Approximation algorithms for orthogonal line centers
The problem of k orthogonal line center is about computing a set of k axis-parallel lines for a given set of points in ℜ2 such that the maximum among the distances between each point to its nearest line is minimized. A 2-factor approximation algorithm and a (53,32) bi-criteria approximation algorith...
Uloženo v:
| Vydáno v: | Discrete Applied Mathematics Ročník 338; s. 69 - 76 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
30.10.2023
|
| Témata: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The problem of k orthogonal line center is about computing a set of k axis-parallel lines for a given set of points in ℜ2 such that the maximum among the distances between each point to its nearest line is minimized. A 2-factor approximation algorithm and a (53,32) bi-criteria approximation algorithm is presented for the problem. Both of them are deterministic approximation algorithms using combinatorial techniques and having sub-quadratic running times. |
|---|---|
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/j.dam.2023.05.014 |