A new definition of fractional derivative
We give a new definition of fractional derivative and fractional integral. The form of the definition shows that it is the most natural definition, and the most fruitful one. The definition for 0≤α<1 coincides with the classical definitions on polynomials (up to a constant). Further, if α=1, the...
Saved in:
| Published in: | Journal of computational and applied mathematics Vol. 264; pp. 65 - 70 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.07.2014
|
| Subjects: | |
| ISSN: | 0377-0427, 1879-1778 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We give a new definition of fractional derivative and fractional integral. The form of the definition shows that it is the most natural definition, and the most fruitful one. The definition for 0≤α<1 coincides with the classical definitions on polynomials (up to a constant). Further, if α=1, the definition coincides with the classical definition of first derivative. We give some applications to fractional differential equations. |
|---|---|
| ISSN: | 0377-0427 1879-1778 |
| DOI: | 10.1016/j.cam.2014.01.002 |