operational utility.•A problem-dependent memetic algorithm is presented.•Elaborate tests are conducted to verify the performance of the memetic algorithm. P...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & industrial engineering Ročník 164; s. 107863
Hlavní autori: Zhang, Like, Deng, Qianwang, Zhao, Yan, Fan, Qing, Liu, Xiaoyan, Gong, Guiliang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2022
Predmet:
ISSN:0360-8352, 1879-0550
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Energy-efficient scheduling model with demand-side operational utility is studied.•An optimal speed adjustment strategy is designed to improve operational utility.•A problem-dependent memetic algorithm is presented.•Elaborate tests are conducted to verify the performance of the memetic algorithm. Previous production scheduling models often set optimization objectives from the perspective of manufacturers, such as makespan, tardiness and energy consumption. However, none of the objectives can reflect the extent to which the scheduling plan affects the demand side. In fact, the delivery time of orders will directly affect the equipment utilization or project schedule on the demand side. In this paper, we focus on a new objective named total operational utility of all distributed equipment from the demand side, and integrate it into an energy-efficient production scheduling model based on the distributed parallel machine environment, in which the total energy consumption of manufacture side including processing energy consumption and transportation energy consumption is another objective. The orders are the spare parts used to replace the deteriorated components of distributed equipment based on forecasting information. Based on the scheduled delivery time fed back from the scheduling plan, the relationship among operating speed, deterioration rate and operating efficiency is used, and an optimal speed adjustment strategy is developed for each equipment to improve the operational utility. A memetic algorithm (NMA) based on the structure of NSGA-Ⅱ is presented for the model. A list scheduling heuristic and a problem-dependent heuristic are designed to generate initial population. Two problem-dependent local search operators are developed to enhance the searching ability. By performing extensive experiments and comparing NMA with some well-known algorithms, the effectiveness and superiority of NMA are demonstrated.
AbstractList •Energy-efficient scheduling model with demand-side operational utility is studied.•An optimal speed adjustment strategy is designed to improve operational utility.•A problem-dependent memetic algorithm is presented.•Elaborate tests are conducted to verify the performance of the memetic algorithm. Previous production scheduling models often set optimization objectives from the perspective of manufacturers, such as makespan, tardiness and energy consumption. However, none of the objectives can reflect the extent to which the scheduling plan affects the demand side. In fact, the delivery time of orders will directly affect the equipment utilization or project schedule on the demand side. In this paper, we focus on a new objective named total operational utility of all distributed equipment from the demand side, and integrate it into an energy-efficient production scheduling model based on the distributed parallel machine environment, in which the total energy consumption of manufacture side including processing energy consumption and transportation energy consumption is another objective. The orders are the spare parts used to replace the deteriorated components of distributed equipment based on forecasting information. Based on the scheduled delivery time fed back from the scheduling plan, the relationship among operating speed, deterioration rate and operating efficiency is used, and an optimal speed adjustment strategy is developed for each equipment to improve the operational utility. A memetic algorithm (NMA) based on the structure of NSGA-Ⅱ is presented for the model. A list scheduling heuristic and a problem-dependent heuristic are designed to generate initial population. Two problem-dependent local search operators are developed to enhance the searching ability. By performing extensive experiments and comparing NMA with some well-known algorithms, the effectiveness and superiority of NMA are demonstrated.
ArticleNumber 107863
Author Gong, Guiliang
Liu, Xiaoyan
Deng, Qianwang
Fan, Qing
Zhang, Like
Zhao, Yan
Author_xml – sequence: 1
  givenname: Like
  surname: Zhang
  fullname: Zhang, Like
  email: likezhang@hnu.edu.cn
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 2
  givenname: Qianwang
  surname: Deng
  fullname: Deng, Qianwang
  email: deng_arbeit@hnu.edu.cn
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 3
  givenname: Yan
  surname: Zhao
  fullname: Zhao, Yan
  email: zy1593969724@163.com
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 4
  givenname: Qing
  surname: Fan
  fullname: Fan, Qing
  email: fqzlzk@163.com
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 5
  givenname: Xiaoyan
  surname: Liu
  fullname: Liu, Xiaoyan
  email: xiaoyan.liu@hnu.edu.cn
  organization: College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
– sequence: 6
  givenname: Guiliang
  surname: Gong
  fullname: Gong, Guiliang
  email: gongguiliang@hnu.edu.cn
  organization: Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
BookMark eNp9kE1OHDEQhS1EJAbIAdj5Aj2x-99ihRAEIiQ2sG65y-WkRt32yHYjDVfg0nhmWGXBqn7e-0qqd85OnXfI2JUUaylk-2uzBsJ1KUqZ565vqxO2kn2nCtE04pStRNWKoq-a8oydx7gRQtSNkiv28ceTS9xvE830rhN5x73lBmftTBHJYNYwHAQ98SXRRGnHs8izY7Ea0hLwaESH4e-Og3dxmbeHU-S45oZiCjQuCQ3f6qCnCadMwz9ye-iNgnczunTJflg9Rfz5VS_Y6_3dy-1D8fT8-_H25qmAUnWp6IXSo-pHA1UN9QgyN6YxtsdWjy3oxlpoawW2A1s1pmuUgbo2qlWjUmM5VhesO96F4GMMaAegdPgwBU3TIMWwz3TY5D0O-0yHY6aZlP-R20CzDrtvmesjg_mlN8IwxGxxgIYCQhqMp2_oT8rIlxM
CitedBy_id crossref_primary_10_1088_1742_6596_2921_1_012020
crossref_primary_10_1080_21693277_2024_2383656
crossref_primary_10_1016_j_eswa_2022_119422
crossref_primary_10_3390_informatics9010005
crossref_primary_10_1016_j_asoc_2024_112110
crossref_primary_10_1016_j_jii_2025_100829
crossref_primary_10_1080_0305215X_2024_2437004
crossref_primary_10_1016_j_cie_2025_111361
crossref_primary_10_1016_j_eswa_2022_119204
crossref_primary_10_1016_j_swevo_2022_101139
crossref_primary_10_1016_j_eswa_2022_117984
crossref_primary_10_1016_j_eswa_2023_121129
crossref_primary_10_1016_j_rcim_2023_102534
crossref_primary_10_1109_TSMC_2024_3370376
crossref_primary_10_1007_s10586_025_05303_2
crossref_primary_10_1016_j_eswa_2023_120600
crossref_primary_10_1108_JM2_01_2022_0014
crossref_primary_10_1016_j_ress_2025_110799
crossref_primary_10_1016_j_swevo_2023_101421
crossref_primary_10_1016_j_asoc_2022_109764
crossref_primary_10_1016_j_eswa_2024_124194
crossref_primary_10_1016_j_rcim_2023_102707
crossref_primary_10_1109_TETCI_2025_3540422
crossref_primary_10_1016_j_cie_2025_111517
Cites_doi 10.1016/j.asoc.2020.106629
10.1016/j.ress.2020.107047
10.1016/j.asoc.2020.106544
10.1016/j.cie.2016.12.020
10.1093/jcde/qwaa055
10.1016/j.cie.2020.106342
10.1016/j.cie.2020.106320
10.1016/j.swevo.2020.100742
10.1007/s11047-016-9599-5
10.1016/j.jclepro.2019.04.046
10.1016/j.cie.2020.106431
10.1016/j.cie.2019.106102
10.1016/j.swevo.2020.100745
10.1016/j.cam.2020.113195
10.1016/j.eswa.2020.113678
10.1080/0305215X.2020.1714041
10.1016/j.cor.2020.104918
10.1016/j.jclepro.2018.05.056
10.1007/s00170-015-7657-2
10.1162/evco.2008.16.2.225
10.3390/act10020027
10.1109/4235.996017
10.1016/j.cie.2019.03.033
10.1016/j.ijepes.2019.105796
10.1109/TEVC.2004.826067
10.1016/j.compchemeng.2020.106734
10.1016/j.swevo.2021.100858
10.1080/00207543.2019.1642529
10.1016/j.cor.2018.05.022
10.1016/j.omega.2018.01.001
10.1016/j.knosys.2020.105536
10.1109/TASE.2013.2274517
10.1016/j.eswa.2019.112902
10.1016/j.asoc.2018.11.043
10.1007/s10845-019-01521-9
10.1016/j.cor.2016.11.008
10.1016/j.cie.2017.09.005
10.1016/j.rcim.2018.09.007
10.1016/j.eswa.2020.113445
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2021.107863
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2021_107863
S0360835221007671
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-809ab98bdc34c4bc1dc3d5df8e6ab6ca5ffc649cf7cf35d759dc44d969b99b2b3
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752860400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:18:49 EST 2025
Tue Nov 18 22:42:19 EST 2025
Fri Feb 23 02:43:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy consumption
Spare parts
Operational utility
Distributed parallel machine
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-809ab98bdc34c4bc1dc3d5df8e6ab6ca5ffc649cf7cf35d759dc44d969b99b2b3
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2021_107863
crossref_primary_10_1016_j_cie_2021_107863
elsevier_sciencedirect_doi_10_1016_j_cie_2021_107863
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Aydilek, Aydilek, Allahverdi (b0005) 2020; 1–14
Cui, Lu (b0025) 2017; 80
Xiao, Zhang, Tang, Zhou (b0205) 2020; 202
Xu, Han, Yang, Wang, Zhu, Zhang (b0210) 2020; 118
Jing, Pan, Gao, Wang (b0080) 2020; 96
Huang, Pan, Gao (b0060) 2020; 59
Wu, Sun, Xiao (b0200) 2018; 99
Wang, Liu, Jin (b0165) 2019; 18
Deb, Pratap, Agarwal, Meyarivan (b0030) 2002; 6
Paprocka, Kempa, Skolud (b0150) 2020; 53
Shen, Zhu (b0160) 2017; 32
Yuan, Xu (b0220) 2015; 12
Yuksel, Tasgetiren, Kandiller, Gao (b0225) 2020; 145
Gong, Chiong, Deng, Luo (b0045) 2020; 31
Coello, Pulido, Lechuga (b0020) 2004; 8
Li, Peng, Du, Guo, Xu, Zhuang (b0095) 2017; 113
Malik, Kim (b0130) 2021; 10
Wang, Li, Gao, Li (b0170) 2021; 62
Wu, Che (b0195) 2019; 82
Gong, Jiao, Du, Bo (b0050) 2008; 16
Liu, Dong, Chen, Lv, Ye (b0110) 2019; 55
Lei, Wang (b0090) 2019; 12
Qiao, Liu, Ma (b0155) 2020
Bai, Xue, Wang, Wu, Lin, Abdulkadir (b0010) 2020; 156
Wang, Wu, Chu, Yu (b0180) 2020; 118
Zheng, Wang, Wang (b0240) 2020; 194
Wang, Wu, Chu, Yu, Liu (b0185) 2020; 140
Pan, Gao, Wang (b0140) 2021
Lu, Gao, Pan, Li, Zheng (b0115) 2019; 75
Lei, Liu (b0085) 2020; 141
Jia, Wang, Wu, Yang, Zhang, Chen (b0070) 2019; 131
Zheng, Zhou, Xu, Chen (b0245) 2020; 58
Fu, Tian, Fathollahi-Fard, Ahmadi, Zhang (b0035) 2019; 226
Pan, Lei, Wang (b0145) 2020
Zhang, Deng, Gong, Han (b0230) 2019; 58
Yagmur, Kesen (b0215) 2020; 142
He, Guijt, de Weerdt, Xing, Yorke-Smith (b0055) 2019; 138
Bhosale, Pawar (b0015) 2020; 7
Jiang, Wang, Peng (b0075) 2020; 58
Wu, Ave, Harjunkoski, Bouaswaig, Schneider, Roth, Imsland (b0190) 2020; 135
Gong, Chiong, Deng, Han, Zhang, Lin, Li (b0040) 2020; 141
Lu, Pei, Liu, Pardalos (b0125) 2021; 384
Moench, Shen (b0135) 2021; 127
Li, Yang, Zhang, Liu (b0105) 2016; 84
Lu, Li, Gao, Liao, Yi (b0120) 2017; 104
Wang, Wang, Yu, Ma, Liu (b0175) 2018; 193
Zhao, Zhao, Wang, Song (b0235) 2020; 160
Ji, Zhang, Liao, Cheng, Tan (b0065) 2018; 57
Li, Huang, Wu, Guo (b0100) 2020; 95
Gong (10.1016/j.cie.2021.107863_b0050) 2008; 16
Ji (10.1016/j.cie.2021.107863_b0065) 2018; 57
Yagmur (10.1016/j.cie.2021.107863_b0215) 2020; 142
He (10.1016/j.cie.2021.107863_b0055) 2019; 138
Jiang (10.1016/j.cie.2021.107863_b0075) 2020; 58
Li (10.1016/j.cie.2021.107863_b0095) 2017; 113
Liu (10.1016/j.cie.2021.107863_b0110) 2019; 55
Wu (10.1016/j.cie.2021.107863_b0195) 2019; 82
Bhosale (10.1016/j.cie.2021.107863_b0015) 2020; 7
Zhao (10.1016/j.cie.2021.107863_b0235) 2020; 160
Malik (10.1016/j.cie.2021.107863_b0130) 2021; 10
Moench (10.1016/j.cie.2021.107863_b0135) 2021; 127
Aydilek (10.1016/j.cie.2021.107863_b0005) 2020; 1–14
Deb (10.1016/j.cie.2021.107863_b0030) 2002; 6
Coello (10.1016/j.cie.2021.107863_b0020) 2004; 8
Wang (10.1016/j.cie.2021.107863_b0180) 2020; 118
Jing (10.1016/j.cie.2021.107863_b0080) 2020; 96
Wang (10.1016/j.cie.2021.107863_b0170) 2021; 62
Gong (10.1016/j.cie.2021.107863_b0045) 2020; 31
Gong (10.1016/j.cie.2021.107863_b0040) 2020; 141
Yuksel (10.1016/j.cie.2021.107863_b0225) 2020; 145
Shen (10.1016/j.cie.2021.107863_b0160) 2017; 32
Yuan (10.1016/j.cie.2021.107863_b0220) 2015; 12
Lu (10.1016/j.cie.2021.107863_b0115) 2019; 75
Lei (10.1016/j.cie.2021.107863_b0090) 2019; 12
Pan (10.1016/j.cie.2021.107863_b0140) 2021
Wu (10.1016/j.cie.2021.107863_b0190) 2020; 135
Xiao (10.1016/j.cie.2021.107863_b0205) 2020; 202
Huang (10.1016/j.cie.2021.107863_b0060) 2020; 59
Lei (10.1016/j.cie.2021.107863_b0085) 2020; 141
Paprocka (10.1016/j.cie.2021.107863_b0150) 2020; 53
Wu (10.1016/j.cie.2021.107863_b0200) 2018; 99
Li (10.1016/j.cie.2021.107863_b0105) 2016; 84
Qiao (10.1016/j.cie.2021.107863_b0155) 2020
Zhang (10.1016/j.cie.2021.107863_b0230) 2019; 58
Pan (10.1016/j.cie.2021.107863_b0145) 2020
Wang (10.1016/j.cie.2021.107863_b0165) 2019; 18
Jia (10.1016/j.cie.2021.107863_b0070) 2019; 131
Wang (10.1016/j.cie.2021.107863_b0185) 2020; 140
Cui (10.1016/j.cie.2021.107863_b0025) 2017; 80
Lu (10.1016/j.cie.2021.107863_b0120) 2017; 104
Bai (10.1016/j.cie.2021.107863_b0010) 2020; 156
Lu (10.1016/j.cie.2021.107863_b0125) 2021; 384
Fu (10.1016/j.cie.2021.107863_b0035) 2019; 226
Wang (10.1016/j.cie.2021.107863_b0175) 2018; 193
Zheng (10.1016/j.cie.2021.107863_b0240) 2020; 194
Li (10.1016/j.cie.2021.107863_b0100) 2020; 95
Xu (10.1016/j.cie.2021.107863_b0210) 2020; 118
Zheng (10.1016/j.cie.2021.107863_b0245) 2020; 58
References_xml – volume: 384
  year: 2021
  ident: b0125
  article-title: A hybrid DBH-VNS for high-end equipment production scheduling with machine failures and preventive maintenance activities
  publication-title: Journal of Computational and Applied Mathematics
– volume: 141
  start-page: 106320
  year: 2020
  ident: b0085
  article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance
  publication-title: Computers & Industrial Engineering
– volume: 156
  start-page: 113445
  year: 2020
  ident: b0010
  article-title: Effective algorithms for single-machine learning-effect scheduling to minimize completion-time-based criteria with release dates
  publication-title: Expert Systems with Applications
– volume: 53
  start-page: 165
  year: 2020
  end-page: 183
  ident: b0150
  article-title: Predictive maintenance scheduling with reliability characteristics depending on the phase of the machine life cycle
  publication-title: Engineering Optimization
– volume: 58
  start-page: 100745
  year: 2020
  ident: b0075
  article-title: Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition
  publication-title: Swarm and Evolutionary Computation
– start-page: 1
  year: 2020
  end-page: 21
  ident: b0155
  article-title: Industrial big-data-driven and CPS-based adaptive production scheduling for smart manufacturing
  publication-title: International Journal of Production Research
– volume: 96
  start-page: 106629
  year: 2020
  ident: b0080
  article-title: An effective Iterated Greedy algorithm for the distributed permutation flowshop scheduling with due windows
  publication-title: Applied Soft Computing
– volume: 31
  start-page: 1443
  year: 2020
  end-page: 1466
  ident: b0045
  article-title: A memetic algorithm for multi-objective distributed production scheduling: Minimizing the makespan and total energy consumption
  publication-title: Journal of Intelligent Manufacturing
– volume: 58
  start-page: 4103
  year: 2020
  end-page: 4120
  ident: b0245
  article-title: Energy-efficient scheduling for multi-objective two-stage flow shop using a hybrid ant colony optimisation algorithm
  publication-title: International Journal of Production Research
– volume: 193
  start-page: 424
  year: 2018
  end-page: 440
  ident: b0175
  article-title: Bi-objective identical parallel machine scheduling to minimize total energy consumption and makespan
  publication-title: Journal of Cleaner Production
– volume: 141
  year: 2020
  ident: b0040
  article-title: Energy-efficient flexible flow shop scheduling with worker flexibility
  publication-title: Expert Systems with Applications
– volume: 95
  start-page: 106544
  year: 2020
  ident: b0100
  article-title: An improved artificial bee colony algorithm for solving multi-objective low-carbon flexible job shop scheduling problem
  publication-title: Applied Soft Computing
– volume: 140
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0185
  article-title: An improved formulation and efficient heuristics for the discrete parallel-machine makespan ScheLoc problem
  publication-title: Computers & Industrial Engineering
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0030
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 1–14
  year: 2020
  ident: b0005
  article-title: Algorithms to minimize total completion time in a two-machine flowshop problem with uncertain set-up times
  publication-title: Engineering Optimization
– volume: 202
  year: 2020
  ident: b0205
  article-title: Joint optimization of opportunistic maintenance and production scheduling considering batch production mode and varying operational conditions
  publication-title: Reliability Engineering & System Safety
– volume: 145
  year: 2020
  ident: b0225
  article-title: An energy-efficient bi-objective no-wait permutation flowshop scheduling problem to minimize total tardiness and total energy consumption
  publication-title: Computers & Industrial Engineering
– volume: 104
  start-page: 156
  year: 2017
  end-page: 174
  ident: b0120
  article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
  publication-title: Computers & Industrial Engineering
– volume: 138
  start-page: 106102
  year: 2019
  ident: b0055
  article-title: Order acceptance and scheduling with sequence-dependent setup times: A new memetic algorithm and benchmark of the state of the art
  publication-title: Computers & Industrial Engineering
– volume: 118
  year: 2020
  ident: b0180
  article-title: Identical parallel machine scheduling with assurance of maximum waiting time for an emergency job
  publication-title: Computers & Operations Research
– volume: 142
  year: 2020
  ident: b0215
  article-title: A memetic algorithm for joint production and distribution scheduling with due dates
  publication-title: Computers & Industrial Engineering
– volume: 18
  start-page: 679
  year: 2019
  end-page: 694
  ident: b0165
  article-title: A proactive scheduling approach to steel rolling process with stochastic machine breakdown
  publication-title: Natural Computing
– volume: 160
  start-page: 113678
  year: 2020
  ident: b0235
  article-title: An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0090
  article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping
  publication-title: Engineering Optimization
– volume: 7
  start-page: 761
  year: 2020
  end-page: 774
  ident: b0015
  article-title: Production planning and scheduling problem of continuous parallel lines with demand uncertain and different production capacities
  publication-title: Journal Of Computational Design And Engineering
– volume: 12
  start-page: 336
  year: 2015
  end-page: 353
  ident: b0220
  article-title: Multiobjective flexible job shop scheduling using Memetic algorithms
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 131
  start-page: 41
  year: 2019
  end-page: 56
  ident: b0070
  article-title: Multi-objective energy-aware batch scheduling using ant colony optimization algorithm
  publication-title: Computers & Industrial Engineering
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: b0020
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 57
  start-page: 1
  year: 2018
  end-page: 18
  ident: b0065
  article-title: Multitasking parallel-machine scheduling with machine-dependent slack due-window assignment
  publication-title: International Journal of Production Research
– volume: 113
  start-page: 10
  year: 2017
  end-page: 26
  ident: b0095
  article-title: Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems
  publication-title: Computers & Industrial Engineering
– start-page: 1
  year: 2021
  end-page: 14
  ident: b0140
  article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems
  publication-title: IEEE Transactions on Cybernetics
– volume: 135
  year: 2020
  ident: b0190
  article-title: Optimal production and maintenance scheduling for a multiproduct batch plant considering degradation
  publication-title: Computers & Chemical Engineering
– volume: 226
  start-page: 515
  year: 2019
  end-page: 525
  ident: b0035
  article-title: Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint
  publication-title: Journal of Cleaner Production
– volume: 55
  start-page: 173
  year: 2019
  end-page: 182
  ident: b0110
  article-title: Single-machine-based joint optimization of predictive maintenance planning and production scheduling
  publication-title: Robotics and Computer-Integrated Manufacturing
– year: 2020
  ident: b0145
  article-title: A knowledge-based two-population optimization algorithm for distributed energy-efficient parallel machines scheduling
  publication-title: IEEE transactions on cybernetics
– volume: 127
  year: 2021
  ident: b0135
  article-title: Parallel machine scheduling with the total weighted delivery time performance measure in distributed manufacturing
  publication-title: Computers & Operations Research
– volume: 10
  year: 2021
  ident: b0130
  article-title: Improved control scheduling based on learning to prediction mechanism for efficient machine maintenance in smart factory
  publication-title: Actuators
– volume: 194
  start-page: 11
  year: 2020
  ident: b0240
  article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop
  publication-title: Knowledge-Based Systems
– volume: 80
  start-page: 11
  year: 2017
  end-page: 22
  ident: b0025
  article-title: Minimizing the makespan on a single machine with flexible maintenances and jobs' release dates
  publication-title: Computers & Operations Research
– volume: 75
  start-page: 728
  year: 2019
  end-page: 749
  ident: b0115
  article-title: A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution
  publication-title: Applied Soft Computing
– volume: 58
  start-page: 1
  year: 2019
  end-page: 20
  ident: b0230
  article-title: A new unrelated parallel machine scheduling problem with tool changes to minimise the total energy consumption
  publication-title: International Journal of Production Research
– volume: 99
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0200
  article-title: Risk measure of job shop scheduling with random machine breakdowns
  publication-title: Computers & Operations Research
– volume: 59
  year: 2020
  ident: b0060
  article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm and Evolutionary Computation
– volume: 82
  start-page: 155
  year: 2019
  end-page: 165
  ident: b0195
  article-title: A memetic differential evolution algorithm for energy-efficient parallel machine scheduling
  publication-title: Omega-International Journal of Management Science
– volume: 62
  year: 2021
  ident: b0170
  article-title: Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D
  publication-title: Swarm and Evolutionary Computation
– volume: 32
  start-page: 207
  year: 2017
  end-page: 214
  ident: b0160
  article-title: Uncertain flexible flow shop scheduling problem subject to breakdowns
  publication-title: Journal Of Intelligent & Fuzzy Systems
– volume: 84
  start-page: 213
  year: 2016
  end-page: 226
  ident: b0105
  article-title: Unrelated parallel machine scheduling problem with energy and tardiness cost
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 118
  year: 2020
  ident: b0210
  article-title: Condition-based midterm maintenance scheduling with rescheduling strategy
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 16
  start-page: 225
  year: 2008
  end-page: 255
  ident: b0050
  article-title: Multiobjective immune algorithm with nondominated neighbor-based selection
  publication-title: Evolutionary Computation
– start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0155
  article-title: Industrial big-data-driven and CPS-based adaptive production scheduling for smart manufacturing
  publication-title: International Journal of Production Research
– volume: 96
  start-page: 106629
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0080
  article-title: An effective Iterated Greedy algorithm for the distributed permutation flowshop scheduling with due windows
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106629
– volume: 202
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0205
  article-title: Joint optimization of opportunistic maintenance and production scheduling considering batch production mode and varying operational conditions
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2020.107047
– volume: 127
  year: 2021
  ident: 10.1016/j.cie.2021.107863_b0135
  article-title: Parallel machine scheduling with the total weighted delivery time performance measure in distributed manufacturing
  publication-title: Computers & Operations Research
– volume: 58
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.cie.2021.107863_b0230
  article-title: A new unrelated parallel machine scheduling problem with tool changes to minimise the total energy consumption
  publication-title: International Journal of Production Research
– volume: 95
  start-page: 106544
  issue: 5
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0100
  article-title: An improved artificial bee colony algorithm for solving multi-objective low-carbon flexible job shop scheduling problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106544
– volume: 104
  start-page: 156
  year: 2017
  ident: 10.1016/j.cie.2021.107863_b0120
  article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.12.020
– volume: 7
  start-page: 761
  issue: 6
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0015
  article-title: Production planning and scheduling problem of continuous parallel lines with demand uncertain and different production capacities
  publication-title: Journal Of Computational Design And Engineering
  doi: 10.1093/jcde/qwaa055
– volume: 142
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0215
  article-title: A memetic algorithm for joint production and distribution scheduling with due dates
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106342
– volume: 141
  start-page: 106320
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0085
  article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106320
– volume: 59
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0060
  article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100742
– volume: 140
  start-page: 1
  issue: Feb.
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0185
  article-title: An improved formulation and efficient heuristics for the discrete parallel-machine makespan ScheLoc problem
  publication-title: Computers & Industrial Engineering
– volume: 18
  start-page: 679
  issue: 4
  year: 2019
  ident: 10.1016/j.cie.2021.107863_b0165
  article-title: A proactive scheduling approach to steel rolling process with stochastic machine breakdown
  publication-title: Natural Computing
  doi: 10.1007/s11047-016-9599-5
– volume: 226
  start-page: 515
  year: 2019
  ident: 10.1016/j.cie.2021.107863_b0035
  article-title: Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.04.046
– volume: 145
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0225
  article-title: An energy-efficient bi-objective no-wait permutation flowshop scheduling problem to minimize total tardiness and total energy consumption
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106431
– volume: 138
  start-page: 106102
  year: 2019
  ident: 10.1016/j.cie.2021.107863_b0055
  article-title: Order acceptance and scheduling with sequence-dependent setup times: A new memetic algorithm and benchmark of the state of the art
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.106102
– volume: 58
  start-page: 100745
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0075
  article-title: Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100745
– volume: 384
  year: 2021
  ident: 10.1016/j.cie.2021.107863_b0125
  article-title: A hybrid DBH-VNS for high-end equipment production scheduling with machine failures and preventive maintenance activities
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2020.113195
– volume: 160
  start-page: 113678
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0235
  article-title: An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113678
– volume: 53
  start-page: 165
  issue: 1
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0150
  article-title: Predictive maintenance scheduling with reliability characteristics depending on the phase of the machine life cycle
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2020.1714041
– volume: 118
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0180
  article-title: Identical parallel machine scheduling with assurance of maximum waiting time for an emergency job
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2020.104918
– volume: 193
  start-page: 424
  year: 2018
  ident: 10.1016/j.cie.2021.107863_b0175
  article-title: Bi-objective identical parallel machine scheduling to minimize total energy consumption and makespan
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.05.056
– volume: 57
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.cie.2021.107863_b0065
  article-title: Multitasking parallel-machine scheduling with machine-dependent slack due-window assignment
  publication-title: International Journal of Production Research
– volume: 84
  start-page: 213
  issue: 1–4
  year: 2016
  ident: 10.1016/j.cie.2021.107863_b0105
  article-title: Unrelated parallel machine scheduling problem with energy and tardiness cost
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-015-7657-2
– volume: 1–14
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0005
  article-title: Algorithms to minimize total completion time in a two-machine flowshop problem with uncertain set-up times
  publication-title: Engineering Optimization
– volume: 16
  start-page: 225
  issue: 2
  year: 2008
  ident: 10.1016/j.cie.2021.107863_b0050
  article-title: Multiobjective immune algorithm with nondominated neighbor-based selection
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.2008.16.2.225
– volume: 10
  issue: 2
  year: 2021
  ident: 10.1016/j.cie.2021.107863_b0130
  article-title: Improved control scheduling based on learning to prediction mechanism for efficient machine maintenance in smart factory
  publication-title: Actuators
  doi: 10.3390/act10020027
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.cie.2021.107863_b0030
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 131
  start-page: 41
  year: 2019
  ident: 10.1016/j.cie.2021.107863_b0070
  article-title: Multi-objective energy-aware batch scheduling using ant colony optimization algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.03.033
– volume: 118
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0210
  article-title: Condition-based midterm maintenance scheduling with rescheduling strategy
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2019.105796
– start-page: 1
  year: 2021
  ident: 10.1016/j.cie.2021.107863_b0140
  article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems
  publication-title: IEEE Transactions on Cybernetics
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.cie.2021.107863_b0020
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826067
– volume: 135
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0190
  article-title: Optimal production and maintenance scheduling for a multiproduct batch plant considering degradation
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2020.106734
– volume: 12
  start-page: 1
  year: 2019
  ident: 10.1016/j.cie.2021.107863_b0090
  article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping
  publication-title: Engineering Optimization
– volume: 62
  year: 2021
  ident: 10.1016/j.cie.2021.107863_b0170
  article-title: Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100858
– volume: 58
  start-page: 4103
  issue: 13
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0245
  article-title: Energy-efficient scheduling for multi-objective two-stage flow shop using a hybrid ant colony optimisation algorithm
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2019.1642529
– volume: 99
  start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2021.107863_b0200
  article-title: Risk measure of job shop scheduling with random machine breakdowns
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2018.05.022
– volume: 82
  start-page: 155
  year: 2019
  ident: 10.1016/j.cie.2021.107863_b0195
  article-title: A memetic differential evolution algorithm for energy-efficient parallel machine scheduling
  publication-title: Omega-International Journal of Management Science
  doi: 10.1016/j.omega.2018.01.001
– volume: 194
  start-page: 11
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0240
  article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105536
– volume: 12
  start-page: 336
  issue: 1
  year: 2015
  ident: 10.1016/j.cie.2021.107863_b0220
  article-title: Multiobjective flexible job shop scheduling using Memetic algorithms
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2013.2274517
– volume: 141
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0040
  article-title: Energy-efficient flexible flow shop scheduling with worker flexibility
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112902
– volume: 75
  start-page: 728
  year: 2019
  ident: 10.1016/j.cie.2021.107863_b0115
  article-title: A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.11.043
– volume: 31
  start-page: 1443
  issue: 6
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0045
  article-title: A memetic algorithm for multi-objective distributed production scheduling: Minimizing the makespan and total energy consumption
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-019-01521-9
– volume: 32
  start-page: 207
  issue: 1
  year: 2017
  ident: 10.1016/j.cie.2021.107863_b0160
  article-title: Uncertain flexible flow shop scheduling problem subject to breakdowns
  publication-title: Journal Of Intelligent & Fuzzy Systems
– year: 2020
  ident: 10.1016/j.cie.2021.107863_b0145
  article-title: A knowledge-based two-population optimization algorithm for distributed energy-efficient parallel machines scheduling
– volume: 80
  start-page: 11
  year: 2017
  ident: 10.1016/j.cie.2021.107863_b0025
  article-title: Minimizing the makespan on a single machine with flexible maintenances and jobs' release dates
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2016.11.008
– volume: 113
  start-page: 10
  year: 2017
  ident: 10.1016/j.cie.2021.107863_b0095
  article-title: Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.09.005
– volume: 55
  start-page: 173
  year: 2019
  ident: 10.1016/j.cie.2021.107863_b0110
  article-title: Single-machine-based joint optimization of predictive maintenance planning and production scheduling
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2018.09.007
– volume: 156
  start-page: 113445
  year: 2020
  ident: 10.1016/j.cie.2021.107863_b0010
  article-title: Effective algorithms for single-machine learning-effect scheduling to minimize completion-time-based criteria with release dates
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113445
SSID ssj0004591
Score 2.466373
Snippet •Energy-efficient scheduling model with demand-side operational utility is studied.•An optimal speed adjustment strategy is designed to improve operational...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107863
SubjectTerms Distributed parallel machine
Energy consumption
Operational utility
Spare parts
Title Joint optimization of demand-side operational utility and manufacture-side energy consumption in a distributed parallel machine environment
URI https://dx.doi.org/10.1016/j.cie.2021.107863
Volume 164
WOSCitedRecordID wos000752860400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcWAqIsskHTkgZZXEWHytoBVVVUamg4RQ5XqSUNDOape1_6B_hZ_Ic24lnShE9cIkix36x8r48Pz-_BaH3YZImuVBZEBU0DYikJCiqggQyj0UsU8WirvLc96P8-LiYTOjX0eiXi4W5aPK2La6u6Oy_shragNk6dPYO7O6JQgPcA9PhCmyH6z8x_nBa6-N9EAXnNsZSK4RCnrNWBLo4JzyTc2cDhIl0iri2n0OPlQ50WM2l6ShNYCDvwjRnzi2S6VMdUygLtFWdO7xpZAOjtVum9EPnfM3XlY9YdGCrh4ohcsiIeMOKfVT_7IH3SZq2EwD0JVvr3Jl7fww4PzBW3RNH0lo1YEMc9h4iLporDLR2uCapM-LJWti4FkY43lgGjEXibAzicQzUo_HQdz3l9sZS2DsoOt-3sxJIlJpEaUjcQ9txnlJYArb3vuxPDr3M9KY6o5u3O0HvfAk35vFnHcjTa06foEd2Q4L3DJCeopFsd9BjuznBVvQvdtBDL3PlM3TdoQz7KMNThT2UYQ9l2KIMw0O8iTJsUIY9lOG6xQx7KMMOZdiiDHsoe46-Heyffvwc2LoeAY9pvgSliLKKFpXgCeGk4hHciFSoQmasyjhLleIZoVzlXCWpgM8tOCGCZrSitIqr5AXaaqetfIkwYVKGvBIZEYxQoJsJlSuVVSSLBOwUdlHovjRw0ji36NorTXkrh3fRh37IzGR8-Vtn4thXWpXVqKIlQPH2Ya_u8o7X6MHwh7xBW8v5Sr5F9_nFsl7M31kc_gbgK79W
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+optimization+of+demand-side+operational+utility+and+manufacture-side+energy+consumption+in+a+distributed+parallel+machine+environment&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Zhang%2C+Like&rft.au=Deng%2C+Qianwang&rft.au=Zhao%2C+Yan&rft.au=Fan%2C+Qing&rft.date=2022-02-01&rft.issn=0360-8352&rft.volume=164&rft.spage=107863&rft_id=info:doi/10.1016%2Fj.cie.2021.107863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2021_107863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon