Enhanced Spatially Constrained Remotely Sensed Imagery Classification Using a Fuzzy Local Double Neighborhood Information C-Means Clustering Algorithm
This paper presents a fuzzy local double neighborhood information c-means (FLDNICM) clustering algorithm for remotely sensed imagery classification, which incorporates flexible and accurate local spatial and spectral information. First, a tradeoff weighted fuzzy factor is established based on a pixe...
Uloženo v:
| Vydáno v: | IEEE journal of selected topics in applied earth observations and remote sensing Ročník 11; číslo 8; s. 2896 - 2910 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1939-1404, 2151-1535 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!