Dynamic niching particle swarm optimization with an external archive-guided mechanism for multimodal multi-objective optimization
Multimodal multi-objective optimization problems (MMOPs) contain multiple equivalent Pareto optimal sets (PSs) corresponding to the same Pareto front (PF). However, simultaneously locating well-distributed and well-converged multiple equivalent global PSs and PF remains challenging. Therefore, this...
Uloženo v:
| Vydáno v: | Information sciences Ročník 653; s. 119794 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.01.2024
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Multimodal multi-objective optimization problems (MMOPs) contain multiple equivalent Pareto optimal sets (PSs) corresponding to the same Pareto front (PF). However, simultaneously locating well-distributed and well-converged multiple equivalent global PSs and PF remains challenging. Therefore, this paper proposes dynamic niching particle swarm optimization (PSO) with an external archive-guided (AG) mechanism, termed DNPSO-AG, for solving MMOPs. In DNPSO-AG, a clustering-based dynamic niching technique is integrated with PSO to divide the population into multiple niches. In addition, a leader updating method controls the updating of the leaders. Furthermore, a novel external archive-guided mechanism guides the evolution of multiple niches and enhances the distribution of solutions, which comprises two strategies: the adaptive division of the external archive strategy, which adaptively divides the external archive into multiple sub-archives, and the distance-based sub-archive and niche matching strategy, which assigns sub-archives to multiple niches for maintenance. The experimental results demonstrate that the proposed DNPSO-AG outperforms seven other state-of-the-art competitors on the CEC 2019 MMOP test suite in terms of the inverted generational distance (IGD) and IGD in the decision space (IGDX) metrics, with improvements of 21.3% and 9.1% over the best-performing competitor, respectively. |
|---|---|
| ISSN: | 0020-0255 1872-6291 |
| DOI: | 10.1016/j.ins.2023.119794 |