Aircraft engine degradation prognostics based on logistic regression and novel OS-ELM algorithm

Online sequential extreme learning machine (OS-ELM) learns data one-by-one or chunk-by-chunk, and the recursive least square (RLS) algorithm is commonly employed to train the topological parameters of OS-ELM. Since it is hard to guarantee the smallest estimation error of the state variable by the RL...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Aerospace science and technology Ročník 84; s. 661 - 671
Hlavní autoři: Lu, Feng, Wu, Jindong, Huang, Jinquan, Qiu, Xiaojie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Masson SAS 01.01.2019
Témata:
ISSN:1270-9638, 1626-3219
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Online sequential extreme learning machine (OS-ELM) learns data one-by-one or chunk-by-chunk, and the recursive least square (RLS) algorithm is commonly employed to train the topological parameters of OS-ELM. Since it is hard to guarantee the smallest estimation error of the state variable by the RLS, the regression performance of the OS-ELM easily fluctuates in practical applications. To address this gap, a new training approach of the OS-ELM using Kalman filter called KFOS-ELM is proposed, and state propagation is combined into extreme learning process to obtain the OS-ELM's topological parameters. Besides, an adaptive-weighted ensemble mechanism is developed and used to dynamically tune the weight coefficients of each KFOS-ELM in the learning network. The regression performance of the proposed methodology is evaluated using benchmark datasets. The simulation results show that proposed methods are superior to the OS-ELM and EOS-ELM in terms of the regression accuracy and stability without additional computational efforts. Furthermore, an enhanced multi-sensor prognostic model based on KFOS-ELM and logistic regression (LR) model is designed for remaining useful life (RUL) prediction of aircraft engine. The experimental results confirm our viewpoints.
AbstractList Online sequential extreme learning machine (OS-ELM) learns data one-by-one or chunk-by-chunk, and the recursive least square (RLS) algorithm is commonly employed to train the topological parameters of OS-ELM. Since it is hard to guarantee the smallest estimation error of the state variable by the RLS, the regression performance of the OS-ELM easily fluctuates in practical applications. To address this gap, a new training approach of the OS-ELM using Kalman filter called KFOS-ELM is proposed, and state propagation is combined into extreme learning process to obtain the OS-ELM's topological parameters. Besides, an adaptive-weighted ensemble mechanism is developed and used to dynamically tune the weight coefficients of each KFOS-ELM in the learning network. The regression performance of the proposed methodology is evaluated using benchmark datasets. The simulation results show that proposed methods are superior to the OS-ELM and EOS-ELM in terms of the regression accuracy and stability without additional computational efforts. Furthermore, an enhanced multi-sensor prognostic model based on KFOS-ELM and logistic regression (LR) model is designed for remaining useful life (RUL) prediction of aircraft engine. The experimental results confirm our viewpoints.
Author Wu, Jindong
Huang, Jinquan
Lu, Feng
Qiu, Xiaojie
Author_xml – sequence: 1
  givenname: Feng
  surname: Lu
  fullname: Lu, Feng
  email: lufengnuaa@126.com
  organization: Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
– sequence: 2
  givenname: Jindong
  surname: Wu
  fullname: Wu, Jindong
  organization: Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
– sequence: 3
  givenname: Jinquan
  surname: Huang
  fullname: Huang, Jinquan
  organization: Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
– sequence: 4
  givenname: Xiaojie
  surname: Qiu
  fullname: Qiu, Xiaojie
  organization: Aviation Motor Control System Institute, Aviation Industry Corporation of China, Wuxi, 214063, China
BookMark eNp9kM1KAzEURoNUsK0-gLu8wIxJZiYzwVUp9QcqXajrkCa3Y8o0KUko-PZmrCsXXd3L5TsXvjNDE-cdIHRPSUkJ5Q_7UsVUMkK7koiS1PUVmlLOeFExKiZ5Zy0pBK-6GzSLcU8IYaJmUyQXNuigdgmD660DbKAPyqhkvcPH4HvnY7I64q2KYHA-Dr634wmHnIQYx6ByBjt_ggFv3ovV-g2roffBpq_DLbreqSHC3d-co8-n1cfypVhvnl-Xi3WhmWhT0XJaK9oJY3IbRSlw0mnWNC0YyhUDaiptdFXvukZ1FegtZQ1nQtetAaZrU81Re_6rg48xwE5qm35bpKDsICmRoye5l9mTHD1JImT2lEn6jzwGe1Dh-yLzeGYgVzpZCDJqC06DsQF0ksbbC_QP1-iEMg
CitedBy_id crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1016_j_ijfatigue_2025_109062
crossref_primary_10_3390_s20030920
crossref_primary_10_1016_j_asoc_2022_109604
crossref_primary_10_1016_j_engfailanal_2022_106115
crossref_primary_10_1016_j_ast_2021_106642
crossref_primary_10_1109_JSEN_2023_3326487
crossref_primary_10_1016_j_cie_2021_107625
crossref_primary_10_1016_j_measurement_2023_113810
crossref_primary_10_1016_j_ast_2019_105539
crossref_primary_10_1016_j_ast_2020_105902
crossref_primary_10_1111_mice_12753
crossref_primary_10_1016_j_jmsy_2020_07_008
crossref_primary_10_1016_j_ymssp_2022_109611
crossref_primary_10_1016_j_engappai_2020_103936
crossref_primary_10_1109_ACCESS_2021_3072673
crossref_primary_10_1016_j_ast_2024_109284
crossref_primary_10_1016_j_engappai_2023_106496
crossref_primary_10_1016_j_neucom_2019_04_017
crossref_primary_10_1016_j_applthermaleng_2025_126178
crossref_primary_10_1016_j_ast_2025_110467
crossref_primary_10_1016_j_cja_2023_08_012
crossref_primary_10_1109_TIM_2023_3236342
crossref_primary_10_1016_j_ast_2021_107220
crossref_primary_10_1016_j_ast_2022_107883
crossref_primary_10_1088_1361_6501_ac6081
crossref_primary_10_1109_ACCESS_2020_3010096
crossref_primary_10_1016_j_measurement_2020_108153
crossref_primary_10_1007_s40815_024_01808_x
crossref_primary_10_1016_j_ast_2021_106976
crossref_primary_10_3390_app10031062
crossref_primary_10_1016_j_ast_2020_105877
crossref_primary_10_1016_j_engappai_2020_103849
crossref_primary_10_3390_aerospace9060316
crossref_primary_10_1016_j_energy_2023_126894
crossref_primary_10_1007_s13042_021_01283_y
crossref_primary_10_1007_s11071_023_08561_0
crossref_primary_10_1109_ACCESS_2023_3235619
crossref_primary_10_1109_TII_2019_2921032
crossref_primary_10_20965_jaciii_2023_p0594
crossref_primary_10_1016_j_ress_2024_110100
crossref_primary_10_1088_1361_6501_ad15dc
crossref_primary_10_1007_s00170_023_12020_w
crossref_primary_10_1016_j_applthermaleng_2024_122954
crossref_primary_10_1016_j_aei_2021_101404
crossref_primary_10_1007_s42405_024_00770_0
crossref_primary_10_1109_ACCESS_2020_2979747
crossref_primary_10_1155_2021_5876299
crossref_primary_10_1016_j_ress_2025_110904
crossref_primary_10_1016_j_ast_2020_106333
crossref_primary_10_1016_j_ress_2022_108577
crossref_primary_10_1109_JSEN_2025_3546498
crossref_primary_10_1002_qre_70057
crossref_primary_10_1016_j_eswa_2024_124597
crossref_primary_10_1016_j_engappai_2020_104113
crossref_primary_10_3390_s20071840
crossref_primary_10_1177_09544100211014743
crossref_primary_10_1016_j_aei_2021_101318
crossref_primary_10_1016_j_isatra_2023_06_020
crossref_primary_10_1016_j_ast_2020_105775
crossref_primary_10_3390_act10110283
crossref_primary_10_1155_2022_8212150
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_3390_app10030950
crossref_primary_10_1108_AEAT_09_2022_0249
crossref_primary_10_1016_j_energy_2020_119530
crossref_primary_10_1109_ACCESS_2021_3050792
crossref_primary_10_1002_qre_3693
crossref_primary_10_1007_s11227_025_07360_1
crossref_primary_10_1016_j_measurement_2021_110064
crossref_primary_10_1177_0959651820954577
Cites_doi 10.1177/0954410013488852
10.1115/1.1340629
10.1016/j.energy.2016.05.008
10.1006/mssp.2000.1309
10.1007/s11063-013-9277-x
10.1016/j.ast.2017.10.024
10.1016/j.neucom.2009.02.013
10.1109/TASE.2014.2369478
10.1007/s10845-014-0933-4
10.3390/en10010039
10.1109/TSMCB.2011.2168604
10.1016/j.ast.2016.08.008
10.1016/j.jsv.2016.05.027
10.1016/j.rser.2016.08.029
10.1515/tjj-2013-0018
10.1115/1.4026126
10.1016/j.ymssp.2017.03.046
10.1061/(ASCE)AS.1943-5525.0000405
10.1016/j.eswa.2015.07.003
10.1109/TCYB.2014.2378056
10.1109/TNN.2006.880583
10.1186/s41601-016-0016-y
10.1016/j.neucom.2012.02.003
10.1016/j.ast.2017.05.030
10.1016/j.neucom.2017.01.053
10.1023/A:1009682730770
10.1016/j.neucom.2014.05.068
ContentType Journal Article
Copyright 2018 Elsevier Masson SAS
Copyright_xml – notice: 2018 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ast.2018.09.044
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1626-3219
EndPage 671
ExternalDocumentID 10_1016_j_ast_2018_09_044
S1270963818308514
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-7614a189dd101a11e608c2557ed16a2e1d3cdc34f85a83ecb125629c47de2c4d3
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456641000053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1270-9638
IngestDate Tue Nov 18 21:57:21 EST 2025
Sat Nov 29 02:08:00 EST 2025
Fri Feb 23 02:33:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Online sequential learning
Aircraft engine
Remaining useful life
Kalman filter
Prognostics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-7614a189dd101a11e608c2557ed16a2e1d3cdc34f85a83ecb125629c47de2c4d3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_ast_2018_09_044
crossref_primary_10_1016_j_ast_2018_09_044
elsevier_sciencedirect_doi_10_1016_j_ast_2018_09_044
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Aerospace science and technology
PublicationYear 2019
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Zhong, Xie, Lin, Wang (br0120) 2017; 238
Javed, Gouriveau, Zerhouni (br0380) 2015; 45
Barhen, Cogswell, Protopopescu (br0180) 2000; 11
Lu, Ju, Huang (br0260) 2016; 58
Volponi (br0010) 2014; 136
Yang, Kong, Wang (br0140) 2016
Zhi, Lin, Zhao (br0210) 2016; 1
Yu (br0340) 2017; 68
Janssens, Slavkovikj, Vervisch (br0160) 2016; 377
Bunks, Dan, Al-Ani (br0050) 2000; 14
Zhou, Yu, Zhang, Weng (br0110) 2016; 109
He, Xu, Jia (br0130) 2015; 12
Huang, Su, Wang (br0070) 2016
Yuan, Wu, Lin (br0150) 2016
Lan, Soh, Huang (br0250) 2009; 72
Wang, Yu, Siegel (br0390) 2008
Mosallam, Medjaher, Zerhouni (br0080) 2016; 27
Bing, Qu (br0170) 2016
Zhang, Guo, Chen (br0190) 2013; 34
Saxena, Goebel (br0330) 2008
Kurz, Brun (br0020) 2001; 123
Zhao, Wang, Dong (br0310) 2012; 87
Decastro, Litt, Frederick (br0360) 2008
Liu, Yuan, Shi, Zhao (br0090) 2014; 228
Huang, Zhou, Ding (br0200) 2012; 42
Bache, Lichman (br0320) 2013
Li, Fan, Sreeram (br0030) 2013; 30
Liang, Huang, Saratchandran (br0280) 2006; 17
Zaidan, Relan, Mills (br0060) 2015; 42
Zhou, Huang, Lu (br0270) 2017; 95
Zhao, Li, Yang (br0100) 2016; 66
Wang, Han (br0290) 2014; 145
Qi, Bao, Chang (br0040) 2015; 28
Saxena, Kai, Simon (br0370) 2008
Lu, Jiang, Huang (br0240) 2017; 71
Lu, Huang, Lu (br0300) 2017; 10
Termenon, Graña, Barrós-Loscertales (br0220) 2013; 38
Huang, Liang, Rong (br0230) 2005
Walter, David (br0350) 1997
Javed (10.1016/j.ast.2018.09.044_br0380) 2015; 45
Lu (10.1016/j.ast.2018.09.044_br0300) 2017; 10
Li (10.1016/j.ast.2018.09.044_br0030) 2013; 30
Lan (10.1016/j.ast.2018.09.044_br0250) 2009; 72
Wang (10.1016/j.ast.2018.09.044_br0290) 2014; 145
Volponi (10.1016/j.ast.2018.09.044_br0010) 2014; 136
Walter (10.1016/j.ast.2018.09.044_br0350) 1997
He (10.1016/j.ast.2018.09.044_br0130) 2015; 12
Zhao (10.1016/j.ast.2018.09.044_br0310) 2012; 87
Liu (10.1016/j.ast.2018.09.044_br0090) 2014; 228
Huang (10.1016/j.ast.2018.09.044_br0070) 2016
Qi (10.1016/j.ast.2018.09.044_br0040) 2015; 28
Barhen (10.1016/j.ast.2018.09.044_br0180) 2000; 11
Lu (10.1016/j.ast.2018.09.044_br0240) 2017; 71
Zhou (10.1016/j.ast.2018.09.044_br0270) 2017; 95
Zhou (10.1016/j.ast.2018.09.044_br0110) 2016; 109
Yang (10.1016/j.ast.2018.09.044_br0140) 2016
Bunks (10.1016/j.ast.2018.09.044_br0050) 2000; 14
Zhong (10.1016/j.ast.2018.09.044_br0120) 2017; 238
Liang (10.1016/j.ast.2018.09.044_br0280) 2006; 17
Decastro (10.1016/j.ast.2018.09.044_br0360) 2008
Bache (10.1016/j.ast.2018.09.044_br0320)
Janssens (10.1016/j.ast.2018.09.044_br0160) 2016; 377
Bing (10.1016/j.ast.2018.09.044_br0170) 2016
Wang (10.1016/j.ast.2018.09.044_br0390) 2008
Lu (10.1016/j.ast.2018.09.044_br0260) 2016; 58
Yuan (10.1016/j.ast.2018.09.044_br0150) 2016
Zhao (10.1016/j.ast.2018.09.044_br0100) 2016; 66
Saxena (10.1016/j.ast.2018.09.044_br0370) 2008
Mosallam (10.1016/j.ast.2018.09.044_br0080) 2016; 27
Huang (10.1016/j.ast.2018.09.044_br0200) 2012; 42
Zhi (10.1016/j.ast.2018.09.044_br0210) 2016; 1
Zaidan (10.1016/j.ast.2018.09.044_br0060) 2015; 42
Huang (10.1016/j.ast.2018.09.044_br0230) 2005
Saxena (10.1016/j.ast.2018.09.044_br0330) 2008
Termenon (10.1016/j.ast.2018.09.044_br0220) 2013; 38
Yu (10.1016/j.ast.2018.09.044_br0340) 2017; 68
Kurz (10.1016/j.ast.2018.09.044_br0020) 2001; 123
Zhang (10.1016/j.ast.2018.09.044_br0190) 2013; 34
References_xml – volume: 145
  start-page: 90
  year: 2014
  end-page: 97
  ident: br0290
  article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction
  publication-title: Neurocomputing
– volume: 58
  start-page: 36
  year: 2016
  end-page: 47
  ident: br0260
  article-title: An improved extended Kalman filter with inequality constraints for gas turbine engine health monitoring
  publication-title: Aerosp. Sci. Technol.
– volume: 17
  start-page: 1411
  year: 2006
  ident: br0280
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 8
  ident: br0210
  article-title: Short-term wind power prediction based on extreme learning machine with error correction
  publication-title: Protect. & Control Mod. Power Syst.
– volume: 109
  start-page: 420
  year: 2016
  end-page: 429
  ident: br0110
  article-title: A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation
  publication-title: Energy
– volume: 68
  start-page: 345
  year: 2017
  end-page: 361
  ident: br0340
  article-title: Aircraft engine health prognostics based on logistic regression with penalization regularization and state-space-based degradation framework
  publication-title: Aerosp. Sci. Technol.
– start-page: 1
  year: 2016
  end-page: 8
  ident: br0070
  article-title: A prediction method for aero-engine health management based on nonlinear time series analysis
  publication-title: Proceedings of IEEE International Conference on Prognostics and Health Management, 2016, EEE
– start-page: 34
  year: 1997
  ident: br0350
  article-title: Empirical Bayes Estimates of Parameters from the Logistic Regression Model
– volume: 12
  start-page: 1092
  year: 2015
  end-page: 1103
  ident: br0130
  article-title: Modeling and predicting surface roughness in hard turning using a Bayesian inference-based HMM-SVM model
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 238
  start-page: 191
  year: 2017
  end-page: 204
  ident: br0120
  article-title: Genetic algorithm optimized double-reservoir echo state network for multi-regime time series prediction
  publication-title: Neurocomputing
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: br0200
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern., Part B
– volume: 123
  start-page: 70
  year: 2001
  end-page: 77
  ident: br0020
  article-title: Degradation in gas turbine systems
  publication-title: J. Eng. Gas Turbines Power
– start-page: 6542
  year: 2016
  end-page: 6546
  ident: br0170
  article-title: Aero-engine sensor fault diagnosis based on stacked denoising autoencoders
  publication-title: Proceedings of Control Conference
– start-page: 1
  year: 2008
  end-page: 9
  ident: br0370
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation
  publication-title: Proceedings of International Conference on Prognostics and Health Management
– volume: 30
  start-page: 383
  year: 2013
  end-page: 391
  ident: br0030
  article-title: SFC optimization for aero engine based on hybrid GA-SQP method
  publication-title: Int. J. Turbo Jet-Engines
– start-page: 1
  year: 2008
  end-page: 6
  ident: br0390
  article-title: A similarity-based prognostics approach for remaining useful life estimation of engineered systems
  publication-title: Proceedings of International Conference on Prognostics and Health Management
– volume: 72
  start-page: 3391
  year: 2009
  end-page: 3395
  ident: br0250
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
– start-page: 135
  year: 2016
  end-page: 140
  ident: br0150
  article-title: Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network
  publication-title: Proceedings of IEEE International Conference on Aircraft Utility Systems
– volume: 95
  start-page: 446
  year: 2017
  end-page: 467
  ident: br0270
  article-title: Reduced kernel recursive least squares algorithm for aero-engine degradation prediction
  publication-title: Mech. Syst. Signal Process.
– volume: 28
  year: 2015
  ident: br0040
  article-title: State-based switching control strategy with applications to aeroengine safety protection
  publication-title: J. Aerosp. Eng.
– volume: 11
  start-page: 113
  year: 2000
  end-page: 129
  ident: br0180
  article-title: Single-iteration training algorithm for multi-layer feed-forward neural networks
  publication-title: Neural Process. Lett.
– volume: 38
  start-page: 375
  year: 2013
  end-page: 387
  ident: br0220
  article-title: Extreme learning machines for feature selection and classification of cocaine dependent patients on structural MRI data
  publication-title: Neural Process. Lett.
– volume: 228
  start-page: 1246
  year: 2014
  end-page: 1272
  ident: br0090
  article-title: Adaptive modeling of aircraft engine performance degradation model based on the equilibrium manifold and expansion form
  publication-title: Proc. Inst. Mech. Eng., G J. Aerosp. Eng.
– volume: 10
  start-page: 39
  year: 2017
  end-page: 54
  ident: br0300
  article-title: Sensor fault diagnosis for aero engine based on online sequential extreme learning machine with memory principle
  publication-title: Energies
– year: 2008
  ident: br0330
  article-title: Turbofan engine degradation simulation data set
  publication-title: NASA Ames Prognostics Data Repository
– start-page: 13
  year: 2016
  end-page: 17
  ident: br0140
  article-title: Model based fault diagnosis for performance degradations of turbofan gas path via optimal robust residuals
  publication-title: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
– volume: 71
  start-page: 742
  year: 2017
  end-page: 750
  ident: br0240
  article-title: Dual reduced kernel extreme learning machine for aero-engine fault diagnosis
  publication-title: Aerosp. Sci. Technol.
– volume: 42
  start-page: 8472
  year: 2015
  end-page: 8483
  ident: br0060
  article-title: Prognostics of gas turbine engine: an integrated approach
  publication-title: Expert Syst. Appl.
– year: 2008
  ident: br0360
  article-title: A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine
– volume: 45
  start-page: 2626
  year: 2015
  ident: br0380
  article-title: A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering
  publication-title: IEEE Trans. Cybern.
– volume: 27
  start-page: 1
  year: 2016
  end-page: 12
  ident: br0080
  article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction
  publication-title: J. Intell. Manuf.
– volume: 136
  year: 2014
  ident: br0010
  article-title: Gas turbine engine health management past, present and future trends
  publication-title: J. Eng. Gas Turbines Power
– year: 2013
  ident: br0320
  article-title: UCI machine learning repository
– start-page: 232
  year: 2005
  end-page: 237
  ident: br0230
  article-title: On-line sequential extreme learning machine
  publication-title: Proceedings of International Conference on Computational Intelligence
– volume: 34
  start-page: 1121
  year: 2013
  end-page: 1127
  ident: br0190
  article-title: Performance evaluation and simulation validation of fault diagnosis system for aircraft engine
  publication-title: J. Propuls. Technol.
– volume: 377
  start-page: 331
  year: 2016
  end-page: 345
  ident: br0160
  article-title: Convolutional neural network based fault detection for rotating machinery
  publication-title: J. Sound Vib.
– volume: 66
  start-page: 596
  year: 2016
  end-page: 616
  ident: br0100
  article-title: A review on nanofluids: data driven modeling of thermal physical properties and the application in automotive radiator
  publication-title: Renew. Sustain. Energy Rev.
– volume: 14
  start-page: 597
  year: 2000
  end-page: 612
  ident: br0050
  article-title: condition-based maintenance of machines using hidden Markov models
  publication-title: Mech. Syst. Signal Process.
– volume: 87
  start-page: 79
  year: 2012
  end-page: 89
  ident: br0310
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
– start-page: 1
  year: 2008
  ident: 10.1016/j.ast.2018.09.044_br0370
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation
– volume: 228
  start-page: 1246
  issue: 8
  year: 2014
  ident: 10.1016/j.ast.2018.09.044_br0090
  article-title: Adaptive modeling of aircraft engine performance degradation model based on the equilibrium manifold and expansion form
  publication-title: Proc. Inst. Mech. Eng., G J. Aerosp. Eng.
  doi: 10.1177/0954410013488852
– volume: 123
  start-page: 70
  issue: 1
  year: 2001
  ident: 10.1016/j.ast.2018.09.044_br0020
  article-title: Degradation in gas turbine systems
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.1340629
– year: 2008
  ident: 10.1016/j.ast.2018.09.044_br0330
  article-title: Turbofan engine degradation simulation data set
– volume: 109
  start-page: 420
  year: 2016
  ident: 10.1016/j.ast.2018.09.044_br0110
  article-title: A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.008
– volume: 14
  start-page: 597
  issue: 4
  year: 2000
  ident: 10.1016/j.ast.2018.09.044_br0050
  article-title: condition-based maintenance of machines using hidden Markov models
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1006/mssp.2000.1309
– volume: 38
  start-page: 375
  issue: 3
  year: 2013
  ident: 10.1016/j.ast.2018.09.044_br0220
  article-title: Extreme learning machines for feature selection and classification of cocaine dependent patients on structural MRI data
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-013-9277-x
– start-page: 232
  year: 2005
  ident: 10.1016/j.ast.2018.09.044_br0230
  article-title: On-line sequential extreme learning machine
– volume: 71
  start-page: 742
  year: 2017
  ident: 10.1016/j.ast.2018.09.044_br0240
  article-title: Dual reduced kernel extreme learning machine for aero-engine fault diagnosis
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.10.024
– ident: 10.1016/j.ast.2018.09.044_br0320
– year: 2008
  ident: 10.1016/j.ast.2018.09.044_br0360
– start-page: 1
  year: 2008
  ident: 10.1016/j.ast.2018.09.044_br0390
  article-title: A similarity-based prognostics approach for remaining useful life estimation of engineered systems
– volume: 72
  start-page: 3391
  issue: 13
  year: 2009
  ident: 10.1016/j.ast.2018.09.044_br0250
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.02.013
– start-page: 1
  year: 2016
  ident: 10.1016/j.ast.2018.09.044_br0070
  article-title: A prediction method for aero-engine health management based on nonlinear time series analysis
– volume: 12
  start-page: 1092
  issue: 3
  year: 2015
  ident: 10.1016/j.ast.2018.09.044_br0130
  article-title: Modeling and predicting surface roughness in hard turning using a Bayesian inference-based HMM-SVM model
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2369478
– volume: 27
  start-page: 1
  issue: 5
  year: 2016
  ident: 10.1016/j.ast.2018.09.044_br0080
  article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-014-0933-4
– volume: 10
  start-page: 39
  issue: 1
  year: 2017
  ident: 10.1016/j.ast.2018.09.044_br0300
  article-title: Sensor fault diagnosis for aero engine based on online sequential extreme learning machine with memory principle
  publication-title: Energies
  doi: 10.3390/en10010039
– start-page: 13
  year: 2016
  ident: 10.1016/j.ast.2018.09.044_br0140
  article-title: Model based fault diagnosis for performance degradations of turbofan gas path via optimal robust residuals
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.ast.2018.09.044_br0200
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern., Part B
  doi: 10.1109/TSMCB.2011.2168604
– start-page: 135
  year: 2016
  ident: 10.1016/j.ast.2018.09.044_br0150
  article-title: Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network
– volume: 58
  start-page: 36
  year: 2016
  ident: 10.1016/j.ast.2018.09.044_br0260
  article-title: An improved extended Kalman filter with inequality constraints for gas turbine engine health monitoring
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2016.08.008
– volume: 377
  start-page: 331
  year: 2016
  ident: 10.1016/j.ast.2018.09.044_br0160
  article-title: Convolutional neural network based fault detection for rotating machinery
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.05.027
– volume: 66
  start-page: 596
  year: 2016
  ident: 10.1016/j.ast.2018.09.044_br0100
  article-title: A review on nanofluids: data driven modeling of thermal physical properties and the application in automotive radiator
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.08.029
– volume: 30
  start-page: 383
  issue: 4
  year: 2013
  ident: 10.1016/j.ast.2018.09.044_br0030
  article-title: SFC optimization for aero engine based on hybrid GA-SQP method
  publication-title: Int. J. Turbo Jet-Engines
  doi: 10.1515/tjj-2013-0018
– volume: 136
  issue: 5
  year: 2014
  ident: 10.1016/j.ast.2018.09.044_br0010
  article-title: Gas turbine engine health management past, present and future trends
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4026126
– volume: 95
  start-page: 446
  year: 2017
  ident: 10.1016/j.ast.2018.09.044_br0270
  article-title: Reduced kernel recursive least squares algorithm for aero-engine degradation prediction
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.03.046
– volume: 28
  issue: 3
  year: 2015
  ident: 10.1016/j.ast.2018.09.044_br0040
  article-title: State-based switching control strategy with applications to aeroengine safety protection
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0000405
– volume: 42
  start-page: 8472
  issue: 22
  year: 2015
  ident: 10.1016/j.ast.2018.09.044_br0060
  article-title: Prognostics of gas turbine engine: an integrated approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.07.003
– start-page: 6542
  year: 2016
  ident: 10.1016/j.ast.2018.09.044_br0170
  article-title: Aero-engine sensor fault diagnosis based on stacked denoising autoencoders
– volume: 45
  start-page: 2626
  issue: 12
  year: 2015
  ident: 10.1016/j.ast.2018.09.044_br0380
  article-title: A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2378056
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 10.1016/j.ast.2018.09.044_br0280
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880583
– volume: 1
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ast.2018.09.044_br0210
  article-title: Short-term wind power prediction based on extreme learning machine with error correction
  publication-title: Protect. & Control Mod. Power Syst.
  doi: 10.1186/s41601-016-0016-y
– volume: 87
  start-page: 79
  issue: 15
  year: 2012
  ident: 10.1016/j.ast.2018.09.044_br0310
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.003
– volume: 68
  start-page: 345
  year: 2017
  ident: 10.1016/j.ast.2018.09.044_br0340
  article-title: Aircraft engine health prognostics based on logistic regression with penalization regularization and state-space-based degradation framework
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.05.030
– volume: 238
  start-page: 191
  year: 2017
  ident: 10.1016/j.ast.2018.09.044_br0120
  article-title: Genetic algorithm optimized double-reservoir echo state network for multi-regime time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.053
– volume: 11
  start-page: 113
  issue: 2
  year: 2000
  ident: 10.1016/j.ast.2018.09.044_br0180
  article-title: Single-iteration training algorithm for multi-layer feed-forward neural networks
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1009682730770
– volume: 145
  start-page: 90
  issue: 145
  year: 2014
  ident: 10.1016/j.ast.2018.09.044_br0290
  article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.068
– start-page: 34
  year: 1997
  ident: 10.1016/j.ast.2018.09.044_br0350
– volume: 34
  start-page: 1121
  issue: 8
  year: 2013
  ident: 10.1016/j.ast.2018.09.044_br0190
  article-title: Performance evaluation and simulation validation of fault diagnosis system for aircraft engine
  publication-title: J. Propuls. Technol.
SSID ssj0002942
Score 2.4750192
Snippet Online sequential extreme learning machine (OS-ELM) learns data one-by-one or chunk-by-chunk, and the recursive least square (RLS) algorithm is commonly...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 661
SubjectTerms Aircraft engine
Kalman filter
Online sequential learning
Prognostics
Remaining useful life
Title Aircraft engine degradation prognostics based on logistic regression and novel OS-ELM algorithm
URI https://dx.doi.org/10.1016/j.ast.2018.09.044
Volume 84
WOSCitedRecordID wos000456641000053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1626-3219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002942
  issn: 1270-9638
  databaseCode: AIEXJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKBE1FQYiexfVyhRVCVAqJIe4sc27tktSQlza76A_jhjO0kG1qK6IFLFFmJ85gvM-PJzDcIvbTN7fUi5rAsWaRhQjMTApR1SElRUEKl4GThmk2w42M-n4tPk8nPvhZmu2ZVxc_Pxel_FTWMgbBt6ew1xD1MCgOwD0KHLYgdtv8k-GnZqEYu2sA4qsFAWzoI3znJZWNVtadmtvZL238FvgjIUTkvfVasT1Cu6q1ZBx-_hLOjD4FcL-umbL99H3uzUwM2FhbdJuirg1w-5qVo_dHG-cims5LWBriRw9L2ElnuoNUFr2H8x2YH28-lO3peynpVmnGcwpZGDXEKr1oJi0L7uY91L09GyjPztOydHc58a5ZLKt5HG1av5ZlNhY25o6n1HJK_02lfMHND8mGf17bKYYrcTpFHIocpbqB9wlIBunF_-n42PxwsOhGuCdPwBP3fcZcneOE-_uzfjHyWk7voTrfYwFMPkntoYqr76PaIgvIBynu4YA8XPIILHsEFO7hgGOzhgndwwSB27OCCPVzwAJeH6Ovb2cmbd2HXdCNURLA2ZOCvyZgLreH5ZBybLOIK1p3M6DiTxMSaKq1osuCp5NSoAjzkjAiVMG2ISjR9hPaqujKPEWaa0kiYlDOubT2lLBKmjChSo9JC6eIARf2rylXHSG8bo6zzK0V0gF4Np5x6Opa_HZz07z_vPgPvJ-aApatPe3KdazxFt3Zgf4b22mZjnqObatuWZ82LDki_AAklmBg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aircraft+engine+degradation+prognostics+based+on+logistic+regression+and+novel+OS-ELM+algorithm&rft.jtitle=Aerospace+science+and+technology&rft.au=Lu%2C+Feng&rft.au=Wu%2C+Jindong&rft.au=Huang%2C+Jinquan&rft.au=Qiu%2C+Xiaojie&rft.date=2019-01-01&rft.issn=1270-9638&rft.volume=84&rft.spage=661&rft.epage=671&rft_id=info:doi/10.1016%2Fj.ast.2018.09.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ast_2018_09_044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon