Multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimisation

•Flexible job shop scheduling with machine-fixture-pallet constraints is first proposed.•Scheduling optimisation and fixture-pallet combinatorial optimisation are considered simultaneously.•Feasibilty correction strategy is proposed to solve potential conflict of machine selection and fixture select...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering Jg. 188; S. 109903
Hauptverfasser: Liu, Molin, Lv, Jun, Du, Shichang, Deng, Yafei, Shen, Xiaoxiao, Zhou, Yulu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2024
Schlagworte:
ISSN:0360-8352, 1879-0550
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Flexible job shop scheduling with machine-fixture-pallet constraints is first proposed.•Scheduling optimisation and fixture-pallet combinatorial optimisation are considered simultaneously.•Feasibilty correction strategy is proposed to solve potential conflict of machine selection and fixture selection.•Self-learning variable neighbourhood search is introduced to further improve algorithm performance.•Test cases from real production scenarios are utilised to prove the advantage of our proposed algorithm. There is a lack of research on the flexible job shop scheduling problem (FJSP) considering limited fixture-pallet resources in multi-product mixed manufacturing workshops. However, field research in a leading engine manufacturer in China has revealed that fixture-pallet resources are a key factor limiting capacity breakthroughs although they play an auxiliary role in the production process. Thus, in this paper, we propose a methodology for the multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimisation. First, a mixed integer programming model with machine-fixture-pallet constraints is constructed aiming to minimize makespan. Then, a novel genetic algorithm integrated with feasibility correction strategy and self-learning variable neighbourhood search (VNS) is proposed to address the complicated scheduling problem, where the feasibility correction strategy is designed to solve potential conflict between machine selection and fixture selection chromosomes and self-learning VNS is executed to further improve the optimisation capability. Moreover, the effectiveness and efficiency of proposed algorithm are demonstrated by computational experiments with real data from cooperated engine manufacturing plant, which would provide convincing support for real production scheduling under complex scenarios.
AbstractList •Flexible job shop scheduling with machine-fixture-pallet constraints is first proposed.•Scheduling optimisation and fixture-pallet combinatorial optimisation are considered simultaneously.•Feasibilty correction strategy is proposed to solve potential conflict of machine selection and fixture selection.•Self-learning variable neighbourhood search is introduced to further improve algorithm performance.•Test cases from real production scenarios are utilised to prove the advantage of our proposed algorithm. There is a lack of research on the flexible job shop scheduling problem (FJSP) considering limited fixture-pallet resources in multi-product mixed manufacturing workshops. However, field research in a leading engine manufacturer in China has revealed that fixture-pallet resources are a key factor limiting capacity breakthroughs although they play an auxiliary role in the production process. Thus, in this paper, we propose a methodology for the multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimisation. First, a mixed integer programming model with machine-fixture-pallet constraints is constructed aiming to minimize makespan. Then, a novel genetic algorithm integrated with feasibility correction strategy and self-learning variable neighbourhood search (VNS) is proposed to address the complicated scheduling problem, where the feasibility correction strategy is designed to solve potential conflict between machine selection and fixture selection chromosomes and self-learning VNS is executed to further improve the optimisation capability. Moreover, the effectiveness and efficiency of proposed algorithm are demonstrated by computational experiments with real data from cooperated engine manufacturing plant, which would provide convincing support for real production scheduling under complex scenarios.
ArticleNumber 109903
Author Zhou, Yulu
Du, Shichang
Shen, Xiaoxiao
Liu, Molin
Lv, Jun
Deng, Yafei
Author_xml – sequence: 1
  givenname: Molin
  surname: Liu
  fullname: Liu, Molin
  email: toujours.molin@sjtu.edu.cn
  organization: Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
– sequence: 2
  givenname: Jun
  surname: Lv
  fullname: Lv, Jun
  email: jlv@dbm.ecnu.edu.cn
  organization: Faculty of Economics and Management, East China Normal University, Shanghai 200241, People’s Republic of China
– sequence: 3
  givenname: Shichang
  surname: Du
  fullname: Du, Shichang
  email: lovbin@sjtu.edu.cn
  organization: Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
– sequence: 4
  givenname: Yafei
  surname: Deng
  fullname: Deng, Yafei
  email: phoenixdyf@sjtu.edu.cn
  organization: Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
– sequence: 5
  givenname: Xiaoxiao
  orcidid: 0000-0003-1396-8451
  surname: Shen
  fullname: Shen, Xiaoxiao
  email: sjtusxx98@sjtu.edu.cn
  organization: Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
– sequence: 6
  givenname: Yulu
  surname: Zhou
  fullname: Zhou, Yulu
  email: yuluzhou@sjtu.edu.cn
  organization: Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
BookMark eNp9kMtOwzAQRS1UJNrCB7DzD6TYztNihSpeUhEbWEeOM6ETuXZkO1D-npSyYtHVaB5ndO9dkJl1Fgi55mzFGS9u-pVGWAkmsqmXkqVnZM6rUiYsz9mMzFlasKRKc3FBFiH0jLEsl3xO7MtoIiYeghu9BqqdDdErtNDSzsAeGwO0dw0NWzfQoLfQjgbtBx28m1Y7-oVxSzvcx9FDMihjIE5Pdg1aFZ1HZagbIu4wqIjOXpLzTpkAV391Sd4f7t_WT8nm9fF5fbdJtJBlTErOmYCWFXlTtGnWTOqzpi1kk3WpTFslMgEZ7yoJkitIRdlAUQFAWYHKJM_TJSmPf7V3IXjoao3xV8HBnKk5qw-x1f00h_oQW32MbSL5P3LwuFP--yRze2RgsvSJ4OswnVgNLXrQsW4dnqB_AKbliow
CitedBy_id crossref_primary_10_1007_s10696_024_09567_5
crossref_primary_10_1016_j_jrras_2024_101022
crossref_primary_10_1016_j_jrras_2024_100971
crossref_primary_10_1016_j_jrras_2024_101026
crossref_primary_10_1016_j_jrras_2024_100970
crossref_primary_10_1016_j_cor_2025_107108
crossref_primary_10_1016_j_cor_2025_107107
crossref_primary_10_1016_j_eswa_2025_127496
crossref_primary_10_1016_j_cie_2025_110950
crossref_primary_10_1016_j_swevo_2025_101873
crossref_primary_10_1016_j_jrras_2024_100966
crossref_primary_10_1016_j_jrras_2024_100965
crossref_primary_10_1007_s10696_024_09574_6
crossref_primary_10_1016_j_jrras_2024_100968
crossref_primary_10_1111_exsy_13669
crossref_primary_10_1016_j_cie_2024_110203
crossref_primary_10_1016_j_jrras_2024_100846
crossref_primary_10_1016_j_cie_2024_110166
crossref_primary_10_3390_sym16060765
crossref_primary_10_1109_TASE_2024_3485810
crossref_primary_10_1007_s10696_024_09559_5
crossref_primary_10_1016_j_asoc_2025_113436
crossref_primary_10_1360_SST_2024_0242
crossref_primary_10_1016_j_jmsy_2025_03_013
crossref_primary_10_1007_s13198_025_02891_5
crossref_primary_10_1016_j_precisioneng_2024_05_019
crossref_primary_10_1080_00207543_2024_2374848
crossref_primary_10_1007_s12541_024_01020_9
crossref_primary_10_1109_TIM_2024_3376009
crossref_primary_10_3390_math13091432
crossref_primary_10_1142_S0129156424400792
crossref_primary_10_1016_j_aei_2024_102739
crossref_primary_10_1016_j_jrras_2024_100990
crossref_primary_10_1016_j_cie_2024_110292
crossref_primary_10_1016_j_jrras_2024_100994
crossref_primary_10_3390_machines13050417
crossref_primary_10_1016_j_eswa_2025_128362
crossref_primary_10_3390_electronics14081663
crossref_primary_10_1007_s11227_025_07250_6
crossref_primary_10_1016_j_aei_2025_103282
crossref_primary_10_1016_j_compind_2024_104123
crossref_primary_10_1016_j_cie_2024_110621
crossref_primary_10_1080_21642583_2024_2347887
crossref_primary_10_1109_ACCESS_2025_3562754
crossref_primary_10_1016_j_jbo_2024_100627
crossref_primary_10_1016_j_jrras_2024_100982
crossref_primary_10_1080_09544828_2024_2309861
crossref_primary_10_1016_j_jbo_2024_100593
crossref_primary_10_1007_s10845_024_02471_7
crossref_primary_10_1016_j_eswa_2025_129467
crossref_primary_10_1080_00207543_2025_2555532
crossref_primary_10_1016_j_eswa_2025_129469
crossref_primary_10_1016_j_jrras_2024_100930
crossref_primary_10_1016_j_cie_2024_110359
crossref_primary_10_1016_j_jairtraman_2025_102807
crossref_primary_10_1016_j_cie_2024_109929
crossref_primary_10_1016_j_jrras_2024_100892
crossref_primary_10_1016_j_jbo_2024_100630
crossref_primary_10_1016_j_cor_2024_106855
crossref_primary_10_1016_j_cie_2025_111204
crossref_primary_10_1016_j_cie_2024_110249
crossref_primary_10_1109_TIM_2024_3450095
crossref_primary_10_1016_j_cie_2024_109930
crossref_primary_10_1016_j_jbo_2024_100646
crossref_primary_10_1007_s12008_025_02244_3
crossref_primary_10_1016_j_precisioneng_2024_06_011
crossref_primary_10_1016_j_jrras_2024_100885
crossref_primary_10_3390_sym16060683
crossref_primary_10_3390_sym16070920
crossref_primary_10_1016_j_dt_2025_07_016
crossref_primary_10_1016_j_jrras_2024_100952
crossref_primary_10_1016_j_cie_2024_110259
crossref_primary_10_1016_j_swevo_2025_102075
crossref_primary_10_1016_j_measurement_2024_115335
crossref_primary_10_1007_s11431_024_2943_2
crossref_primary_10_1007_s12063_024_00500_5
crossref_primary_10_1016_j_cie_2024_110098
crossref_primary_10_1016_j_cie_2024_110250
crossref_primary_10_1016_j_jrras_2024_101003
crossref_primary_10_1016_j_cor_2024_106952
crossref_primary_10_1080_19397038_2025_2507916
crossref_primary_10_1016_j_cie_2025_111385
crossref_primary_10_1016_j_cie_2025_111023
crossref_primary_10_1016_j_precisioneng_2024_05_008
crossref_primary_10_1007_s10845_024_02446_8
crossref_primary_10_1016_j_cie_2024_110813
crossref_primary_10_1016_j_eswa_2025_128337
crossref_primary_10_1016_j_jrras_2024_100826
crossref_primary_10_1016_j_engappai_2025_111150
crossref_primary_10_1016_j_engappai_2024_108482
crossref_primary_10_1007_s10586_025_05540_5
crossref_primary_10_1080_09544828_2024_2333196
crossref_primary_10_1007_s10845_024_02451_x
crossref_primary_10_1016_j_asoc_2024_111932
crossref_primary_10_3390_s24051451
crossref_primary_10_1016_j_cie_2024_110829
crossref_primary_10_1016_j_precisioneng_2024_03_002
Cites_doi 10.1080/00207543.2017.1420262
10.1504/IJSOM.2017.081944
10.1016/j.jmsy.2021.05.018
10.1080/00207543.2020.1836421
10.3390/math11020324
10.1162/evco.1999.7.1.1
10.1080/17509653.2021.1941368
10.1016/j.ijpe.2016.01.016
10.1016/j.cie.2021.107897
10.1016/j.eswa.2022.117796
10.1016/j.cie.2021.107379
10.1016/j.cie.2015.12.004
10.1016/j.cor.2007.02.014
10.1016/j.cie.2017.02.013
10.1016/j.cie.2022.108099
10.1007/s10845-007-0026-8
10.1016/j.ijpe.2019.08.011
10.1016/j.eswa.2010.08.145
10.1016/j.cie.2017.09.005
10.1016/j.swevo.2020.100664
10.1016/j.cor.2020.104951
10.1080/00207540500386012
10.1016/j.swevo.2019.100632
10.1016/j.jmsy.2022.01.014
10.1504/EJIE.2015.067451
10.1007/s10845-020-01697-5
10.1016/j.cie.2020.106347
10.1016/j.ejor.2022.01.034
10.1016/j.cie.2022.108487
10.1007/s10845-017-1350-2
10.1080/00207543.2013.849822
10.1007/BF02238804
10.1080/00207543.2014.889328
10.4028/www.scientific.net/AMR.701.364
10.1287/ijoo.2021.0056
10.1016/j.cie.2020.106778
10.1080/00207543.2019.1653504
10.1016/j.procs.2012.09.041
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2024.109903
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2024_109903
S036083522400024X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-71102ed065b6d34b0364bd69b4f393da242e41f89e91ae327be68eee78ea49153
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001167033100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Tue Nov 18 22:13:09 EST 2025
Sat Nov 29 07:21:09 EST 2025
Sat Mar 02 16:00:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mixed integer programming
Genetic algorithm
self-learning VNS
Feasibility correction strategy
Flexible job shop
Fixture-pallet constraint
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-71102ed065b6d34b0364bd69b4f393da242e41f89e91ae327be68eee78ea49153
ORCID 0000-0003-1396-8451
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2024_109903
crossref_primary_10_1016_j_cie_2024_109903
elsevier_sciencedirect_doi_10_1016_j_cie_2024_109903
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pezzella, Morganti, Ciaschetti (b0135) 2008; 35
Lei, Guo (b0085) 2014; 52
Tian, Xiong, Liu, Mei, Wan (b0170) 2022; 167
Tian, Gao, Zhang, Chen, Wang (b0165) 2023; 11
Demir, İşleyen (b0035) 2014; 52
Hajibabaei, Behnamian (b0075) 2021; 16
Vallikavungal Devassia, Salazar-Aguilar, Boyer (b0175) 2018; 56
Singh, Mahapatra (b0145) 2016; 93
Bierwirth, Mattfeld (b0005) 1999; 7
Chen, Yang, Li, Wang (b0025) 2020; 149
Fattahi, Saidi Mehrabad, Jolai (b0060) 2007; 18
Li, Peng, Du, Guo, Xu, Zhuang (b0105) 2017; 113
Müller, Müller, Kress, Pesch (b0120) 2022; 302
Naderi, Roshanaei (b0125) 2022; 4
Wu, Peng, Xiao, Wu (b0180) 2021; 32
Fan, Shen, Gao, Zhang, Zhang (b0050) 2021; 60
Lei, Guo, Zhao, Wang, Qian, Meng, Tang (b0090) 2022; 205
Cañas, Mula, Díaz-Madroñero, Campuzano-Bolarín (b0015) 2021; 158
Soto, Dorronsoro, Fraire, Cruz-Reyes, Gomez-Santillan, Rangel (b0150) 2020; 53
Hamzadayi, Yildiz (b0080) 2017; 106
Dominic, Kaliyamoorthy, Kumar (b0045) 2004; 24
Teekeng, Thammano (b0155) 2012; 12
Meng, Zhang, Ren, Zhang, Lv (b0115) 2020; 142
Zhang, Ding, Zou, Qin, Fu (b0195) 2019; 30
Gong, Chiong, Deng, Gong (b0065) 2020; 58
Gothwal, Raj (b0070) 2017; 26
Chan, Wong, Chan (b0020) 2006; 44
Fan, Zhang, Liu, Shen, Gao (b0055) 2022; 62
Defersha, Obimuyiwa, Yimer (b0030) 2022; 171
Brucker, Schlie (b0010) 1990
Zhang, Hu, Sun, Zhang (b0190) 2020; 54
Osterrieder, Budde, Friedli (b0130) 2020; 221
Zhang, Gao, Shi (b0185) 2011; 38
Li, Gong, Lu (b0095) 2022; 168
Li, Gao (b0100) 2016; 174
Thörnblad, Strömberg, Patriksson, Almgren (b0160) 2015; 9
Mahmudy, W. F., Marian, R. M., & Luong, L. H. (2013).
(Vol. 701). Trans Tech Publ.
Ren, Wen, Yan, Hu, Guan, Li (b0140) 2021; 59
Ding, Gu (b0040) 2020; 121
Dominic (10.1016/j.cie.2024.109903_b0045) 2004; 24
Ren (10.1016/j.cie.2024.109903_b0140) 2021; 59
Lei (10.1016/j.cie.2024.109903_b0085) 2014; 52
Hamzadayi (10.1016/j.cie.2024.109903_b0080) 2017; 106
Thörnblad (10.1016/j.cie.2024.109903_b0160) 2015; 9
Tian (10.1016/j.cie.2024.109903_b0165) 2023; 11
Gong (10.1016/j.cie.2024.109903_b0065) 2020; 58
Fattahi (10.1016/j.cie.2024.109903_b0060) 2007; 18
Gothwal (10.1016/j.cie.2024.109903_b0070) 2017; 26
Hajibabaei (10.1016/j.cie.2024.109903_b0075) 2021; 16
10.1016/j.cie.2024.109903_b0110
Chen (10.1016/j.cie.2024.109903_b0025) 2020; 149
Li (10.1016/j.cie.2024.109903_b0100) 2016; 174
Meng (10.1016/j.cie.2024.109903_b0115) 2020; 142
Müller (10.1016/j.cie.2024.109903_b0120) 2022; 302
Singh (10.1016/j.cie.2024.109903_b0145) 2016; 93
Osterrieder (10.1016/j.cie.2024.109903_b0130) 2020; 221
Tian (10.1016/j.cie.2024.109903_b0170) 2022; 167
Fan (10.1016/j.cie.2024.109903_b0050) 2021; 60
Li (10.1016/j.cie.2024.109903_b0095) 2022; 168
Zhang (10.1016/j.cie.2024.109903_b0190) 2020; 54
Wu (10.1016/j.cie.2024.109903_b0180) 2021; 32
Cañas (10.1016/j.cie.2024.109903_b0015) 2021; 158
Ding (10.1016/j.cie.2024.109903_b0040) 2020; 121
Fan (10.1016/j.cie.2024.109903_b0055) 2022; 62
Naderi (10.1016/j.cie.2024.109903_b0125) 2022; 4
Lei (10.1016/j.cie.2024.109903_b0090) 2022; 205
Demir (10.1016/j.cie.2024.109903_b0035) 2014; 52
Brucker (10.1016/j.cie.2024.109903_b0010) 1990
Pezzella (10.1016/j.cie.2024.109903_b0135) 2008; 35
Vallikavungal Devassia (10.1016/j.cie.2024.109903_b0175) 2018; 56
Bierwirth (10.1016/j.cie.2024.109903_b0005) 1999; 7
Li (10.1016/j.cie.2024.109903_b0105) 2017; 113
Zhang (10.1016/j.cie.2024.109903_b0195) 2019; 30
Defersha (10.1016/j.cie.2024.109903_b0030) 2022; 171
Soto (10.1016/j.cie.2024.109903_b0150) 2020; 53
Teekeng (10.1016/j.cie.2024.109903_b0155) 2012; 12
Chan (10.1016/j.cie.2024.109903_b0020) 2006; 44
Zhang (10.1016/j.cie.2024.109903_b0185) 2011; 38
References_xml – volume: 58
  start-page: 4406
  year: 2020
  end-page: 4420
  ident: b0065
  article-title: A hybrid artificial bee colony algorithm for flexible job shop scheduling with worker flexibility
  publication-title: International Journal of Production Research
– volume: 32
  start-page: 707
  year: 2021
  end-page: 728
  ident: b0180
  article-title: An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading
  publication-title: Journal of Intelligent Manufacturing
– volume: 4
  start-page: 1
  year: 2022
  end-page: 28
  ident: b0125
  article-title: Critical-path-search logic-based benders decomposition approaches for flexible job shop scheduling
  publication-title: INFORMS Journal on Optimization
– volume: 12
  start-page: 122
  year: 2012
  end-page: 128
  ident: b0155
  article-title: Modified genetic algorithm for flexible job-shop scheduling problems
  publication-title: Procedia Computer Science
– volume: 30
  start-page: 1809
  year: 2019
  end-page: 1830
  ident: b0195
  article-title: Review of job shop scheduling research and its new perspectives under Industry 4.0
  publication-title: Journal of Intelligent Manufacturing
– volume: 11
  start-page: 324
  year: 2023
  ident: b0165
  article-title: A multi-objective optimization method for flexible job shop scheduling considering cutting-tool degradation with energy-saving measures
  publication-title: Mathematics
– volume: 158
  year: 2021
  ident: b0015
  article-title: Implementing industry 4.0 principles
  publication-title: Computers & Industrial Engineering
– volume: 59
  start-page: 7216
  year: 2021
  end-page: 7231
  ident: b0140
  article-title: Multi-objective optimisation for energy-aware flexible job-shop scheduling problem with assembly operations
  publication-title: International Journal of Production Research
– volume: 52
  start-page: 2519
  year: 2014
  end-page: 2529
  ident: b0085
  article-title: Variable neighbourhood search for dual-resource constrained flexible job shop scheduling
  publication-title: International Journal of Production Research
– volume: 56
  start-page: 3326
  year: 2018
  end-page: 3343
  ident: b0175
  article-title: Flexible job-shop scheduling problem with resource recovery constraints
  publication-title: International Journal of Production Research
– volume: 54
  year: 2020
  ident: b0190
  article-title: An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints
  publication-title: Swarm and Evolutionary Computation
– reference: Mahmudy, W. F., Marian, R. M., & Luong, L. H. (2013).
– volume: 106
  start-page: 287
  year: 2017
  end-page: 298
  ident: b0080
  article-title: Modeling and solving static m identical parallel machines scheduling problem with a common server and sequence dependent setup times
  publication-title: Computers & Industrial Engineering
– volume: 16
  start-page: 242
  year: 2021
  end-page: 253
  ident: b0075
  article-title: Flexible job-shop scheduling problem with unrelated parallel machines and resources-dependent processing times: A tabu search algorithm
  publication-title: International Journal of Management Science and Engineering Management
– volume: 113
  start-page: 10
  year: 2017
  end-page: 26
  ident: b0105
  article-title: Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems
  publication-title: Computers & Industrial Engineering
– volume: 18
  start-page: 331
  year: 2007
  end-page: 342
  ident: b0060
  article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems
  publication-title: Journal of Intelligent Manufacturing
– volume: 221
  year: 2020
  ident: b0130
  article-title: The smart factory as a key construct of industry 4.0: A systematic literature review
  publication-title: International Journal of Production Economics
– volume: 171
  year: 2022
  ident: b0030
  article-title: Mathematical model and simulated annealing algorithm for setup operator constrained flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 53
  year: 2020
  ident: b0150
  article-title: Solving the multi-objective flexible job shop scheduling problem with a novel parallel branch and bound algorithm
  publication-title: Swarm and Evolutionary Computation
– volume: 9
  start-page: 126
  year: 2015
  end-page: 145
  ident: b0160
  article-title: Scheduling optimisation of a real flexible job shop including fixture availability and preventive maintenance
  publication-title: European Journal of Industrial Engineering
– volume: 60
  start-page: 298
  year: 2021
  end-page: 311
  ident: b0050
  article-title: A hybrid Jaya algorithm for solving flexible job shop scheduling problem considering multiple critical paths
  publication-title: Journal of Manufacturing Systems
– year: 1990
  ident: b0010
  article-title: Job-shop scheduling with multipurpose machines
  publication-title: Computing
– volume: 302
  start-page: 874
  year: 2022
  end-page: 891
  ident: b0120
  article-title: An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning
  publication-title: European Journal of Operational Research
– volume: 93
  start-page: 36
  year: 2016
  end-page: 44
  ident: b0145
  article-title: A quantum behaved particle swarm optimization for flexible job shop scheduling
  publication-title: Computers & Industrial Engineering
– volume: 167
  year: 2022
  ident: b0170
  article-title: Multi-objective multi-skill resource-constrained project scheduling problem with skill switches: Model and evolutionary approaches
  publication-title: Computers & Industrial Engineering
– volume: 7
  start-page: 1
  year: 1999
  end-page: 17
  ident: b0005
  article-title: Production scheduling and rescheduling with genetic algorithms
  publication-title: Evolutionary Computation
– volume: 168
  year: 2022
  ident: b0095
  article-title: Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy processing time
  publication-title: Computers & Industrial Engineering
– volume: 62
  start-page: 650
  year: 2022
  end-page: 667
  ident: b0055
  article-title: An improved genetic algorithm for flexible job shop scheduling problem considering reconfigurable machine tools with limited auxiliary modules
  publication-title: Journal of Manufacturing Systems
– volume: 24
  start-page: 70
  year: 2004
  end-page: 75
  ident: b0045
  article-title: Efficient dispatching rules for dynamic job shop scheduling
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 44
  start-page: 2071
  year: 2006
  end-page: 2089
  ident: b0020
  article-title: Flexible job-shop scheduling problem under resource constraints
  publication-title: International Journal of Production Research
– reference: (Vol. 701). Trans Tech Publ.
– volume: 52
  start-page: 3905
  year: 2014
  end-page: 3921
  ident: b0035
  article-title: An effective genetic algorithm for flexible job-shop scheduling with overlapping in operations
  publication-title: International Journal of Production Research
– volume: 205
  year: 2022
  ident: b0090
  article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem
  publication-title: Expert Systems with Applications
– volume: 35
  start-page: 3202
  year: 2008
  end-page: 3212
  ident: b0135
  article-title: A genetic algorithm for the flexible job-shop scheduling problem
  publication-title: Computers & Operations Research
– volume: 26
  start-page: 386
  year: 2017
  end-page: 410
  ident: b0070
  article-title: Different aspects in design and development of flexible fixtures: Review and future directions
  publication-title: International Journal of Services and Operations Management
– volume: 121
  year: 2020
  ident: b0040
  article-title: Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem
  publication-title: Computers & Operations Research
– volume: 149
  year: 2020
  ident: b0025
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 174
  start-page: 93
  year: 2016
  end-page: 110
  ident: b0100
  article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem
  publication-title: International Journal of Production Economics
– volume: 142
  year: 2020
  ident: b0115
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 38
  start-page: 3563
  year: 2011
  end-page: 3573
  ident: b0185
  article-title: An effective genetic algorithm for the flexible job-shop scheduling problem
  publication-title: Expert Systems with Applications
– volume: 56
  start-page: 3326
  issue: 9
  year: 2018
  ident: 10.1016/j.cie.2024.109903_b0175
  article-title: Flexible job-shop scheduling problem with resource recovery constraints
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2017.1420262
– volume: 26
  start-page: 386
  issue: 3
  year: 2017
  ident: 10.1016/j.cie.2024.109903_b0070
  article-title: Different aspects in design and development of flexible fixtures: Review and future directions
  publication-title: International Journal of Services and Operations Management
  doi: 10.1504/IJSOM.2017.081944
– volume: 60
  start-page: 298
  year: 2021
  ident: 10.1016/j.cie.2024.109903_b0050
  article-title: A hybrid Jaya algorithm for solving flexible job shop scheduling problem considering multiple critical paths
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.05.018
– volume: 59
  start-page: 7216
  issue: 23
  year: 2021
  ident: 10.1016/j.cie.2024.109903_b0140
  article-title: Multi-objective optimisation for energy-aware flexible job-shop scheduling problem with assembly operations
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1836421
– volume: 11
  start-page: 324
  issue: 2
  year: 2023
  ident: 10.1016/j.cie.2024.109903_b0165
  article-title: A multi-objective optimization method for flexible job shop scheduling considering cutting-tool degradation with energy-saving measures
  publication-title: Mathematics
  doi: 10.3390/math11020324
– volume: 7
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.cie.2024.109903_b0005
  article-title: Production scheduling and rescheduling with genetic algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1999.7.1.1
– volume: 16
  start-page: 242
  issue: 4
  year: 2021
  ident: 10.1016/j.cie.2024.109903_b0075
  article-title: Flexible job-shop scheduling problem with unrelated parallel machines and resources-dependent processing times: A tabu search algorithm
  publication-title: International Journal of Management Science and Engineering Management
  doi: 10.1080/17509653.2021.1941368
– volume: 174
  start-page: 93
  year: 2016
  ident: 10.1016/j.cie.2024.109903_b0100
  article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2016.01.016
– volume: 167
  year: 2022
  ident: 10.1016/j.cie.2024.109903_b0170
  article-title: Multi-objective multi-skill resource-constrained project scheduling problem with skill switches: Model and evolutionary approaches
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107897
– volume: 205
  year: 2022
  ident: 10.1016/j.cie.2024.109903_b0090
  article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117796
– volume: 158
  year: 2021
  ident: 10.1016/j.cie.2024.109903_b0015
  article-title: Implementing industry 4.0 principles
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107379
– volume: 93
  start-page: 36
  year: 2016
  ident: 10.1016/j.cie.2024.109903_b0145
  article-title: A quantum behaved particle swarm optimization for flexible job shop scheduling
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2015.12.004
– volume: 35
  start-page: 3202
  issue: 10
  year: 2008
  ident: 10.1016/j.cie.2024.109903_b0135
  article-title: A genetic algorithm for the flexible job-shop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2007.02.014
– volume: 106
  start-page: 287
  year: 2017
  ident: 10.1016/j.cie.2024.109903_b0080
  article-title: Modeling and solving static m identical parallel machines scheduling problem with a common server and sequence dependent setup times
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.02.013
– volume: 168
  year: 2022
  ident: 10.1016/j.cie.2024.109903_b0095
  article-title: Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy processing time
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2022.108099
– volume: 18
  start-page: 331
  year: 2007
  ident: 10.1016/j.cie.2024.109903_b0060
  article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-007-0026-8
– volume: 221
  year: 2020
  ident: 10.1016/j.cie.2024.109903_b0130
  article-title: The smart factory as a key construct of industry 4.0: A systematic literature review
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2019.08.011
– volume: 38
  start-page: 3563
  issue: 4
  year: 2011
  ident: 10.1016/j.cie.2024.109903_b0185
  article-title: An effective genetic algorithm for the flexible job-shop scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.08.145
– volume: 113
  start-page: 10
  year: 2017
  ident: 10.1016/j.cie.2024.109903_b0105
  article-title: Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.09.005
– volume: 54
  year: 2020
  ident: 10.1016/j.cie.2024.109903_b0190
  article-title: An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100664
– volume: 121
  year: 2020
  ident: 10.1016/j.cie.2024.109903_b0040
  article-title: Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2020.104951
– volume: 24
  start-page: 70
  year: 2004
  ident: 10.1016/j.cie.2024.109903_b0045
  article-title: Efficient dispatching rules for dynamic job shop scheduling
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 44
  start-page: 2071
  issue: 11
  year: 2006
  ident: 10.1016/j.cie.2024.109903_b0020
  article-title: Flexible job-shop scheduling problem under resource constraints
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540500386012
– volume: 53
  year: 2020
  ident: 10.1016/j.cie.2024.109903_b0150
  article-title: Solving the multi-objective flexible job shop scheduling problem with a novel parallel branch and bound algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.100632
– volume: 62
  start-page: 650
  year: 2022
  ident: 10.1016/j.cie.2024.109903_b0055
  article-title: An improved genetic algorithm for flexible job shop scheduling problem considering reconfigurable machine tools with limited auxiliary modules
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2022.01.014
– volume: 9
  start-page: 126
  issue: 1
  year: 2015
  ident: 10.1016/j.cie.2024.109903_b0160
  article-title: Scheduling optimisation of a real flexible job shop including fixture availability and preventive maintenance
  publication-title: European Journal of Industrial Engineering
  doi: 10.1504/EJIE.2015.067451
– volume: 32
  start-page: 707
  year: 2021
  ident: 10.1016/j.cie.2024.109903_b0180
  article-title: An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01697-5
– volume: 142
  year: 2020
  ident: 10.1016/j.cie.2024.109903_b0115
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106347
– volume: 302
  start-page: 874
  issue: 3
  year: 2022
  ident: 10.1016/j.cie.2024.109903_b0120
  article-title: An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2022.01.034
– volume: 171
  year: 2022
  ident: 10.1016/j.cie.2024.109903_b0030
  article-title: Mathematical model and simulated annealing algorithm for setup operator constrained flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2022.108487
– volume: 30
  start-page: 1809
  year: 2019
  ident: 10.1016/j.cie.2024.109903_b0195
  article-title: Review of job shop scheduling research and its new perspectives under Industry 4.0
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-017-1350-2
– volume: 52
  start-page: 2519
  issue: 9
  year: 2014
  ident: 10.1016/j.cie.2024.109903_b0085
  article-title: Variable neighbourhood search for dual-resource constrained flexible job shop scheduling
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.849822
– year: 1990
  ident: 10.1016/j.cie.2024.109903_b0010
  article-title: Job-shop scheduling with multipurpose machines
  publication-title: Computing
  doi: 10.1007/BF02238804
– volume: 52
  start-page: 3905
  issue: 13
  year: 2014
  ident: 10.1016/j.cie.2024.109903_b0035
  article-title: An effective genetic algorithm for flexible job-shop scheduling with overlapping in operations
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2014.889328
– ident: 10.1016/j.cie.2024.109903_b0110
  doi: 10.4028/www.scientific.net/AMR.701.364
– volume: 4
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.cie.2024.109903_b0125
  article-title: Critical-path-search logic-based benders decomposition approaches for flexible job shop scheduling
  publication-title: INFORMS Journal on Optimization
  doi: 10.1287/ijoo.2021.0056
– volume: 149
  year: 2020
  ident: 10.1016/j.cie.2024.109903_b0025
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106778
– volume: 58
  start-page: 4406
  issue: 14
  year: 2020
  ident: 10.1016/j.cie.2024.109903_b0065
  article-title: A hybrid artificial bee colony algorithm for flexible job shop scheduling with worker flexibility
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2019.1653504
– volume: 12
  start-page: 122
  year: 2012
  ident: 10.1016/j.cie.2024.109903_b0155
  article-title: Modified genetic algorithm for flexible job-shop scheduling problems
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2012.09.041
SSID ssj0004591
Score 2.647081
Snippet •Flexible job shop scheduling with machine-fixture-pallet constraints is first proposed.•Scheduling optimisation and fixture-pallet combinatorial optimisation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109903
SubjectTerms Feasibility correction strategy
Fixture-pallet constraint
Flexible job shop
Genetic algorithm
Mixed integer programming
self-learning VNS
Title Multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimisation
URI https://dx.doi.org/10.1016/j.cie.2024.109903
Volume 188
WOSCitedRecordID wos001167033100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMceBQQLQ_5wInKq93Eje1jBUXAoUKiSMspipOxmlWbXW22q_0J_OyOH3lVLaIHLlFkOZPszufxzHgehHyIp8lE6zhnUuXA-FEGuOZ0ziagpnGihSiAu2YT4vRUzmbqx2j0p8mF2VyIqpLbrVr-V1bjGDLbps7eg90tURzAe2Q6XpHteP0nxruUWrYKbnkbVl67PhCoWRpb_dKmSs0X-rA-XywP0bbFvSakpLvWMt4za8qtPVpgS9tqZW0Dz9GCtva5dbAvUMxchjCgvnLbdIioHZ7KrikIdEUP2wCg8sr5Ym3PoHZs4_NE2oHPbs7P89KlJ7ej4OXT78xA2fdaRLwJdDZdttaEWe1vKIllT5a6M7v4VjHvPQ7zMYq_saU-7uYOS2rf2OraAMQmtm2eIonUkkg9iQdkNxJHCuXj7vG3k9n3XuV5332x-e7mhNzFCt74jtt1nJ7ecvaMPAkGBz32QHlORlDtkafB-KBBtNd75HGvMuULUg1RRHsoog2KKKKIWhTRDkU0oIhaFNEhiugARbSPopfk15eTs09fWWjNwfJIiTUTqDVGUKD-qpMi5tqeZusiUZqbWMVFhoof8KmRCpd8BnEkNCQSAISEjCvcZV-RnWpRwWtCY8mlydFSjwB3EyN1klg7wJhMomkSiX0yaf5MZJaPT7E_-CK9k4n75GP7yNIXbfnbZN5wKA1ap9cmU0Tb3Y8d3Ocdb8ijbhG8JTvr1RW8Iw_zzbqsV-8D1K4BNGWmKw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-resource+constrained+flexible+job+shop+scheduling+problem+with+fixture-pallet+combinatorial+optimisation&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Liu%2C+Molin&rft.au=Lv%2C+Jun&rft.au=Du%2C+Shichang&rft.au=Deng%2C+Yafei&rft.date=2024-02-01&rft.issn=0360-8352&rft.volume=188&rft.spage=109903&rft_id=info:doi/10.1016%2Fj.cie.2024.109903&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2024_109903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon